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1 Introduction and preliminaries
The origin of the fixed point theory goes back a century, to the pioneer work of Banach.
Since the first study of Banach, researchers have been extended, improved, and general-
ized this very simple stated but at the same time very powerful theorem. For this purpose,
the terms of the contraction inequality and the abstract structure of Banach’s theorem
have been investigated. In this paper, we shall combine these two trends and introduce
two new type contraction via simulation functions involving rational terms in the more
general setting, partial-b-metric space.

For the sake of the completeness of the manuscript, we shall recall some basic results

and concepts here.

Theorem 1 ([1]) Let (A,8) be a complete metric space and O : A — A be a mapping. If
there exist K1, ky € [0, 1), with k1 + k5 < 1 such that

1+68(v,0
§(0v, Ow) < k1 - §(w, Ow)w + Kk - 8(v, ), (1.1)
1+68(v,w)

for all v,w € A, then O has a unique fixed point u € A and the sequence {0"x} converges to
the fixed point u for all x € A.
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Theorem 2 ([2]) Let (A,8) be a complete metric space and 0 : A — A be a continuous
mapping. If there exist k1, k3 € [0,1), with k1 + ky < 1 such that
8(v, 0v)8(w, Ow)

8(0’1), OCL)) < kl . W + kz . 8(11,(1)), (1.2)

for all distinct v,w € A, then O possesses a unique fixed point in A.

We mention that over the last few years many interesting and different generalizations
for rational contractions have been provided; see, for example [3-8].

Let I be the set of all non-decreasing and continuous functions ¥ : [0, +o0) — [0, +00).
such that v (0) = 0.

Definition 1 ([9]) A function n: R} x R — R is a y-simulation function if there exists
¥ € I" such that the following conditions hold:

(m) n(rt) <) —y(r) forallr,te R*;

(n2) if {r,}, {t,} are two sequences in [0, +00) such that lim,,_, ;o I, = lim,,—, ;0 t, > 0, then

limsup n(ry,, t,) < 0. (1.3)
n—+00
We will denote by Z,, the family of all ¢ -simulation functions; see e.g. [10-22]. It is clear,
due to the axiom (77), that

o(r,r)<0 forallr>0. (1.4)

Definition 2 ([23]) On a non-empty set A, a function p : A x A — R} is a partial metric
if the following conditions:

(o) v=wift p(v,2) = p(v,0) = p(o,w);

(p2) p(v,7) < p(v,0);

(p3) p(v,0) = plw,v);

(pa) p(v,0) < p(v,2) + p(z,0) — p(z,2);
hold for all v,w,z € A.

The pair (A, p) is called a partial-metric space.

Every partial metric p on A generates a Ty topology on A, that has a base of the set of
all open balls B, (), where an open ball for a partial metric p on A is defined [23] as

B (v) = {a) e A:p(v,w) < p(v,v) + e},

for each v € Aand e > 0.

If (A, p) is a partial-metric space and {,,} a sequence in 4, then:

+ {v,} is convergent to a limit u € A, if lim,,—, ;00 p(24, U) = p(u, u);

+ {v) is a Cauchy sequence if lim,,; 4 100 P(9, 7;) exists and is finite.
Moreover, we say that the partial-metric space (A4, p) is complete if every Cauchy sequence
{om} in A converges to a point u € A, that is,

lim p(v,,u) =p(u,u) = lim  p(z, 7).
m,q— +00

m—+00
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Remark 1 The limit in a partial metric space may not be unique. For a sequence {,,} on
(A, p), we denote by L({=,}) the set of limit points (if there exist any),

L({om) = {u €A lim p(o,u) = p(u,u)}.

We recall some results in the context of partial-metric spaces, necessary in our following
considerations.

Lemma 1 Let (A, p) be a partial-metric space and {v,,} be a sequence in A such that
1My +00 0 (Ums Uime1) = 0. IfliMyy, g 00 (O, 7) # 0, then there exist e > 0 and subsequences
{9 }s {vg;} of (v} such that

lim )O(Uml: 7/ql): lim ;O(Uml: 7/ql+1): lim P(ﬂm,u,ffq,)
l—+00 l—+00 l—+00

= lim p(”m,+11 T/ql+1) =€ (1.5)

I—+00
Lemma 2 ([24]) Let {v,,} be a Cauchy sequence on a complete partial-metric space (A, p).
If there exists x € L({v}) with p(x,x) = 0, then x € L({v,}), for every subsequence {v,,}

of (U}

Lemma 3 ([25]) If {v.}, (@} are two sequences in a partial-metric space (A, p) such that

lim p('”m’ 7C) = ml—i>IPoop(7}m’ vm) = /0(?(, 7C);

m—+00

lim p(wmy) = lim  p(wum, o) = p(y y),

m—+00 m—+00

then limyy,, 100 PV, Wm) = p(a, y). Moreover, limy,_, 100 p(vm, U) = p(x, U), for each u € A.

On a partial-metric space (A, p), a mapping 0: A — A is continuous at v, if and only if
for every e > 0, there exists § > 0 such that

8 e
O(B}(w)) < B (0(w)).
(O is continuous if it is continuous at every point v € A.)

Lemma 4 ([24]) On a complete partial-metric space (A, p), let O be a continuous mapping
and {vy,} be a Cauchy sequence in A. If there exists x € L({v}) with p(x,x) = 0, then
0x € L({Ov,,}).

Definition 3 ([26]) Let A be a non-empty set and s > 1. A function p,: A x A — Rf isa
partial b-metric with a coefficient s if the following conditions hold for all v,w,z € A
(opl) v =wiff pp(v,2) = pp(v, ®) = pp (@, W);
(0p2) po(2, ) < po(v, ®);
(p3) pp(v, @) = pp(w, v);
(0p4) po(v, @) = s[pp(,2) + pp(2, )] — Pb(2,2).
In this case, we say that (A, py, S) is a partial b-metric space.

Example 1 ([26]) Let A be a non-empty set and v,w € A.
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« if p is a partial metric on A, then the function py, defined as

pb(v,0) = [p(2,0)]" (1.6)

is a partial b-metric on A, with s = 271, for A > 1.

« if bis a b-metric and p is a partial metric on 4, then the function
pb(y,a)) :,o(v,a))+ b(z/,a)) (17)
is a partial b-metric on A.

A sequence {z,} in a partial b-metric space (A, p,s) is said to be py-convergent to a
point u € A if

lim  pp (o), U) = pp(u, u). (1.8)
m—+0Q

If the limit lim,, 4 o0 o6 (v, 7;) exists and it is finite, the sequence {v,,} is said to be pp-

Cauchy. Moreover, if every p,-Cauchy sequence in A is pp-convergent to u € A, that is

lim pb('”rrn yq) = ml—lf?oo pb(yrrn u) = pp(u,u), (1.9)

m,q—+00
we say that the partial b-metric space (A, py,S) is pp-complete.

Remark 2 In [27] it is proved that a partial b-metric induces a b-metric, say 8y, with

8p (7, ) = 2pp(v, 0) — pp(v, ) — po(w, ®), (1.10)
forall v,w € A.

On the other hand, in [28], the notion of 0-pp-completeness was introduced and the
relation between 0-pp-completeness and pp-completeness of a partial b-metric was es-
tablished.

Definition 4 ([28]) A sequence {z,,} on a partial b-metric space (A, pp,s) is 0-pp-Cauchy
if 1imyy, 5 +o0 P (v, 77) = 0. Moreover, the space (A, pp, ) is said to be 0-p,-complete if for
each 0-pp-Cauchy sequence in A, there is u € A, such that

lim  pp (v, 7g) = lim  pp(24, U) = pp(u, u) = 0. (111)
m—>+00

m,g— +00

Lemma 5 ([28]) If the partial b-metric space (A, pp,S) is pp-complete, then it is 0-py-
complete.

Lemma 6 ([29]) Let (A, pb,S) be a partial b-metric space. If pp(v, ) = 0 then v = w and
po(v,w) >0 forall v # w.

The next result is important in our future considerations.
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Lemma 7 ([30]) Let (A, py,s > 1) be a partial b-metric space, O: A — A a mapping and
a number k € [0,1). If {v,,} is a sequence in A, where v,, = Ov,,_1 and

Pb(Pms Vme1) < KPo(Vm—15 V), (1.12)
for each m € N, then the sequence {v,,} is 0-pp-Cauchy.

2 Main results
We start with the definition of simulation function for partial b-metric spaces.

Definition 5 Let (A, py,s > 1) be a partial b-metric space. A b-y-simulation function is
a function ny, : [0, +00) x [0, +00) — R satisfying:

(Mp1) No(rt) <Y (t) —y(r) for all r,t € R*;

(np2) if {r,}, {t,} are two sequences in [0, +00), such that for p > 0

limsupt, =5’ lim r, >0, (2.1)
n—>+00 n—>+00

then
lim sup np (sprn, tn) <0. (2.2)
n—+00

We shall denote by Z,, the family of all -y -simulation functions.

Example?2 Lety € I'and y : [0, +00) — [0, +00) be a function such that limsup,_, ¥ (t) <
1 for every ty > 0 and ¢(t) = 0 if and only if t = 0. Then np(r,t) = y (V) (t) — ¥ (r), forr,t >0
is a b-yr-simulation function.

Example 3 Let € I' and ¢ : [0, +00) — [0, +00) be a function such that lim¢_,¢, ¢(t) > 0
for every tp > 0 and ¢(t) = 0 if and only if t = 0. Then 5y (r, t) = ¥ (t) — ¢(t) — ¥ (r), forr,t >0
is a b-yr-simulation function.

Obviously, (151) holds. Now, considering two sequences {r,} and {t,} in (0, +00) such
that (2.1) holds, we have

lim 11o(s tn) = M (t,) = p(ta) = ¥ (1) < () < 0.

n—+00

Thus, also (1752) holds, that is n, € Zy, .

Definition 6 Let (A, pp,s > 1) be a partial b-metric space. A mapping 0: A — A is called
(np)-rational contraction of type A if there exists a function n, € Zy, such that

1
7 min{pb(v, 0v), pp(w, Oa))} < pp(v,w), which implies

1(s” pp(0v, 0w), Da (v, w)) = 0, (2.3)

for every v, w € A, where Dy is defined as

(2.4)

Du(v,w) = max{é(z/, ), 8(v, Ov), §(w, Ow), 3@, 0w)[1 + 8(v, 0v)] }

1+ 68(v, w)
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With the purpose to simplify the demonstrations, we prefer in the sequel, to discuss
separately, the cases

Theorem 3 Let (A, pp, s > 1) be a pp-complete partial b-metric space and 0: A — Abea
(no)-rational contraction of type A. Then O admits exactly one fixed point.

Proof Let y € A be an arbitrary but fixed point and {z,,} be the sequence in .4 defined as
follows:

Up =001, YeN. (2.5)
Thus, we can assume that v,,_; # v, for every m € N. Indeed, if we suppose that there

exists mg € N such that v,,,_1 = v,,. Taking into account (2.5) we get ,,,_1 = Ovj,,,_1, that

is, vm,-1 is a fixed point of O. Therefore, substituting v = v,,_; and w = v, in (2.4), we have

Po(Vm—15 Um)s Pb (V=15 O%u-1), Pb (V> OVn),
D@1, ) = max b (60t [ 1+ (31-1,00%11)]
1+0p (Vm—1,7m)

Pb (@m0 +1) (1406 (9 -1,9m)]
L+ b (Vm—1,7m)

{pb(ym—ly Un)s Po (V=15 Um)> Pb (Vs Z’m+1),}
= max

= max{pb(ym—ly ’Um)r pb(”mr ’Um+1)}'

Moreover, by (2.3) we get

1 .
Z mln{pb(ym—l: Oym—l): pb(”m: Oym)}

1 .
= min{ pb (U1, %> Pb (Vs V1) }

< Po(vm-1,9m), forallmeN,

which implies

1b(5” P6(O%-1, 0n), Da(¥im-1, m)) = O.
Now, taking into account (1), the above inequality yields

0 < Y (Da(Om-1, o)) = ¥ (5 o (OVm-1, Ov)),
or, equivalently,

W(Sppb(ﬂm; 7/m+1)) < IP(DA(Wm—ly ﬂm)) = W(maX{Pb(Um—l; Un)» Po(Umy 7/m+1)})-
Consequently, due to the monotony of the function 1, we obtain

Splob(vn’ﬂ Z1m+1) < IIlaX{,Ob(Zlm,l, 7/m): pb(vm: ’Um+1)}' (26)
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If there exists 71, € N such that max{ob(vu,-1, %1 )s P (Vs Uy +1)} = Po (V> By 41)5 (2.6)
becomes s” p, (U, Uy +1) < Po(Umy > ¥my+1), which is a contradiction (because s > 1). There-
fore, for any m € N we have

Sppb(vm: '”m+1) < pb(vm—ly 'Um),

or

1
b (Vs V1) < ;pb(vm—ly Um)- (2.7)

Denoting é by «, we have pp (v, Uni1) < KPo(Um-1, Um), with 0 < k < 1. Thus, by Lemma 7
we see that the sequence{v,} is a 0-pp-Cauchy sequence on the p,-complete partial b-
metric space. Since by Lemma 5, the space is also 0-pp-complete, it follows that there
exists u € A such that

lim  pp(om, 7)) = Hm pp(vm, u) = pp(u,u) = 0. (2.8)

m,q— +00

Now, we claim that

1
gpb(ymy 7/m+1) = pb(”m: U) or gpb(yrrﬁly 7/m+2) = pb(”m+1; U).

Assuming the contrary, we can find m, € N such that
b (Tmgs Umg1) < S[ 06 (Thgs U) + Pb(Us mg41) | = o6 (U, 1)

1 1
<S gpb(ffmoy 7}m0+1) + gpb(vmmlr ”mg+2)

1 . )
= i[pb(”mo’ Vmo+1) + Pb(Umg+1, Tmo+2) | (taking (2.7) into account)

< ,Ob(T/mO, Um0+l);

which is a contradiction. Thus, there exists a subsequence {2} of {#,} such that

1 . 1
7 min{ pb (U@, Ovm(p), Pb(U, OU) } = 2_S;0b(7/m(l)r Un(t+1) < Pb (), U),
which implies

1b (5 06 (0vm(), OU), Da (@i, u)) > 0,

where

Po (> U)s Pb(Tm(z)> Ovm(p))> Pb (U, OU),
pb(u) OU) = DA(’”WI([)! U)) = max : pb(u,ou)[1+pb(vm(l),Ovm(l))
L+ (2 p) 1)

b (U,0U) [1+0b (% (1), U1 +1)]
1+ pp (Upa(z) 1)

ipb(vm(l)’ W), Pb (Ut Um(+1)» Po (U, OU),}
= max
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Therefore, letting / — +00 and keeping (2.8) in mind we get
lim D4 (vuq),u)) = pp(u, Ou). (2.9)
I—+00

On one hand, without loss of generality, we assume that ,, # u, for infinitely many m € N.
Thus,

1b(5” Pb (O, OU), Dy (v, 1)) = 0,

which by (1) leads us to
¥ (5” pb (O, 0U)) < Y (D4 (v 1)).

Taking into account the non-decreasing property of v
s? pp (0, OU) < Da(vy, U).

On the other hand,

,Ob(U, OU) =< S[pb(ur Ovm) + pb(O’l/m, OU)] - pb(ovm: O0)
< S,Ob(u, Ovm) + Sp:ob(oym: OU) - pb(ym+17 '”m+1)

< 5Pb(U, Ov) + D4, U).
Letting m — +00 in the above inequality and keeping in mind (2.8) and (2.9) we get
pb(u,0u) < ¥ lim pp(0vy, OU) < lim Dy(v,,u) = pp(u, Ou).
m—+00 m—>+00

Therefore, s” lim,,_, ;o pb(Ovy, OU) = pp(u, Ou). Thus, letting r,, = pp(Ov,,, OU) and t,, =
Da(vy, u), by (np2) it follows limsup,,,_, , ., 1b(? T, tm) < 0, which is a contradiction. Then
pb(u, 0u) =0 = pp(u, u), that is, u is a fixed point of O.

As a last step, we establish uniqueness of the fixed point. Indeed, if we can find another
point, z € A, z # u such that z = 0z,

1
0= min{py(z, 02), pp(u, OU)} < pp(z,u),
which implies

0 <np (Sppb(oz’ Ou)»DA (Z» U)) < 1//(7)%\ (Z» U)) - ¢ (Sppb(OZ» OU))

=Y (pp(z,u)) — ¥ (P pp(z, 1)),
which is a contradiction. Thus, u = z. O

Example 4 Let the set A = {10,11,12,13} and p, be the partial b-metric on A
{0'000002 fors=0=13 \Ye define the mapping 0: A — A, Ov =

lv—w2 otherwise.

(s = 2), where pp(v,w) =

(1221912 and e choose @ < ' 6(0) - § and np(r) = 1

nb € Zy, (by taking y(t) = % in Example 2). We have

62H. It is easy to see that
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v Ov  pp(v, Ov)

10 10 O
11 10 1
12 10 4
13 11 4

and shall consider the following cases:
1. For v,w € {10,11, 12}, we have p,(0v, Ow) = 0, and then

1
2_5 min{pb(y’ 07})’ )Ob(CU, Ow)} <1= /Ob(vra))r

which implies
15
2pp(07, 0w) =0 < EDB(’U; w).

2. For v =10,w = 13 we have pp(v,w) = 9, pp(10, 010 = 0, pp(13, 013) = pp(13,11) = 4,
0p(010, 013) = pp(10,11) = 1 and then

1
2 min{pp(10,a710), pp(13,013)} =0 < 9 = pp(v, w),

which implies

2pp(010 013)—2<135—15 (10,13)
pb ] - = 16 _16 pb » .

3. For v =11,w = 13 we have p,(v,w) =4, pp(11,011) = 1, pp(13, 013) = pp(13,11) = 4,
op(011,013) = pp(10,11) = 1 and then
1 . 1
2 min{pp(11,aT11), pp(13,013)} = 1< 4 = py(v, ),

which implies

15 15
2p5(011,013) =2 < —= = = - (11, 13).

4. For v=12,w =13 we have pp(v,w) = 1, pp(12, 012) = 4, pp(13, 013) = pp(13,11) = 4,
(012, 013) = pp(10,11) = 1 and then

1
2 min{pp(12,aT12), pp(13, 013)} = 1pp(v, ),

which implies

75 15 pp(12,012)(1 + pp(13,013) 15
200(012,013) =2 < 12 = 12l )+ pu ) _Bp 12,13
16 16 1+ pp(12,13) 16

Thus, the hypothesis of Theorem 3 are satisfied and » = 10 is the fixed point of the
mapping O.
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Definition 7 Let (A4, pp,s > 1) be a partial b-metric space. The mapping 0: A — A is said
to be a (np)-rational contraction of type B if there exists n, € Zy, such that

1
7 min{pb(v, 0v), pp(w, Oa))} < pp(v,w), which implies

nb(sppb(Ov, Ow), Dx(v, a))) >0, (2.10)

for all v,w € A, pp(v,w) > 0, where

2,00)+pp (w,00)

(
Pb(% w): Pb(% OU): ,Ob(w, Ow): I )
Pb (@,00) pp(v,00) s (211)
Pp(v,0)

Dg(v, w) = max

Theorem 4 On a p,-complete partial b-metric space (A, pp,s > 1) any continuous (np)-
rational contraction of type B, O : A — A admits exactly one fixed point.

Proof Let the sequence {v,,} be defined by (2.5). Since v,,_1 # vy, for each m € N (by similar
reasoning as in the proof of Theorem 3), we have

IO 1 .
g mln{pb(ym; O'Um); pb(ym+1: Oym+1)} = g mln{pb(vm: 7/m+l)r ,Ob(ym+lx vm+2)}
< 0b(Uns Vns1)s

which implies

0 < Nb (Sppb(OT/m, O7/m+l)y DB(UWU 7/m+1))

< w(DB(ynﬂ ym+1)) - w(sppb(ovmv O”m+1))r (212)
where
06(Vm> Us1)s Po(Ums 1) Vms2)s w:
DB(’Z/m, ’UWHI) = max Pb (@, U+1) P (V1,7 +2)
pb(erT/WHl)

< max 26 (Vs Upns1)s Po(Gmals Vne2)s
— Lo (9, Um+1)+Pb (P41, 9m+2)1=Pb (Fpr41,9m41) + Pb (Um+1,9m+1)

2
= maX{Pb(Um» Un+1)s Po (U1 7/m+2)}-
Therefore
V(2 06 (1> Ums2)) < ¥ (DB (0> vme1)) < ¥ (max{op (v vmse1)s Pb (U1, vs2) })
and since the function v is non-decreasing, we get, for any m € N,

S” Pb (V15 Vmr2) < max{pb(vmr Un+1), Pb (V1 ’Um+2)}-

Moreover, if max{ob (v Un+1)s Pb(Unr1s Uni2)} = Po(Vms1s Vms2) We geta contradiction, and
then it follows that

1
pb('um+lv Um+2) < gpb(’”m: ym+1)
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and by Lemma (7), we conclude that {,,} is a 0-pp-Cauchy on a pp-complete b-partial-
metric space, and there exists u € A such that lim,,,_, , o ), = U.
Taking into account the continuity of the mapping O, we have

u= lim %H=1m1o(um %)sz
m—+0Q0 m—>+0Q m—+0Q0

that is, u is a fixed point of the mapping O.
We claim that the fixed point of O is unique. Let u,z € A be two different fixed point of
0. Then

1 .
0= % min{ pp(u, 0u), pb(z, 02)} < pp(u,2),
which implies

0 <MNb (Splob(ou’ OZ),D[,(U,Z)) < 1P(Db(U’Z)) - Iﬂ(Sppb(OU, OZ))

=Y pp(u,2) — ¥ (s pp (U, 2)),
which is a contradiction. Therefore, pp(u,z) = 0, that is (by Lemma 6), u = z. .

Example 5 Let the set A =[0,1], and pp : A x A — [0, +00), pp(v,w) = (max{v, w})? be

a partial b-metric on A. Let the continuous mapping 0 : A — A be defined by Ov =

{%2 :z:j)%%l% and the functions ¥ € T', np € Zy,, where ¥/(t) = £ and np(r,t) = £(§) - £.
We verify that O is a (np)- -rational contraction of type B.

1. For v,w € [0,2/3], if v > w, (the case v < w is similar), we have

(v, w) = (rnax{v,a)})2 =72, pb(2, Ov) = (max{o, 7/2})2 =72,
pb(@, 0w) = @, Pb(0v, Ow) = (max{vz,wz})2 =%
Therefore,

? < 0% = pp(v,w),

1 1

- min{pb(v, 0v), pp(w, Oa))} =-v

4 4
which implies

8
2pp(0v, 0w) = 20* < —0* < 5733(% ).

O |

2. For v,w € (2/3,1], if v > w, (the case v < w is similar), we have

2
ob(v, w) = (max{v,w})2 =72, ob(w, Ov) = (max{v, g }) =2

16
Po(w, 0w) =, pp(0v, Ow) = T

Therefore,

2

1 1
1 min{pb(y, Oy)! Iob(a)) O(,())} = 17} = 7/2 = ,Ob(U; Cl)),

Page 11 of 20
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which implies

32 8 8
20p(0v, Ow) = m < §v2 < 5173(7/,(1))).

3. For v €[0,2/3],w € (2/3,1], we have

po(v,0) = (max{z,0))* =w?,  pp(v, 00) = 7,

16
pb(w¢ Oa)) = a)zt ,Ob(OT/: O(,()) =357

81
Therefore,

1 1
1 min{pb(v, 0v), pp(w, Ow)} = sz <w’= ob(v, w),

which implies

32
2pb(0v, O(,()) =—=

1

8 8
a)2 = §pb(w7 Ow) < §DB(7/: a)))

O |

Therefore, all the hypotheses of Theorem 2.10 are satisfied and v = 0 is the unique
fixed point of O.

Removing the condition le min{pp (v, 0v), pp(w, Ow)} < pp(v,w) in Theorem 3, respec-
tively, Theorem 4, we immediately obtain the next results.

Corollary 1 Let (A, py,s > 1) be a pp-complete partial b-metric space and 0: A — A be
a mapping such that there exists n, € Zy, such that

b (Sppb(Oy, Ow)¢DA(7/) (,())) >0

forall v,w € A, where D 4 is defined by (2.4). Then O has a unique fixed point.

Corollary 2 Let (A, pp,s > 1) be a pp-complete partial b-metric space and 0: A — A be
a continuous mapping such that there exists np, € Zy, such that

Nb (Sppb(OZl, OCL)),DB(U, CU)) > 0

for all distinct v, € A, where Dg is defined by (2.11). Then O has a unique fixed point.

Corollary 3 Let 0: A — A be a mapping on a po-complete partial b-metric space
(A, pb,s > 1). Suppose that W € T and ¢ : [0,+00) — [0,+00) is a function such that
liminfi_,¢, ¢(t) > 0, for to > 0 and ¢(t) =0 < t = 0. If for every r,t € A

— min

% {,Ob(ZJ, OZ])¢ Iob(a)r Ow)} < )Ob(y; w):

which implies

W(Sppb(o% Oa))) = Ip(IZ)A(W! Cl))) - ¢(DA(UI w))

then O admits a unique fixed point.

Page 12 of 20
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Proof Let np(r,t) = ¥ (t) — ¢(t) — ¥ (r) in Theorem 3 and take into account Example 2. [

Corollary 4 Let 0: A — A be a continuous mapping on a py-complete partial b-metric
space (A, pp, s > 1). Suppose that € T and ¢ : [0, +00) — [0, +00) is a _function such that
liminfi_, ¢, ¢(t) > 0, for to > 0 and ¢(t) = 0 & t = 0. If for every distinct r,t € A

1 .
% min{ pp(v, 0v), pp(@, Ow)} < pp(v, ),

which implies
¥ (5 po(09, 00)) < ¥ (Ds(v,)) — ¢ (Ds(v,))
then O admits a unique fixed point.
Proof Let np(r,t) = ¥ (t) — ¢(t) — ¥ (r) in Theorem 4 and take into account Example 3. [

Corollary 5 Let 0 : A — A be a mapping on a py-complete partial b-metric space
(A, pp,s > 1). Suppose that € T and y : [0,+00) — [0,1) is a function such that
limsup, ., ¥(t) <1, forto>0and y(t)=0 & t=0.fforeveryr,te A

1 .
g mln{pb(yv Oy)¢ ,Ob(a), O(,())} = pb(y¢ (,()),

which implies
¥ (" 06(0v, 00)) < ¥ (Da(v, )¢ (Da(v, »))
then O admits a unique fixed point.
Proof Let np(r,t) = y ()Y (t) — ¥(r) in Theorem 3 and take into account Example 2. a

Corollary 6 Let 0: A — A be a continuous mapping on a pyp-complete partial b-metric
space (A, pp,s > 1). Suppose that € I and y : [0,+00) — [0,1) is a function such that
limsup, ., ¥(t) <1, forto>0and y(t) =0 < t=0. If for every r,t € A, with py(v,w) >0,

1
g mln{pb(vv Ov), Iob(a)r Ow)} = Pb(% o),

which implies
¥ (s” pb(0v, 00)) < ¥/ (Dp(v, ) — ¢(D(v, w))
then O admits a unique fixed point.
Proof Let np(r,t) = y (1) (t) — ¥ (r) in Theorem 4 and take into account Example 2. |

We will prove below results similar to those stated in Theorems 3, 4 that can be formu-
lated for the case s = 1.
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Theorem 5 Let (A, p) be a pp-complete partial-metric space and 0: A — A be a map-
ping. If there exists a function n € Zy, such that

1
5 min{p(v, 0v), p(w, Oa))} < p(v,w), which implies

1(p(0v, 0w), D) (v,w)) = 0, (2.13)

for every distinct v, € A, where D}, is defined as

p(w, 0w)[1 + p(v, 0v)] } (2.14)

D}l(v, w) = max{p(v, w), p(v, Ov), p(w, Ow), T+ p(0,0)

then O admits exactly one fixed point.

Proof For o € A, let {z,} be the sequence defined by (2.5), p(%, Ums1) > 0, for any m € N.
First of all, we claim that lim,,_, ;o0 0(%, Uns1) = 0. From (2.13), we have

1 . 1 .
3 min{ p(v-1, 0%m-1), P (U Oty } = 3 min{ o(%-1, %m)» P (Ums Va1 } < POt U)s

which implies

0 < 1(p(0%n-1, 0%)s Dy (tm-1, tm)) < ¥ (D4 (21, %)) = ¥ (0(Ovu_1, 0v,)).
Consequently, we get

¥ (0(0%m-1, 0t)) < ¥ (D4 (-1, 71m))
which, since v is non-decreasing, implies

(> Oms1) = P(OVm_1, OU) < Dy (U-1, ) = Max{ p(th1, Om)> 0 (Us V1) }.-

Therefore, the sequence {po(v, vms1)} is decreasing, so, we can find 6 > 0 such that
1imy,—s 400 0(Um, Ums1) = 6. On the other hand, it is easy to see that lim,,— o0 D} (041, o) =
0, as well. Assuming that 6 > 0, from (77;) and (2.13) it follows that

0 < limsup n(p(vm> Vms1), Dy V-1, 7)) < 0,

m—+00

which is a contradiction. So, we found that

0= lim p(vy, Uue1) =0. (2.15)
m—>+00
We claim that {z,,} is a Cauchy sequence. If we suppose that lim,,;—, 100 0(¥, 77) # 0,
there exist two subsequences {v,,}, {7} of the sequence {v,} and a number e > 0 such
that p(,;, 7,) > €.
Moreover, by Lemma 1, we have

im o(tpy, vg-1) =€ = im p(u1, 7). (2.16)
l—+00 l—+00
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Looking on the definition of the function D}, we have

Dl p(”ml’ Uqu): p(’”mp Um1+1)r p(””ql—l’ qu)y
,O(Vmp yql—l) = A(Uml’ 7}ql—l) =max P(”ql—lrvql)[1+P(7’mlﬂ/ml+1)]
1+p(vmyrvgy-1)

and keeping in mind (2.15) and (2.16) we get

lim Di\(vml, Ug-1) = €.

I—+00

Now, letting r; = p(v,+1, 7,) and t; = D (v, v5,-1), by (12) we get

lim sup n(p(Ovm;» 0vg,-1), Dy (v gy-1)) < O.

[—+00

On the other hand, by (2.15), we have

e e
P(me 7/m1+1) < E and p(vql—li 7/q1) < E

Thus, by the triangle inequality and taking into account (2.20), we get

e
€< P(ﬂm,, qu) = ,O(Wm,» '”ql—l) + ,O(Uql—l, Z’ql) - )O('”ql—l» 'Uql—l) < P(Wm,, Z’ql—l) + 2

and then § < p(,, 7,-1). Therefore,

1 . 1 .
3 min{ p (v, Ovpm,), (-1, Ovgy-1)} = 3 min{ o (v Uy 1)s P (Vg-15 7,) }

e e
< E < 5 < /O(Wml’ Uql—l)r

which implies
0= U(P(Ovm,y qul—l)r D}l('{lml; ’Uql—l))x
which contradicts (2.19). Thus,

lim  p(o,7) =0

m,q— +00

(2.17)

(2.18)

(2.19)

(2.20)

and {v,} is a Cauchy sequence in the complete partial-metric space (A, p). This implies

that there exists u € A such that
lim  p(v, 7)) =0= lim p(v,,u) = p(u,u).
m—+00

m,q— +00

We shall prove that u = Ou. By (py), we get

1 .
3 min{ o (v, Ov), p(u, 0U)} < p(, ),

(2.21)
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which implies

0 < 1(p(0v, OU), D (v, 1))
< w(D}](WWH U)) - W(P(Ovm)r OU))

= W(max{,o(vm, u), 0(%m» Ume1)s P(U, OU)} - 1//(IO(VWHI): OU))-

Thus, by the non-decreasing property of ¥, we obtain

p(u, 0u) < p(U, Zyi1) + P(Us1, OU) = P(Uns1, Us1)
< ,O(U> 'Um+1) + Di(vm, U) - P(Wmu; ’Um+1)

P(T/m, u), p('”m, V1) p(U, ou),
2(u,0U)[1+ (v, 9m+1)]
1+p(vp,u)

< (U, Uy41) + max

— P(Vms1s Uma1)
and using (2.21) we get p(u, Ou) = 0. Thus, u = Ou and u is a fixed point of O.
In order to show the uniqueness of the fixed point, let u,z € A such that u = Ou and
z = 0z. We have
1 .
0= 5 min p(u, Ou), o(z,02) < p(u,2),

which implies

0 < n(p(0u, 0z), D} (u,2))

< w(max{p(u,z),p(u, ou), p(z, 02), 0(z,02)[1 + p(u, Ou)] })

1+p(u,2)
- I/f()o(ou’ OZ)

=p(u,2) - p(u,2),
which is a contradiction. Thus, we conclude that u is the unique fixed point of O. d

Theorem 6 Let (A, p) be a pp-complete partial-metric space and O0: A — A be a contin-
uous mapping. If there exists a function n € Z,, such that

1
2 min{p(v, 0v), p(w, Oa))} < p(v,w), which implies
1(p(0v, 0w), Dy(v,w)) > 0, (2.22)

holds for every v,w € A, p(v,w) > 0 where D, is defined as

p(v,®), p(2, 00), p(e, Ow), L2000,

p(@,0w)p(v,00) ’
p(v,0)

Di(v, ) = max (2.23)

then O admits exactly one fixed point.

Page 16 of 20
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Proof Let yy € A and consider the sequence {v,,}, with v, = Ov,_;. We assume that

P(Um, vm=1) > 0 for each m € N because we remark that, on the contrary, if there exits /,

such that v, = 7,1 = Oy, that is v, is a fixed point for the mapping O, then by (2.23), for

any terms v = v, and w =

Dllg('”m; Upns1) = MAX

= max

< max

Uns1 We have

,0(7/mx 7/m+l)r ,O(me O'”m)’ p(”m+1: Oym+l)7
P (W1,00141)+ P (U141, 00m)

2
P(n+1,09p1+1) P (U, Om)
PV Vm+1)

,O(T/m, Um+1)¢ p(”m+1) 7/m+2)¢

P(O+1,9m+2) P (O, U +1)
PO, 0m+1)

PV, Up42)+0 (V1,9 1) }
2 ’

PV, Up141)+0 V41, 9m+2) =P (W4 15U+ 1) +0 (V1,9 1)

p(”m: ’Um+1);p(7/m+l) ’Um+2); }

= maX{,O(T/m, 7/erl): )O(Um+1’ Um+2)}

On the other hand, by (2.22),

1 . 1 .
5 mln{p(ymr Oym): ,0(7Jm+1; O'Um+l)} = E mln{p(”m: Um+l)7 ,0(7/m+1, 7/m+2)} = ,O(ﬂm» Vm+l):

which implies

0 =< ﬂ(P(Ovm, OWm+1)rD113(ym’ Vm+1)) < I//(Djlg(vm: T/m+1)) - 1»ZI(IO(WWle 7/m+2))~

But ¢ € I' and then

P (Vi1 Uma2) < Djlg('umx Upna1) < maX{P(Um; Us1)s P(Vms1s 7}m+2)}~ (2.24)

If for some m, max{p(vyu+1, Umns2)s P(Vms Ums1)} = P(Ums1, vms2) then (2.24) becomes

O(Vms1s Umsa) < P(Ume1s Umsz), which is a contradiction. Then, for each m > 0, max{0(v.41,

U142)s P Uy Upe1)} = 0(0m» me1), the inequality (2.24) yields

:O('Um+l1 ”m+2) < p(Um’ ”m+1)-

Thus, the sequence {o(v, v41)} is decreasing, so it is convergent (being bounded from

below). In this case, we can find a real number u > 0 such that lim,,_, ;o0 P(U, Vne1) = u.

Assume that u > 0, let r,, = p(41, Usn) and t,, = D}B(ym, Um+1. Since

lim r,= lim t,=u,

m—>+00 m—>+00

from (17;) we have

0 < limsup n(r,,, t,;) < 0.

m—+00

This is a contradiction, so that

lim p(v, vpe1) = 0. (2.25)

m—+00
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As a next step, we claim that {v,,} is a Cauchy sequence in (A, p). Reasoning by contra-
diction, we suppose that lim,,,—, o0 (%, ;) # 0. Then, by Lemma 1, there exist the sub-
sequences {v,,}, {7} of the sequence {v,,}, with q; > m; > [, and a number e > 0 such that
P (Vs vg;) > € and
im (0, vge1) =€ = lim p(tp-1, 7).

I—+00 [—>+00

Now, according to (2.25), there exists n; € N, such that
e

P (V=15 ) < X for any /> n;

and #, € N, such that
e

P (v vg41) < % for any [ > n,.
Therefore, for [ > max{n;,n,} we have

e= p("”mp ’Uq[) = p(”mp vml—l) + p(”ml—lr qu) - p(vm[—l’ Uml—l)

= p(”ml—lr 'Uql) + - - p(Uml—lx ”ml—l)

2

and we can conclude § < p(,-1, 7). Thus,

e
< 5 = p(”ml—l: vql):

| M

1 .
3 mln{p(vml_l, Umy)s P (Vg vq,+1)} <
which implies

0 < lim sup 7(0(Ovm,-1, 0v,), Dg(vmy-1, 7)) (2.26)

[—+00

On the other hand,

p(’Uml—l» ’Uq[)» p(’”ml—l, 'Uml); P(Uq,r 'Uqﬁl)r

. . P(vm -1,7, +1)+p(7/ml:7/q )
lim D}g(vml,l,z/ql) = lim max = L, =e
I—+00

I—+00 p(vml-l,vml)ﬂ(vql»vqﬁl)
p(”ml—lr”ql)

and (17;) implies

lim sup n(p(Ovml,l, qul),D};(r/ml,l, wa)) <0,

[—+00

which contradicts (2.26). Therefore, {v,} is a Cauchy sequence in a p-complete partial-
metric space (A, p) and there exists u € A such that

p(u,u)= lim p(z,,u)= Lm p(z,, 7)=0. (2.27)
m—+00

m,g— +00

On the other hand, due to the continuity of the mapping O, we get

lim p(¢.1,0u) = lim p(Oy,, OuU) =0. (2.28)

m—+00 m—+00
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Consequently, from (2.27), (2.28), on account of Lemma 3, we see that u is a fixed point of
O. The uniqueness of the fixed point follows immediately as in the previous theorem. O

Funding
This research received no external funding.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details

'Division of Applied Mathematics, Thu Dau Mot University, 820000, Binh Duong Province, Vietnam. ?Department of
Mathematics, Cankaya University, 06790, Etimesgut, Ankara, Turkey. >Department of Medical Research, China Medical
University, Taichung, Taiwan. “Institute for Computational and Modeling Science, National Tsing Hua University, 521
Nan-Dah Road, Hsinchu City, Taiwan. °Department of Mathematics, University of Jeddah, College of Science, Jeddah,
Saudi Arabia. ®Department of Mathematics and Computer Science, Transilvania University of Brasov, Bragov, Romania.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 28 July 2021 Accepted: 23 August 2021 Published online: 08 September 2021

References
1. Dass, BK, Gupta, S.: An extension of Banach contraction principle through rational expressions. Indian J. Pure Appl.
Math. 6, 1455-1458 (1975)
2. Jaggi, D.S:: Some unique fixed point theorems. Indian J. Pure Appl. Math. 8,223-230 (1977)
3. Karapinar, E, Dehici, A, Redjel, N.: On some fixed points of (a — y)-contractive mappings with rational expressions.
J.Nonlinear Sci. Appl. 10, 1569-1581 (2017)
4. Karapinar, E, Roldan, A, Sadarangani, K.: Existence and uniqueness of best proximity points under rational
contractivity conditions. Math. Slovaca 66(6), 1427-1442 (2016)
5. Karapinar, E, Marudai, M., Pragadeeswarar, V.: Fixed point theorems for generalized weak contractions satisfying
rational expression on a ordered partial metric space. Lobachevskii J. Math. 34(1), 116-123 (2013)
6. Karapinar, E., Shatanawi, W, Tas, K. Fixed point theorem on partial metric spaces involving rational expressions.
Miskolc Math. Notes 14(1), 135-142 (2013)
7. Chandok, S., Karapinar, E: Common fixed point of generalized rational type contraction mappings in partially ordered
metric spaces. Thai J. Math. 11(2), 251-260 (2013)
8. Mustafa, Z, Karapinar, E., Aydi, H.: A discussion on generalized almost contractions via rational expressions in partially
ordered metric spaces. J. Inequal. Appl. 2014, 219 (2014)
9. Joonaghany, GH. Farajzadeh, A, Azhini, M., Khojasteh, F: New common fixed point theorem for Suzuki type
contractions via generalized ¥-simulation functions. Sahand Commun. Math. Anal. 16, 129-148 (2019)
10. Khojasteh, F, et al: A new approach to the study of fixed point theory for simulation functions. Filomat 29(6),
1189-1194 (2015)
11. Chandok, S, et al.: Simulation functions andd graghty type results. Bol. Soc. Parana. Mat. 39(1), 35-50 (2021)
12. Aleksi¢, S, et al.: Simulation functions and Boyd-Wong type results. Thil. Math. J. 12(1), 105-115 (2019)
13. Radenovi¢, S, Chandok, S.: Simulation type functions and coincidence point results. Filomat 32(1), 141-147 (2018)
14. Alsubaie, R, Algahtani, B, Karapinar, E., Hierro, AFFR.L: Extended simulation function via rational expressions.
Mathematics 8, 710 (2020)
15. Algahtani, O, Karapinar, E.: A bilateral contraction via simulation function. Filomat 33(15), 4837-4843 (2019)
16. Alghamdi, M.A,, Gulyaz-Ozyurt, S., Karapinar, E.: A note on extended Z-contraction. Mathematics 8, 195 (2020)
17. Agarwal, RP, Karapinar, E.: Interpolative Rus—Reich—Ciric type contractions via simulation functions. An. Stiint. Univ.
‘Ovidius’ Constanta, Ser. Mat. 27(3), 137-152 (2019)
18. Aydi, H, Karapinar, E., Rakocevic, V.: Nonunique fixed point theorems on b-metric spaces via simulation functions.
Jordan J. Math. Stat. 12(3), 265-288 (2019)
19. Monfared, H., Asadi, M,, Farajzadeh, A.: New generalization of Darbo’s fixed point theorem via a-admissible simulation
functions with application. Sahand Commun. Math. Anal. 17(2), 161-171 (2020)
20. Asadi, M., Azhini, M., Karapinar, E., Monfared, H.: Simulation functions over M-metric spaces. East Asian Math. J. 33(5),
559-570(2017)
21. Asadi, M., Gabeleh, M., Vetro, C.: A new approach to the generalization of Darbo’s fixed point problem by using
simulation functions with application to integral equations. Results Math. 74, Article ID 86 (2019)
22. Asadi, M.: Discontinuity of control function in the (F, ®, 8)-contraction in metric spaces. Filomat 31(17), 5427-5433
(2017)
23. Matthews, S.G.: Partial metric topology. In: Proc. 8th Summer Conference on General Topology and Application. Ann.
New York Acad. Sci.,, vol. 728, pp. 183-197 (1994)
24. Karapinar, E.: On Jaggi type contraction mappings. U.PB. Sci. Bull, Ser. A 80(4), (2018)



Karapinar et al. Advances in Difference Equations (2021) 2021:409 Page 20 of 20

25.

26.
27.

28.

29.
30.

Abdeljawad, T, Karapinar, E., Tas, K.: Existence and uniqueness of a common fixed point on partial metric spaces.
Appl. Math. Lett. 24(11), 1894-1899 (2011)

Shukla, S.: Partial b metric spaces and fixed point theorems. Mediterr. J. Math. 11, 703-711 (2014)

Mustafa, Z, Roshan, J.R, Parvaneh, V., Kadelburg, Z.: Some common fixed point results in ordered partial b-metric
spaces. J. Inequal. Appl. 2013, 562 (2013)

Dung, N.V, Hang, V.T.L: Remarks on partial b-metric spaces and fixed point theorems. Mat. Vesn. 69(4), 231-240
(2017)

Karapinar, E.: Fixed point theory for cyclic weak @-contraction. Appl. Math. Lett. 24, 822-825 (2011)

Vujakovi¢, J., Aydi, H., Radenovi¢, S., Mukheimer, A.: Some remarks and new results in ordered partial b-metric spaces.
Mathematics 7, 334 (2019). https://doi.org/10.3390/math7040334

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://doi.org/10.3390/math7040334

	Advances on the ﬁxed point results via simulation function involving rational terms
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Main results
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


