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Abstract
We propose a polynomial-based numerical scheme for solving some important
nonlinear partial differential equations (PDEs). In the proposed technique, the
temporal part is discretized by finite difference method together with θ -weighted
scheme. Then, for the approximation of spatial part of unknown function and its
spatial derivatives, we use a mixed approach based on Lucas and Fibonacci
polynomials. With the help of these approximations, we transform the nonlinear
partial differential equation to a system of algebraic equations, which can be easily
handled. We test the performance of the method on the generalized Burgers–Huxley
and Burgers–Fisher equations, and one- and two-dimensional coupled Burgers
equations. To compare the efficiency and accuracy of the proposed scheme, we
computed L∞, L2, and root mean square (RMS) error norms. Computations validate
that the proposed method produces better results than other numerical methods.
We also discussed and confirmed the stability of the technique.
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1 Introduction

Nonlinear partial differential equations (PDEs) are used to model many physical phenom-
ena arising in sciences and engineering. As a result of their considerable applications and
popularity, much attention has been devoted to develop an accurate and efficient numeri-
cal method for solving PDEs. Consider a one-dimensional nonlinear parabolic partial dif-
ferential equation of the form

Yt + αY mYξ – βYξξ = γ f (Y ), (1)
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where α, β , γ are real parameters, m is a positive integer, and f (Y ) is a nonlinear function.
The initial and boundary conditions are

Y (ξ , 0) = Y0(ξ ), a ≤ ξ ≤ b, t > 0, (2)

Y (a, t) = g1(t), Y (b, t) = g2(t). (3)

When f (Y ) = Y (1 – Y m)(Y m – ε), Eq. (1) defines the generalized Burger–Huxley (GBH)
equation

Yt + αY mYξ – βYξξ = γ Y
(
1 – Y m)(Y m – ε

)
, 0 ≤ ε ≤ 1, t > 0. (4)

Equation (4) describes the interaction between convection, reaction, and diffusion pro-
cesses. When α = 0, β = 1, and m = 1, Eq. (4) reduces to the Huxley equation investigating
wall motion in liquid crystallography and propagation of pulse in nerve fibers. For γ = 0,
m = 1, and β = 1, Eq. (4) reduces to the Burger equation used for analysis of nonlinear
wave propagation, aspect of turbulence, traffic flows, and shock waves [1]. Similarly, when
f (Y ) = Y (1 – Y m), Eq. (1) becomes the generalized Burger Fisher (GBF) equation

Yt + αY mYξ – βYξξ = γ Y
(
1 – Y m), t > 0. (5)

The generalized Burger–Fisher equation has a wide application in fluid mechanics, gas
dynamics, plasma physics, number theory, elasticity, and heat conduction problems [2].
Equation (5) is a highly nonlinear model, which includes a combination of reaction, con-
vection, and diffusion mechanisms. When γ = 0 and m = 1, Eq. (5) reduces to the Fisher
equation having applications in population biology, chemistry, and biological sciences
such as spreading of bacterial colonies, spread of reaction fronts in chemically bistable
systems, and switching in nonlinear optics [1].

Next, we consider the following two-dimensional coupled viscous Burger equations:

Yt + μ{Yξξ + Yηη} + ν(YYξ ) + α(YZ)ξ + γ {YYξ + ZYη} = 0, (6)

Zt + μ{Zξξ + Zηη} + ν(ZZξ ) + β(YZ)ξ + γ {YZξ + ZZη} = 0, (ξ ,η) ∈ 
, (7)

with initial and boundary conditions

Y (ξ ,η, t) = Y0(ξ ,η), Z(ξ ,η, t) = Z0(ξ ,η), (ξ ,η) ∈ 
, t = 0,

Y (ξ ,η, t) = h(t), Z(ξ ,η, t) = g(t), (ξ ,η) ∈ ∂
, t ≥ 0, (8)

where 
 and ∂
 represent the domain and its boundary, respectively, and μ, η, α, and
β are arbitrary constants. The system was introduced by Esipov [3] to study a model of
polydispersive sedimentation. This system has numerous applications in science and en-
gineering such as gas dynamics, viscous flow of turbulence, shock waves, sedimentation
of particles in fluid suspension, elasticity, and heat conduction problems [4, 5].

Many numerical methods have been applied to approximate solutions of these equa-
tions. For example, the finite difference method [6], spectral method [7], differential
quadrature method [8, 9] and Adomian decomposition method [10]. Khattak [11] used a
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meshfree collocation method, whereas Zhu and Kang [12] applied B-spline interpolation
for solution the Burger–Fisher equation. Celik [13] studied the Haar wavelet method for
solving GBH equation. Dehghan [14] worked on a mixed collocation and finite difference
method. Haq et al. [15] numericallly solved the Burger–Huxley equation using a meshless
method of line. Zhang et al. [16] used the local discontinuous Galerkin method, whereas
in [17] the author proposed a pseudospectral method for approximation of GBF equation.
Wasim et al. [18] used a hybrid B-spline collocation technique for approximation of GBH
and GBF equations. Mittal and Tripathe [2] proposed a cubic B-spline technique.

The modified Burger equation has been investigated in [19, 20] using a meshless method
and hybrid Haar wavelet finite difference method. The author of [21] obtained approx-
imate solution of coupled Burger equations using Adomian–Pade technique. Khater et
al. [5] explained the cubic-spline collocation method for solving the coupled Burger
equations. Recently, Mittal and Jiwari [22] obtained an approximate solution of one-
dimensional coupled Burger equation with the help of the differential quadrature method.
Dehghan et al. [23, 24] proposed a mixed finite difference and Galerkin method and mul-
tisymplectic box method for numerical study of Burgers equations. Oruc et al. [25, 26]
applied a unified finite difference Chebyshev wavelet approach for time fractional Burger
equations. The same authors studied the Chebyshev wavelet method for approximation of
coupled Burgers equations [27]. Ali et al. [4] applied a meshfree collocation method based
on the Crank–Nicolson method for time discretization and radial basis function for space
discretization to solve two-dimensional coupled Burger equations, whereas the meshless
method of radial basis functions (RBFs) and local RBFs were described in [28, 29] for ap-
proximate solutions of Burger-type equations. In [30] a multiscale variational algorithm
was combined with the Kriging element-free Galerkin method to produce the discontinu-
ous solutions of Burgers type equations. Srivastava et al. [31] studied a fully implicit finite
difference scheme for solving two-dimensional coupled viscous Burger equations.

In this work, we compute numerical solutions of the generalized Burger–Huxley,
Burger–Fisher, and coupled Burger equations using mixed Lucas and Fibonacci polyno-
mials combined with finite differences. The main advantage of the proposed scheme is
that the higher-order derivatives can be easily computed using relation of Lucas and Fi-
bonacci polynomials. Moreover, the proposed scheme produces better accuracy for small
number of collocation points, which reduces the computational cost. These polynomials
have considerable applications in the area of ordinary differential equations. For exam-
ple, Elhameed and Youssri [32, 33] described connection between Chebyshev and Lucas
polynomials and obtained accurate solutions of boundary value problems. In [34–36]
the author implemented the Lucas polynomials for solutions of fractional and coupled
fractional differential equations in the Caputo sense. Mostefa [37] proposed the Lucas
sequence for approximation of integro-differential equations. Cetin [38] obtained numer-
ical solution of higher-order differential equations using the Lucas polynomial approach.
Farshid et al. [39] proposed a Fibonacci polynomial approach for numerical solution of
Volterra–Fredholm integral differential equations. Bayku [40] presented a hybrid Taylor–
Lucas polynomial method and obtained numerical solution of delay difference equations.
Oruc [41, 42] for the first time applied these polynomials for solution of time-dependent
partial differential equations called a mixed Lucas and Fibonacci polynomial technique.
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The rest of the paper is organized as follows. In Sect. 2, we discuss description of solution
methodology. In Sect. 3, describe the stability of the method. In Sects. 4 and 5, we present
numerical experiments followed by conclusion of the paper.

2 Methodology
In this section, we give a description of the proposed method for two different cases. The
suggested technique will be tested by some examples.

Case.1 Nonlinear PDEs
For solution of Eq. (1) using the proposed technique, we discretize the time derivative

of the equation with finite differences and apply the θ -weighted scheme to its spatial part
to get

1
δt
[
Y n+1 – Y n] + θ

{
α
(
Y mYξ

)n+1 – βY n+1
ξξ – γ

(
f (Y )

)n+1} (9)

+ (1 – θ )
{
αY mYξ – βYξξ – γ f (Y )

}n = 0, 0 ≤ θ ≤ 1,

where Y n = Y (ξ , tn), tn = nδt, n = 1, 2, . . . , N , δt is the time step. The nonlinear term in
Eq. (9) is linearized using the lagging method given as

(
Y mYξ

)n+1 =
(
Y n)mY n+1

ξ . (10)

Using Eq. (10) in Eq. (9), we get

Y n+1 + θδt
{
α
(
Y n)mY n+1

ξ – βY n+1
ξξ – γ

(
f (Y )

)n+1}

= Y n + (θ – 1)δt
{
α
(
Y mYξ

)n – βY n
ξξ – γ

(
f (Y )

)n}. (11)

Approximating Y n(ξ ) by Lucas polynomials is as follows:

Y n(ξ ) =
N∑

k=1

Cn
k Lk(ξ ) = WCn, (12)

where Cn
k are unknown coefficients to be computed, and Lk(ξ ) are the Lucas polynomials

defined by [41]

Lk(ξ ) = ξLk–1(ξ ) + Lk–2(ξ ), k ≥ 2, with Lo(ξ ) = 2, L1(ξ ) = ξ .

To determine Cn
k , we use the collocation method. At collocation points ξi = a + iδξ , Eq.

(12) can be written as

Y n(ξi) =
N∑

k=0

Cn
k Lk(ξi), i = 1, . . . , N . (13)
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Putting the values from Eq. (13) into Eq. (11), we obtain the following system of N equa-
tions:

N∑

k=1

Cn+1
k Lk(ξi)

+ θδt

[

α

{ N∑

k=1

Cn
k Lk(ξi)

}m N∑

k=1

Cn+1
k L′

k(ξi) – β

N∑

k=1

Cn+1
k L′′

k (ξi) – γ
(
f (Y )

)n+1
]

=
N∑

k=1

Cn
k Lk(ξi)

+ (θ – 1)δt

[

α

{ N∑

k=1

Cn
k Lk(ξi)

}m N∑

k=1

Cn
k L′

k(ξi) – β

N∑

k=1

Cn
k L′′

k (ξi) – γ
(
f (Y )

)n
]

. (14)

The primes in Eq. (14) represent differentiation with respect to ξ , which allows us to re-
place Lk by Fibonacci polynomials [41]:

L′
k(ξ ) = kFk(ξ ), L′′

k (ξ ) = kFk(ξ )D, (15)

where Fk(ξ ) are the Fibonacci polynomials defined as [41].

Fk(ξ ) = ξFk–1(ξ ) + Fk–2(ξ ) for k ≥ 2, with F0(ξ ) = 0, F1(ξ ) = 1,

and D is differentiation matrix given by [41]

D =

⎡

⎢
⎢⎢
⎢
⎣

0 0 . . . 0
0
... d
0

⎤

⎥
⎥⎥
⎥
⎦

,

where d is the square matrix of order N defined by

dm,n =

⎧
⎨

⎩
m(–1)

(n–m–1)
2 if n > m, n – m odd,

0 otherwise.

Substituting the values from Eq. (15) into Eq. (14), we can write

N∑

k=1

Cn+1
k Lk(ξi)

+ θδt

[

α

{ N∑

k=1

Cn
k Lk(ξi)

}m N∑

k=1

Cn+1
k kFk(ξi) – β

N∑

k=1

Cn+1
k kFk(ξi)D – γ

(
f (Y )

)n+1
]

=
N∑

k=1

Cn
k Lk(ξi) + (θ – 1)δt

[

α

{ N∑

k=1

Cn
k Lk(ξi)

}m N∑

k=1

Cn
k kFk(ξi)

– β

N∑

k=1

Cn
k kFk(ξi)D – γ

(
f (Y )

)n
]

. (16)
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Similarly, Eqs. (2) and (3) can be transformed to

N∑

k=1

C1
k Lk(ξi)) = Y0(ξi),

N∑

k=1

Cn+1
k Lk(ξ1) = g1(t),

N∑

k=1

Cn+1
k Lk(ξN ) = g2(t) i = 1, . . . , N .

(17)

In matrix form, Eqs. (16)–(17) can be written as

HCn+1 = GCn + An+1, (18)

where H , G, and A are square matrices of order N with components given by

Hik =

⎧
⎪⎪⎨

⎪⎪⎩

Lk(ξi) + δtθ{αLk(ξi)kFk(ξi) – βkFk(ξi)D – γ f (Y )},
i = 2, . . . , N – 1, k = 1, 2, . . . , N ,

Lk(ξi), i = 1, N , k = 1, 2, . . . , N ,

(19)

Gik =

⎧
⎪⎪⎨

⎪⎪⎩

Lk(ξi) + δt(θ – 1){αLk(ξi)kFk(ξi) – βkFk(ξi)D – γ f (Y )},
i = 2, . . . , N – 1, k = 1, 2, . . . , N ,

0, i = 1, N , k = 1, 2, . . . , N ,

(20)

Aik =

⎧
⎨

⎩
0, i = 2, . . . , N – 1, k = 1, 2, . . . , N ,

gn+1(ξi), i = 1, N , k = 1, 2, . . . , N .
(21)

Solution of Eq. (18) give required unknowns C, and hence a solution of problem (1) can
be obtained with the help of Eq. (13).

Case 2: Coupled PDEs
To construct a scheme for coupled Burger Eqs. (6)–(7), discretizing the temporal and

spatial parts in a similar way as discussed in case 1, we have

Y n+1 – Y n

δt
+ θ
[
μ
(
Y n+1

ξξ + Y n+1
ηη

)
+ ν(YYξ )n+1 + α

(
(YZξ )n+1 + (ZYξ )n+1)

+ γ
[
(YYξ )n+1 + (ZYη)n+1]]

= (θ – 1)
[
μ
(
Y n

ξξ + Y n
ηη

)
+ ν(YYξ )n + α

(
(YZξ )n + (ZYξ )n)

+ γ
[
(YYξ )n + (ZYη)n]], (22)

Zn+1 – Zn

δt
+ θ
[
μ
(
Zn+1

ξξ + Zn+1
ηη

)
+ ν(ZZξ )n+1 + β

(
(YZξ )n+1 + (ZYξ )n+1)

+ γ
[
(YZξ )n+1 + (ZZη)n+1]]

= (θ – 1)
[
μ
(
Zn

ξξ + Zn
ηη

)
+ ν(ZZξ )n + β

(
(YZξ )n + (ZYξ )n)

+ γ
[
(YZξ )n + (ZZη)n]]. (23)
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For θ = 1/2, these equations become the well-known Cran–Nicolson scheme with accu-
racy O(δt2) [43]. For nonlinear terms, we use the lagging method

(YYξ )n+1 = Y n+1Y n
ξ . (24)

Using Eq. (24) in Eqs. (22)–(23) and waiving the error terms, we get

Y n+1 + δtθ
[
μ
(
Y n+1

ξξ + Y n+1
ηη

)
+ νY n+1Y n

ξ + α
(
Y n+1Zn

ξ + ZnY n+1
ξ

)

+ γ
(
Y n+1Y n

ξ + ZnY n+1
η

)]

= Y n + (θ – 1)δt
[
μ
(
Y n

ξξ + Y n
ηη

)
+ ν(YYξ )n + α

(
(YZξ )n + (ZYξ )n)

+ γ (YYξ + ZYη)n], (25)

Zn+1 + δtθ
[
μ
(
Zn+1

ξξ + Zn+1
ηη

)
+ νZn+1Zn

ξ + β
(
Y nZn+1

ξ + Zn+1Y n
ξ

)

+ γ
(
Y nZn+1

ξ + Zn+1Zn
η

)]

= Zn + (θ – 1)δt
[
μ
(
Zn

ξξ + Zn
ηη

)
+ ν(ZZξ )n + β

(
(YZξ )n + (ZYξ )n)

+ γ
(
(YZξ )n + (ZZη)n)]. (26)

Now we approximate Y n and Zn by Lucas polynomials as follows:

Y n(ξ ,η) =
N∑

k=1

N∑

m=1

Cn
kmLk(ξi)Lm(ηj), Zn(ξ ,η) =

N∑

k=1

N∑

m=1

λn
kmLk(ξi)Lm(ηj), (27)

where λn
km and Cn

km are unknown coefficients, and ξi = ηi = a + (i – 1) dξ i, dξ = dη, are the
regular collocation points or the Chebyshev–Gauss–Lobatto (CGL) collocation points

ξi = ηi = a +
b – a

2
(
1 – cos

(
(i – 1)π/M

))

with a = ξ1 = η1 and b = ξM = ηM ; dξ is spacial step size. Plugging Eq. (27) into Eqs. (25)–
(26), we get

N∑

k=1

N∑

m=1

Cn+1
km Lk(ξi)Lm(ηj)

+ δtθ

{

μ

( N∑

k=1

N∑

m=1

Cn+1
km L′′

k (ξi)Lm(ηj) +
N∑

k=1

N∑

m=1

Cn+1
km Lk(ξi)L′′

m(ηj)

)

+ ν

N∑

k=1

N∑

m=1

Cn+1
km Lk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

Cn
kmL′

k(ξi)Lm(ηj)

+ α

N∑

k=1

N∑

m=1

Cn+1
km Lk(ξi)Lm(ηj)

∗
N∑

k=1

N∑

m=1

λn
kmL′

k(ξi)Lm(ηj) + α

N∑

k=1

N∑

m=1

λn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

Cn+1
km L′

k(ξi)Lm(ηj)
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+ γ

N∑

k=1

N∑

m=1

Cn+1
km Lk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

Cn
kmL′

k(ξi)Lm(ηj)

+ γ

N∑

k=1

N∑

m=1

λn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

Cn+1
km Lk(ξi)L′

m(ηj)

}

=
N∑

k=1

N∑

m=1

Cn
kmLk(ξi)Lm(ηj) (28)

+ δt(θ – 1)

{

μ

( N∑

k=1

N∑

m=1

Cn
kmL′′

k (ξi)Lm(ηj) +
N∑

k=1

N∑

m=1

Cn
kmLk(ξi)L′′

m(ηj)

)

+ ν

N∑

k=1

N∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

Cn
kmL′

k(ξi)Lm(ηj) + α

N∑

k=1

N∑

m=1

Cn
kmLk(ξi)Lm(ηj)

∗
N∑

k=1

N∑

m=1

λn
kmL′

k(ξi)Lm(ηj) + α

N∑

k=1

N∑

m=1

λn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

Cn
kmL′

k(ξi)Lm(ηj)

+ γ

N∑

k=1

N∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

Cn
kmL′

k(ξi)Lm(ηj)

+ γ

N∑

k=1

N∑

m=1

λn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

Cn
kmLk(ξi)L′

m(ηj)

}

,

N∑

k=1

N∑

m=1

λn+1
km Lk(ξi)Lm(ηj)

+ δtθ

{

μ

( N∑

k=1

N∑

m=1

λn+1
km L′′

k (ξi)Lm(ηj) +
N∑

k=1

N∑

m=1

λn+1
km Lk(ξi)L′′

m(ηj)

)

+ ν

N∑

k=1

N∑

m=1

λn+1
km Lk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

λn
kmL′

k(ξi)Lm(ηj) + β

N∑

k=1

N∑

m=1

λn+1
km Lk(ξi)Lm(ηj)

∗
N∑

k=1

N∑

m=1

Cn
kmL′

k(ξi)Lm(ηj) + β

N∑

k=1

N∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

λn+1
km L′

k(ξi)Lm(ηj)

+ γ

N∑

k=1

N∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

λn+1
km L′

k(ξi)Lm(ηj)

+ γ

N∑

k=1

N∑

m=1

λn+1
km Lk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

λn
kmLk(ξi)L′

m(ηj)

}

(29)

=
N∑

k=1

N∑

m=1

λn
kmLk(ξi)Lm(ηj) + δt(θ – 1)

∗
{

μ

( N∑

k=1

N∑

m=1

λn
kmL′′

k (ξi)Lm(ηj) +
N∑

k=1

N∑

m=1

λn
kmLk(ξi)L′′

m(ηj)

)

+ ν

N∑

k=1

N∑

m=1

λn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

λn
kmL′

k(ξi)Lm(ηj) + β

N∑

k=1

N∑

m=1

λn
kmLk(ξi)Lm(ηj)
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∗
N∑

k=1

N∑

m=1

Cn
kmL′

k(ξi)Lm(ηj) + β

N∑

k=1

N∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

λn
kmL′

k(ξi)Lm(ηj)

+ γ

N∑

k=1

N∑

m=1

Cn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

λn
kmL′

k(ξi)Lm(ηj)

+ γ

N∑

k=1

N∑

m=1

λn
kmLk(ξi)Lm(ηj)

N∑

k=1

N∑

m=1

λn
kmLk(ξi)L′

m(ηj)

}

.

In these equations, “*” represents the usual product. Similarly, boundary conditions given
in Eq. (8) take the form

N∑

k=1

N∑

m=1

Cn+1
km Lk(ξi)Lm(ηj) = h1

(
tn+1),

N∑

k=1

N∑

m=1

Cn+1
km Lk(ξi)Lm(ηj) = h2

(
tn+1), (30)

N∑

k=1

N∑

m=1

λn+1
km Lk(ξi)Lm(ηj) = g1

(
tn+1),

N∑

k=1

N∑

m=1

λn+1
km Lk(ξi)Lm(ηj) = g2

(
tn+1), (31)

considering the relation between the Lucas and Fibonacci polynomials

L′
k(ξ ) = kFk(ξ ), L′′

k (ξ ) = kFk(ξ )D, (32)

where F(ξ ) and D have the same meaning as before. Putting values from Eq. (32) into
Eqs. (28)–(29), the matrix form of Eqs. (28)–(31) can be written as

A + δtθ
{
μ(Q3 + Q4) + νA ∗ Y n

ξ + α
(
A ∗ Zn

ξ + Q1 ∗ Zn) (33)

+ γ
(
A ∗ Y n

ξ + Q2 ∗ Zn)}Cn+1

= A + δt(θ – 1)
{
μ(Q3 + Q4) + νA ∗ Y n

ξ + α
(
A ∗ Zn

ξ + Q1 ∗ Zn)

+ γ
(
A ∗ Y n

ξ + Q2 ∗ Zn)}Cn + Hn+1,

A + δtθ
{
μ(Q3 + Q4) + νA ∗ Zn

ξ + β
(
A ∗ Y n

ξ + Q1 ∗ Y n) (34)

+ γ
(
Q1 ∗ Y n + A ∗ Zn

η

)}
λn+1

= A + δt(θ – 1)
{
μ(Q3 + Q4) + νA ∗ Zn

ξ + β
(
A ∗ Y n

ξ + Q1 ∗ Y n)

+ γ
(
Q1 ∗ Y n + A ∗ Zn

η

)}
λn + Gn+1,

where

A = Lk(ξi)Lm(ηj)}N
k,m=1, Q1 = kFk(ξi)Lm(ηj)}N

k,m=1, Q2 = Lk(ξi)mFm(ηj)}N
k,m=1,

Q3 = kFk(ξi)DLm(ηj)}N
k,m=1, Q4 = Lk(ξi)mFmD(ηj)}N

k,m=1,

and

Hn+1 =
{

hn+1
1 , 0, 0, . . . , hn+1

2
}T ,

Gn+1 =
{

gn+1
1 , 0, 0, . . . , gn+1

2
}T .
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Equations (33)–(34) can be written as

Cn+1 = M–1
1 N1Cn

1 + M–1
1 Hn+1, (35)

λn+1 = M–1
2 N2Cn

2 + M–1
2 Gn+1, (36)

where

M1 = A + δtθ
{
μ(Q3 + Q4) + νA ∗ Y n

ξ + α
(
A ∗ Zn

ξ + Q1 ∗ Zn) + γ
(
A ∗ Y n

ξ + Q2 ∗ Zn)},

N1 = A + δt(θ – 1)
{
μ(Q3 + Q4) + νA ∗ Y n

ξ + α
(
A ∗ Zn

ξ + Q1 ∗ Zn)

+ γ
(
A ∗ Y n

ξ + Q2 ∗ Zn)},

M2 = A + δtθ
{
μ(Q3 + Q4) + νA ∗ Zn

ξ + β
(
A ∗ Y n

ξ + Q1 ∗ Y n) + γ
(
Q1 ∗ Y n + A ∗ Zn

η

)}
,

N2 = A + δt(θ – 1)
{
μ(Q3 + Q4) + νA ∗ Zn

ξ + β
(
A ∗ Y n

ξ + Q1 ∗ Y n)

+ γ
(
Q1 ∗ Y n + A ∗ Zn

η

)}
.

Since Y n = ACn and Zn = Aλn, we get

Y n+1 = AM–1
1 N1A–1Y n + AM–1

1 Hn+1, (37)

Zn+1 = AM–1
2 N2A–1Zn + AM–1

2 Gn+1. (38)

If M1, M2 are fully ranked, then M–1
1 and M–1

2 exist [44, 45]. In our computation, these
matrices are fully ranked, which is checked using Matlab command rank(Mi). Therefore
system (35)–(36) can be solved for unknown Cn and λn, and a solution of original coupled
equations can be obtained from Eq. (27).

3 Numerical stability analysis
To check the stability of the proposed technique, we use the matrix method. For this pur-
pose, first rewrite Eq. (18) as follows:

Cn+1 = H–1GCn + H–1An+1 for n ≥ 0. (39)

If Y denotes the approximate solution, and u denotes the exact one, then the error is de-
fined as

En = un+1 – Y n+1 with Y n+1 = WCn+1. (40)

Substituting the values from Eq. (39) into Eq. (40), we get

En+1 = WH–1GW –1En = MEn. (41)

Here M = WH–1GW –1 is known as the implication matrix. Scheme (39) is stable if the
matrix M satisfies the Lax–Richtmyer stability condition

‖M‖ ≤ 1. (42)
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If ρ(M) denotes the spectral radius of a matrix M, then ρ(M) ≤ ‖M‖. The validation of this
condition is described with the help of different numerical examples in the next section.

4 Numerical examples
In this section, we apply the proposed technique to some problems. Efficiency of the
scheme is tested by comparing the obtained results with exact and approximate solutions
available in the literature. We study the accuracy of the method in the form of the root
mean square (RMS), L2 and L∞ norms, and the time convergence rate given by

L∞ = max
∣
∣E(ξi, t) – Y (ξi, t)

∣
∣N
i=1, RMS =

√∑N
i=1 |E(ξi, t) – Y (ξi, t)|2

N
,

L2 =

√∑N
i=1 |E(ξi, t) – Y (ξi, t)|2

dξ
, Rate =

log( L∞(2δt,dξ )
L∞(δt,dξ ) )

log( 2δt
δt )

.

Example 1 Consider Eq. (4) with β = 1 and exact solution [2]

Y (ξ , t) =
[

ε

2
+

ε

2
tanh

(
a1(ξ – a2t)

)]1/m

, t ≥ 0, (43)

where

a1 =
–αm + m

√
α2 + 4γ (1 + m)

4(1 + m)
ε,

a2 =
αε

(1 + m)
–

(1 + m – ε)(–α +
√

α2 + 4γ (1 + m))
2(1 + m)

.

We obtain the approximate solution the proposed method taking special domains [0, 1]
and [–10, 20]. Initial and boundary conditions are taken from the exact solution. In this
example, we discuss various cases for different values of the parameters α, γ , ε, and m ap-
pearing in Eq. (4). We compute the solution for both regular and CGL collocation points.
We compare the computed results in the form of error norms with those available in the
literature [2, 7]. From comparison it is clear that the present method gives better accu-
racy or comparable results with those available in the literature. We can observe from the
comparison that the proposed method produces slightly more accurate results for CGL
collocations points than for regular points. We also report and show in tables the compar-
ison carried out for stability of the scheme in the form of spectral radius.

Case 1.1: In this case, we take α = γ = 1, m = 2, and ε = 0.5 with nodal points N = 10. The
solution is computed over the domain [0, 1] for different values of T = 15, 30, 60, and 120
with step size 0.01 and is shown in Tables 1 and 3. From Table 1 it is clear that the accuracy
of the solution increases with time where the system remains stable, that is, ρ(M) < 1. The
computed results are compared with those of the collocation cubic B-spline method [2].
From the comparison it is obvious that the present technique gives better accuracy than
the collocation cubic B-spline method.

Case 1.2: In this case, we take the parameters are α = γ = m = 1 and ε = 0.5 with nodal
points N = 10. The solution has been computed at different time levels T = 15, 30, 60, and
120 with step size δt = 0.01. For accuracy of the scheme, different error norms were calcu-
lated and compared with the error norms of cubic B-spline [2] and tabulated in Tables 2
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Table 1 Error norms and spectral radius for the solution of Example 1 in Case 1.1

T Present method using CGL points [2]

L∞ L2 RMS CPU time ρ(M) L∞ L2

15 1.28718E–04 7.86412E–05 7.49814E–05 0.66911 0.90538 5.06827E–07 6.49722E–07
30 3.23867E–07 1.97190E–07 1.88013E–07 1.33715 0.90538 5.02830E–07 6.43856E–07
60 1.31743E–08 7.88550E–09 7.51850E–09 2.65801 0.90538 5.00811E–07 6.40890E–07
120 5.45880E–09 3.87940E–09 3.69890E–09 5.26212 0.90538 5.00144E–07 6.30883E–07

Table 2 Error norms and spectral radius for the solution of Example 1 in Case 1.2

T Present method using CGL points [2]

L∞ L2 RMS CPU time ρ(M) L∞ L2

15 3.81435E–03 2.33487E–03 2.22621E–03 0.67051 0.90525 2.83295E–07 4.07965E–07
30 7.27212E–04 4.45113E–04 4.24399E–04 1.25709 0.90536 1.63593E–07 3.21668E–07
60 1.78124E–05 1.09024E–05 1.03950E–05 2.47020 0.90538 1.58949E–07 2.95373E–07
120 6.28300E–09 3.71490E–09 3.54210E–09 4.90538 0.90538 6.94339E–07 1.15759E–07

Table 3 Error norms of Example 1 using regular points

T Case 1.1 Case 1.2

L∞ L2 RMS L∞ L2 RMS

15 1.28637E–04 9.37455E–05 8.93828E–05 3.81426E–03 2.78445E–03 2.65487E–03
30 3.33900E–07 2.30756E–07 2.20017E–07 7.27194E–04 5.30825E–04 5.06122E–04
60 7.44355E–08 5.89236E–08 5.61815E–08 1.77841E–05 1.29857E–05 1.23814E–05
120 1.62962E–08 1.04962E–08 1.00077E–08 3.14269E–08 1.55306E–08 1.48079E–08

Table 4 Error norms and spectral radius for the solution of Example 1 in Case 1.3

m T Present method using CGL points [7] [2]

L∞ L2 RMS CPU time ρ(M) L∞ L∞
1 0.2 1.33150E–05 8.21325E–06 7.83102E–06 0.87604 0.99950 4.01380E–08 3.74874E–08
4 3.41652E–05 2.10921E–05 2.01105E–05 0.99275 0.99901 1.31390E–05 1.22706E–05
8 4.32643E–05 2.67392E–05 2.54948E–05 0.94157 0.99901 3.55400E–05 3.31915E–05

1 1 1.54346E–05 9.45976E–06 9.01953E–06 4.56786 0.99505 4.68490E–08 4.29397E–08
4 4.24238E–05 2.60076E–05 2.47973E–05 4.88423 0.99505 1.53250E–05 1.40455E–05
8 5.07108E–05 3.10875E–05 2.96408E–05 4.57482 0.99505 4.14070E–05 3.79493E–05

and 3. From Table 2 we observe that for small times, the results of cubic B-spline are bet-
ter than those of the present method, but as time increases, the accuracy of the proposed
technique increases. We can also observe from the table that the spectral radius ρ(M) < 1
for all time levels, which shows the stability of the scheme.

Case 1.3: In this case, the solution was computed using CGL grid points for α = γ = 1
and ε = 0.001, and various values of m = 1, 4, 8. The spectral radius and error norms were
computed at different values of T = 0.2, 1 and compared with the results available in the
literature, which are shown in Table 4. From the table it is clear that the present method
gives an excellent solution in comparison to available techniques. We can observe from
the table that the present method gives the same accuracy for all values of the parameter
m, whereas the accuracy of spectral and cubic B-spline methods [2, 7] suddenly decreases,
which reflects the feasibility of the proposed scheme. The solution is also been computed
using regular grid point and shown in Table 6.

Case 1.4: In this case, we take α = γ = m = 1 and ε = 0.01. The solution is computed
over the domain [–10, 20] with step size δt = 0.003. The error norms and spectral radius
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Table 5 Error norms and spectral radius for the solution of Example 1 in Case 1.4

T Present method using CGL points [46]

L∞ L2 RMS CPU time ρ(M) L∞
0.01 5.52020E–06 1.61179E–05 2.80576E–06 0.04790 0.99996 6.42780E–05
1 6.44885E–04 1.88153E–03 3.27533E–04 0.23661 0.99996 9.45430E–04
5 2.84188E–03 8.78479E–03 1.52924E–03 1.02861 0.99996 3.42880E–03
10 5.10071E–03 1.48716E–02 2.58882E–03 1.97531 0.99998 6.51530E–03

Table 6 Error norms of Example 1 using regular points

m T Case 1.3 T Case 1.4

L∞ L2 RMS L∞ L2 RMS

1 0.2 1.52588E–05 1.10913E–05 1.05751E–05 1 5.37444E–04 1.78976E–03 3.11557E–04
4 3.32664E–05 2.44805E–05 2.33412E–05 5 2.53004E–03 8.25125E–03 1.43636E–03
8 4.38909E–05 3.23169E–05 3.08129E–05 10 4.36676E–03 1.37152E–02 2.38750E–03

are computed for different time levels T = 0.1, 1, 5, and 10, which are presented in Ta-
bles 5 and 6. From the table we can observe that the present method gives better results
than those available in the literature even for large space and time domains. We can easily
understand from these tables that as the domain increases, the spectral radius remains
ρ(M) < 1, which shows the stability of the proposed scheme. Overall, it is obvious that the
present method gives better results and is flexible to implement.

Example 2 Consider Eq. (5) with β = 1. In this case, the exact solution [2] is given by

Y (ξ , t) =
[

1
2

+
1
2

tanh
(
w1(ξ – w2t)

)]1/m

, t ≥ 0, (44)

where

w1 =
–αm

2(1 + m)
, w2 =

α

(1 + m)
+

γ (1 + m)
α

.

The initial and boundary conditions are taken from the exact solution, and numerical so-
lution is computed using the suggested technique with domain [–1, 1]. The error norms
were computed for comparison of the proposed scheme with exact and available solu-
tions in the literature. Two different cases were discussed for different values of the real
parameter m, whereas α = γ = β = 1.

Case 2.1: In this case, the parameter m = 1 with step size δt = 0.0001. The solution was
obtained for T = 0.5, 1, 2, and 4. The computed results are compared with the exact and
available numerical solution in the form of error norms. The stability of the scheme was
studied in the form of spectral radius shown in Tables 7 and 9. From Table 7 we can notice
that the proposed scheme is stable in the given domain and gives a better accuracy than
the collocation cubic B-spline method [2].

Case 2.2: Now we take m = 2 and compute the solution for different time levels T =
5, 10, 15, and 20. The error norms along with spectral radius were obtained at each time
level, and the results were compared with existing numerical solutions described in Ta-
bles 8 and 9. It is obvious from the table that the accuracy increases with time and con-
verges toward the true solution. It is also clear from the table that in all the three error
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Table 7 Error norms and spectral radius for the solution of Example 2 in Case 2.1

T Present method using CGL points [2]

L∞ L2 RMS CPU time ρ(M) L∞ L2

0.5 1.30003E–06 1.19098E–06 8.02962E–07 2.47751 0.99977 9.17284E–06 6.95296E–06
1 2.71589E–06 2.40019E–06 1.61820E–06 4.96976 0.99975 6.85294E–06 6.13104E–06
2 1.83876E–06 1.59027E–06 1.07216E–06 9.90485 0.99973 7.30254E–06 7.22859E–06
4 2.15134E–07 1.84222E–07 1.24203E–07 19.74891 0.99972 6.44377E–07 6.70231E–07

Table 8 Error norms and spectral radius for the solution of Example 2 in Case 2.2

T Present method using CGL points [2]

L∞ L2 RMS CPU time ρ(M) L∞ L2

5 8.82513E–09 7.44850E–09 5.02178E–09 2.62885 0.99728 2.13998E–06 1.18957E–06
10 2.15147E–10 2.02252E–10 1.36358E–10 5.18462 0.99728 2.13948E–06 1.18924E–06
15 1.28184E–10 9.95507E–11 6.71170E–11 7.69960 0.99728 2.13899E–06 1.18892E–06
20 9.16529E–11 8.23733E–11 5.55361E–11 10.28641 0.99728 2.13869E–06 1.18744E–06

Table 9 Error norms of Example 2 using regular points

T Case 2.1 T Case 2.2

L∞ L2 CPU time L∞ L2 CPU time

0.5 1.3015E–06 1.4090E–06 2.54465 5 7.9591E–09 7.9238E–09 2.63473
1 2.7606E–06 2.8584E–06 5.21997 10 3.7959E–10 3.8231E–10 5.36142
2 1.8656E–06 1.8930E–06 10.30594 15 3.1634E–10 3.5744E–10 8.05531
4 2.1323E–07 2.1460E–07 20.12716 20 3.6716E–10 3.2228E–10 9.75643

norms the proposed method gives excellent results at each time level as compared to avail-
able results in the literature. The table also shows that the value of spectral radius remains
less than 1, which clarifies the stability of the scheme.

Example 3 Putting f (Y ) = Y (1 – Y )(Y – 0.5) and α = γ = m = 1 in Eq. (1), we have

Yt + YYξ – βYξξ = Y (1 – Y )(Y – 0.5) (45)

with initial and boundary conditions [2]

Y (ξ , 0) = sin(πξ ), 0 ≤ x ≤ 1, (46)

Y (0, t) = Y (1, t) = 0, t ≥ 0. (47)

The solution is computed for different time levels T = 0.1, 0.3, 0.6, and 0.9 and various val-
ues of β = 2–1, 2–4, 2–6, and 2–9, respectively. The solution profile for different time levels
is plotted in Fig. 1, which shows the same pattern reported in [2]. Due to unavailability of
exact solution, we studied the accuracy via the stability of the method and noticed that as
the value of β approaches zero, the solution diverges, and the scheme becomes unstable.
From Figs. 1(a)–1(c) it is clear that the solution profile shows a proper behavior and the
scheme is stable, that is, ρ(M) < 1, and as the spectral radius increases, the scheme goes to
an unstable region, and the solution diverges, as shown in Fig. 1(d). We can also observe
from the figure that for a fixed value of β , the graph tends to zero as time increases, and
for various values of β , the curve propagates to the right and follows a sharp decay. Thus
the present method shows the proper behavior of Eq. (45) for various values of β and t.
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Figure 1 Approximate solutions of Example 3: (a) solution of β = 2–1 with ρ(M) < 1, (b) solution of β = 2–4

with ρ(M) < 1, (c) solution of β = 2–6 with ρ(M) < 1, and (d) solution of β = 2–9 with ρ(M) > 1

The same behavior of this equation was illustrated by Mahanty and Sharma [1] and Mittal
[2].

Example 4 Consider Eq. (1) with γ = 0 and α = m = 1 to obtain

Yt + YYξ – βYξξ = 0 (48)

with initial and boundary conditions [1]

Y (ξ , 0) = ξ
(
1 – ξ 2), 0 ≤ x ≤ 1, (49)

Y (0, t) = Y (1, t) = 0, t ≥ 0. (50)

We computed the solution of the problem for various values of β = 2–3, 2–6, 2–9, 2–11 and
time T = 0.1, 0.3, 0.6, 0.9 with step size δt = 0.001. The obtained results are presented in
Fig. 2, which clarifies the behavior of the problem. Similarly to Example 3, We can notice
that as the value of β decreases, the solution diverges, and the scheme become unstable.
The same pattern of the problem has been reported by [8] and [1]. The accuracy of solution
was discussed by means of the stability of the scheme.
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Figure 2 Approximate solutions of Example 4: (a) solution of β = 2–3 with ρ(M) < 1, (b) solution of β = 2–6

with ρ(M) < 1, (c) solution of β = 2–9 with ρ(M) = 1.003, and (d) solution of β = 2–11 with ρ(M) = 1.75

Example 5 In this case, we consider the coupled one-dimensional Burger Eq. (7) by taking
μ = –1, ν = 2, and γ = 0, which leads to

Yt – Yξξ + 2YYξ + α(YZ)ξ = 0, (51)

Zt – Zξξ + 2ZZξ + β(ZY )ξ = 0. (52)

The exact solution is [47, 48]

Y (ξ , t) = a0
(
1 – tanh

(
A(ξ – 2At)

))
, (53)

Z(ξ , t) = a0

((
2β – 1
2α – 1

)
– tanh

(
A(ξ – 2At)

))
, (54)

where ao is an arbitrary constant, and A = 1
2 a0( 4αβ–1

2α–1 ). The initial and boundary conditions
are extracted from the exact solution. The numerical solution was computed for different
values of α, β , and T = 0.5, 1 in the domain [–10, 10] with a0 = 0.05 and dt = 0.001. For
comparison, the error norms were computed and shown in Table 10. The stability of the
scheme was discussed in terms of the spectral radius shown in the table. From the table
it is clear that the proposed scheme is stable and produces better results even in large
domains. The solution profile of Y and Z for T = 1 is plotted in Fig. 3. From the figure we
can easily notice the betterment of the proposed technique.
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Table 10 Error norms and spectral radius for Y(ξ , t) and Z(ξ , t) of Example 5 for dt = 0.001

T Present method using CGL points [47] [48]

α β ρ(M) L∞ L2 RMS L∞ L2 L∞ L2

solution of Y
0.5 0.1 0.3 1.00030 2.04E–06 1.80E–06 1.74E–06 4.17E–05 6.74E–04 9.62E–04 3.25E–05

0.3 0.03 1.00003 6.45E–06 3.66E–06 3.54E–06 4.59E–05 7.33E–04 4.31E–04 2.73E–05

1 0.1 0.3 1.00077 4.03E–06 3.53E–06 3.41E–06 8.26E–05 1.33E–03 1.15E–03 2.41E–05
0.3 0.03 1.00024 1.29E–05 7.18E–06 6.96E–06 9.18E–05 1.45E–03 1.27E–03 5.83E–05

solution of Z
0.5 0.1 0.3 1.00003 1.75E–06 8.68E–07 8.40E–07 1.48E–04 9.06E–04 3.33E–04 2.75E–05

0.3 0.03 1.00004 1.05E–05 8.36E–06 8.09E–06 5.73E–04 1.59E–03 1.15E–03 2.45E–04

1 0.1 0.3 1.00007 3.51E–06 1.71E–06 1.66E–06 4.77E–05 1.25E–03 1.16E–03 3.75E–05
0.3 0.03 1.00002 2.10E–05 1.64E–05 1.59E–05 3.62E–04 2.25E–03 1.64E–03 4.53E–04

Figure 3 Exact and approximate solutions of Example 5 for T = 1, α = 0.1, β = 0.3

Example 6 In this example, we consider one-dimensional Eq. (7) with μ = –1, ν = –2,
γ = 0, and α = β = 1 which leads to

Yt – Yξξ – 2YYξ + (YZ)ξ = 0, (55)

Zt – Zξξ – 2ZZξ + (ZY )ξ = 0, (56)

with exact solution [22]

Y (ξ , t) = e–t sin(ξ ), (57)

Z(ξ , t) = e–t sin(ξ ). (58)
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Table 11 Error norms and spectral radius for Y(ξ , t) and Z(ξ , t) of Example 6 for dt = 0.001

T Present method using CGL points [22]

L∞ L2 RMS ρ(M) CPU time L∞
solution of Y
0.5 2.52724E–06 3.95542E–06 1.53590E–06 1.00003 2.55860 1.51688E–04
1 3.06570E–06 1.91419E–06 1.86313E–06 1.00047 2.66805 1.83970E–04
2 2.25560E–06 3.53027E–06 1.37081E–06 0.99855 2.92445 1.35250E–04
3 1.24468E–06 1.94806E–06 7.56436E–07 0.99788 3.16637 7.46014E–05

solution of Z
0.5 2.52724E–06 3.95542E–06 1.53590E–06 1.00003 2.55860 1.51688E–04
1 3.06570E–06 1.91419E–06 1.86313E–06 1.00047 2.66805 1.83970E–04
2 2.25560E–06 3.53027E–06 1.37081E–06 0.99855 2.92445 1.35250E–04
3 1.24468E–06 1.94806E–06 7.56436E–07 0.99788 3.16637 7.46014E–05

Table 12 Convergence rate of maximum error of Example 6 at T = 1

dt Solution of u Solution of v

L∞ Rate CPU time L∞ Rate CPU time

1/10 3.06899E–04 – 2.46295 3.06899E–04 – 2.46295
1/20 7.66623E–05 2.00117 2.44621 7.66623E–05 2.00117 2.44621
1/40 1.91617E–05 2.00029 2.49829 1.91617E–05 2.00029 2.49829
1/80 4.79018E–06 2.00007 2.57567 4.79018E–06 2.00007 2.57567
1/160 1.19753E–06 2.00002 2.83212 1.19753E–06 2.00002 2.83212

The initial and boundary conditions are extracted from the exact solution. The numerical
solution was obtained for time levels T = 0.5, 1 in the domain [–π ,π ]. The obtained re-
sults were compared in the form of error norms with those of the differential quadrature
method [22] and are shown in Table 11. The rate of convergence using CGL collocation
points is shown in Table 12. From Table 11 we can observe that the present method is sta-
ble and produces a better solution than the available techniques. In Fig. 4 the numerical
and exact solutions of Y and Z are plotted for T = 1. The figures reflect a good agreement
of the obtained numerical result with exact solution.

Example 7 In this case, we take Eq. (7) with ν = 0, α = 0, β = 0, γ = 1, and μ = –1/Re,
which leads to the following two-dimensional coupled Burger equation

Yt + YYξ + ZYη –
1

Re
(Yξξ + Yηη) = 0, (59)

Zt + YZξ + ZZη –
1

Re
(Zξξ + Zηη) = 0. (60)

The exact solution is

Y (ξ ,χ , t) = 0.75 – 0.25
[

1 + exp

(
(–4ξ + 4η – t)

Re
32

)]–1

, (61)

Z(ξ ,χ , t) = 0.75 + 0.25
[

1 + exp

(
(–4ξ + 4η – t)

Re
32

)]–1

. (62)

The initial and boundary conditions are taken from the exact solution. The numerical
solution was computed in the domain [0, 1] × [0, 1] for different values of nodal points
M and Reynolds number Re when T = 0.01. The spectral radius and error norms were
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Figure 4 Exact and approximate solutions of Example 6 for T = 1, α = 1, β = 1

Table 13 Error norms and spectral radius for Y(ξ ,η, t) and Z(ξ ,η, t) of Example 7 for T = 0.01 using
regular points

N Present method [4]

dt Re L∞ L2 RMS ρ(M) CPU time L∞
solution of Y
100 0.0001 1 4.85E–05 3.20E–05 1.28E–05 1.00000 1.28383 2.29E–04
100 0.005 10 2.33E–04 1.77E–04 3.01E–05 1.00003 0.07259 7.23E–05
400 0.001 100 6.43E–03 2.06E–03 1.03E–04 1.00030 9.37317 8.80E–05

solution of Z
100 0.0001 1 3.93E–05 2.91E–05 1.22E–05 1.00000 – 3.23E–04
100 0.005 10 4.64E–04 3.50E–04 4.23E–05 1.00005 – 1.03E–04
400 0.001 100 6.83E–03 2.22E–03 1.07E–04 1.00034 – 1.00E–04

computed for Re = 1, 10, and 100 and nodal points N = 100, 400, that is, N = (10 × 10) and
(20 × 20), and compared with the error norms obtained by Arshad [4] using the meshfree
technique presented in Table 13. From the table we notice that the present results are more
accurate when Re = 1, whereas the accuracy decreases as Re increases with increasing
spectral radius. The solution and error plots are shown in Fig. 5, which shows a kink-like
behavior for Re = 50.

Example 8 Finally, we study two-dimensional coupled Burger equations (59)–(60) in the
domain [0, 1] × [0, 1] with the following initial and boundary conditions taken from [4]:

Y (ξ ,η, 0) = sin(πξ ) sin(πη),

Z(ξ ,η, 0) =
[
sin(πξ ) + sin(2πξ )

][
sin(πη) + sin(2πη)

]
,
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Figure 5 Solution profile and error analysis of Example 7 for T = 0.01, N = 400, Re = 50, and dt = 0.005

Y (0,η, t) = Y (1,η, t) = Y (ξ , 0, t) = Y (ξ , 1, t) = 0, t > 0,

Z(0,η, t) = Z(1,η, t) = Z(ξ , 0, t) = Z(ξ , 1, t) = 0, t > 0.

The problem was solved using the proposed technique for nodal points N = 100, 400, that
is, N = (10 × 10) and (20 × 20) at time t = 0.01, and Re = 1. Due to the nonavailability
of the exact solution, the obtained results were compared at different collocation points
with the numerical solution by the meshfree method [4] and finite element technique [49]
shown in Table 14. From the table it is clear that the proposed method produces almost
the same results as those of existing methods. The solution profile for different time levels
t = 0, 0.01, 0.05 at fixed values of η are plotted in Fig. 6. From the figure we can observe
that as the time increases, Z(ξ ,η, t)) moves from the negative part to the positive one, and
the graphs tend to zero. Similarly, a 3D plot of the solution is shown in Fig. 7.

5 Conclusion
In this paper, we studied a numerical method based on the Lucas polynomials and com-
puted solutions of three different models, including the generalized Burger–Huxley equa-
tion, generalized Burger–Fisher equation, and one- and two-dimensional nonlinear cou-
pled Burger equations. The dependent variable is approximated by the Lucas polynomials,
whereas the Fibonacci polynomials are used for its derivatives. We discussed the stability
of the proposed scheme in the form of spectral radius. For comparison of the proposed
method, we computed the error norms in different domains and compared the results with
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Table 14 Comparison of the values of Y(ξ ,η, t) and Z(ξ ,η, t) of Example 8 for T = 0.01 using regular
points

Points Present method [49] [4]

N = 100 N = 400 N = 100 N = 400 N = 100 N = 400
dt = 0.0002 0.0001 dt = 0.0002 0.0001 dt = 0.00125 –

solution of Y
(0.1, 0.1) 0.07299 0.07260 0.07279 0.07257 0.07254 0.07251
(0.2, 0.8) 0.28886 0.28861 0.28867 0.28842 0.27778 0.27778
(0.4, 0.4) 0.72340 0.72256 0.72375 0.7221 0.72174 0.72174
(0.7, 0.1) 0.20148 0.20125 0.20157 0.20117 0.20481 0.20484
(0.9, 0.9) 0.07939 0.07945 0.07951 0.07947 0.07942 0.07944

solution of Z
(0.1, 0.1) 0.43027 0.43239 0.44132 0.44336 0.43159 0.43087
(0.2, 0.8) –0.1242 –0.1225 –0.13172 –0.12366 –0.12428 –0.1241
(0.4, 0.4) 1.65850 1.65514 1.66212 1.65499 1.65245 1.65244
(0.7, 0.1) 0.06571 0.06662 0.06306 0.06621 0.06716 0.06705
(0.9, 0.9) 0.01212 0.01364 0.01459 0.01367 0.01358 0.01335

Figure 6 Solution profile of Example 8 at T = 0, 0.01, 0.05, N = 400, Re = 1, and dt = 0.00125
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Figure 7 Solution profile of Example 8 at T = 0.01, N = 400, Re = 1, and dt = 0.0001

exact and available results in the literature. From comparison it is clear that the proposed
technique gives a better accuracy and is easy to implement.
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