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Abstract
In this research article, a discrete version of the fractional Bagley–Torvik equation is
proposed:

∇2
hu(t) + AC∇ν

h u(t) + Bu(t) = f (t), t > 0, (1)

where 0 < ν < 1 or 1 < ν < 2, subject to u(0) = a and ∇hu(0) = b, with a and b being
real numbers. The solutions are obtained by employing the nabla discrete Laplace
transform. These solutions are expressed in terms of Mittag-Leffler functions with
three parameters. These solutions are handled numerically for some examples with
specific values of some parameters.
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1 Introduction
There has been a great deal of interest in the fractional calculus for the last decades. The
reasons of this interest are the findings which came to hand when some of the researchers
modeled some dynamic systems making use of fractional operators [1–7]. One of the most
interesting results among them is the one obtained by Bagley and Tovirk [8, 9] who studied
the viscoelasticity structures and the behavior of materials using fractional derivatives.
The equation used by these two scientists is called the Bagley–Torvik equation and has
the form [3]

λ2u′′(t) + λ1Dνu(t) + λ0u(t) = f (t), t > 0, (2)

where λi, i = 0, 1, 2 are constants, λ2 �= 0, f is a real-valued function and Dν is the fractional
derivative ν = 1

2 or ν = 3
2 . Because of the applications of the Bagley–Torvik equation, many

researches tackled the problem of finding the analytic and numerical solution of this equa-
tion [3, 10–21].

On the other side, discrete fractional calculus has also attracted the attention of many
researchers. This type of calculus dealing with the sums and differences with non-integer
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quantities has also many applications in variety of fields [22–25]. Motivated by the above,
we intended to find the analytic and the numerical solution of a certain discrete version
of the Bagley–Torvik equation in this article. The considered equation contains the h-
difference which as h → 0 gives the classical derivative. To the best of our knowledge no
one [26, 27] has discussed this before.

The article is arranged as follows.
The second and third sections discuss the theory needed to handle the equation under

consideration. The fourth section proposes the solutions of the discrete Bagley–Torvik
equation. The fifth section present numerical solutions of some special cases of the men-
tioned equation. The sixth section is devoted to the conclusion.

2 Preliminaries
In this section, some basic definitions and results which will be used further are presented.

Definition 2.1 Let u(t), t ∈ [0,∞), be a real- or complex-valued function and h > 0 be a
fixed shift value. Then the forward difference operator on hZ is defined as

�hu(t) =
u(t + h) – u(t)

h
, (3)

and the backward difference operator on hZ is defined as

∇hu(t) =
u(t) – u(t – h)

h
. (4)

For h = 1, this gives �u(t) = u(t + 1) – u(t) and ∇u(t) = u(t) – u(t – 1), respectively.

The forward jumping operator on the time scale hZ is σh(t) = t + h and the backward
jumping operator is ρh(t) = t – h. For a, b ∈ R and h > 0, we use the notation Na,h = {a, a + h,
a + 2h, . . . , } and b,hN = {b, b – h, b – 2h, . . .}.

Definition 2.2 For h > 0 and μ ∈ R, the increasing h-polynomial factorial function is de-
fined as

tμ̄

h = hμ
�( t

h + μ)
�( t

h )
, (5)

where t[0]
h = 1, � is the Euler gamma function and t

h + μ, t
h , /∈ {0, –1, –2, –3, . . .}, as the di-

vision at a pole yields zero.
If μ is a positive integer, then

tμ̄

h = t(t + h)(t + 2h) · · · (t + (μ – 1)h
)
. (6)

Remark 2.3 Applying the nabla operator on (5), then

∇htμ̄

h = μ tμ–1
h . (7)

Proposition 2.4 ([28] The relation between nabla h – RL fractional difference and h-
Caputo fractional difference)
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(i) C
a ∇ν

h u(t) = a∇ν
h u(t) – (t–a)–ν

h u(a)
�(1–ν) .

(ii) C
h ∇ν

b u(t) = h∇ν
b u(t) – (b–t)–ν

h u(b)
�(1–ν) .

Definition 2.5 ([29]) Assume that u is defined on Na,h. Then the h-discrete Laplace trans-
form of u is defined by

Na,h
[
u(t)

]
(s) =

∫ ∞

a
(1 – hs)

t–a–h
h u(t)∇ht = h

∞∑

t=a/h+1

(1 – hs)t–a/h–1u(ht). (8)

When a = 0, this gives

N0,h
[
u(t)

]
(s) =

∫ ∞

0
(1 – hs)

t–h
h u(t)∇ht = h

∞∑

t=1

(1 – hs)t–1u(ht). (9)

The following results are the h-discrete Laplace transform for the Caputo fractional dif-
ference and also for the integer difference operator.

Lemma 2.6 For the function u(t) defined on Na,h and n – 1 < ν ≤ n, then

Na,h
[C

a ∇ν
h u(t)

]
(s) = sνNa,h

[
u(t)

]
(s) –

n–1∑

k=0

sν–1–k∇k
h u(a). (10)

For the positive integer n,

Na,h
[

a∇n
h u(t)

]
(s) = snNa,h

[
u(t)

]
(s) –

n–1∑

k=0

sn–1–k∇k
h u(a). (11)

Definition 2.7 (Nabla h-discrete Mittag-Leffler) For λ ∈ R, |λ| < 1 and θ ,β ,ρ, t ∈ C with
Re(θ ) > 0, the nabla h-discrete Mittag Leffler functions are defined by

hEρ

θ ,β (λ, t) =
∞∑

k=0

λk tkθ+β–1
h (ρ)k

�(θk + β)k!
. (12)

For h = β = ρ = 1, one can write

Eθ (λ, t) =
∞∑

k=0

λk tkθ

�(θk + 1)
, (13)

where (ρ)k = ρ(ρ + 1) · · · (ρ + k – 1) and (1)k = k!.

Lemma 2.8 (Finite inverse principle law) Let t > 0, h > 0 and m be a positive integer. Then,
for the equation ∇hv(t) = u(t), v(t) = ∇–1

h u(t) obeys the finite inverse principle law as

v(t) – v(t – mh) = h
m–1∑

r=0

u(t – rh). (14)
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Proof Take ∇hv(t) = u(t), now applying Eq. (4), then

v(t) – v(t – h)
h

= u(t) ⇒ v(t) – v(t – h) = hu(t)

v(t) = hu(t) + v(t – h). (15)

Replace v(t) by v(t – h) in (15) and resubstitute in (15), then

v(t) = hu(t) + hu(t – h) + v(t – 2h) ⇒ v(t) – v(t – 2h) = h
1∑

r=0

u(t – rh). (16)

Continuing like this gives (14). �

Lemma 2.9 Let t ∈ R, a, h > 0. Then

∇–1
h (1 – hs)

t
h –1 = –

(1 – hs)
t
h

s
. (17)

Proof Take u(t) = (1 – hs)
t
h –1 in (4), which gives

∇h(1 – hs)
t
h –1 =

(1 – hs)
t
h –1 – (1 – hs)

t–h
h –1

h
=

(1 – hs)
t
h –1(1 – (1 – hs)–1)

h
. (18)

Now, the proof of (17) follows by taking ∇–1
h on both sides. �

Corollary 2.10 Let t ∈ (–∞,∞) and h, s > 0, then

–
(1 – hs)

t
h

s
+

(1 – hs)
t–mh

h

s
= h

m–1∑

r=0

(1 – hs)
t–rh

h –1. (19)

Proof The proof follows by using the finite inverse principle law in (17). �

Example 2.11 For the particular values of h = 2, s = 5, t = 6 and m = 100, Eq. (19) is verified
by MATLAB and it turns out that its numerical value is 145.8.

Lemma 2.12 Let h > 0 and u, w be real-valued bounded functions. Then

∇–1
h

(
u(t)w(t)

)
= u(t)∇–1

h w(t) – ∇–1
h

(∇–1
h w(t – h)∇hu(t)

)
. (20)

Proof Applying the nabla operator on the function u(t)v(t) gives

∇h
[
u(t)v(t)

]
=

u(t)v(t) – u(t – h)v(t – h)
h

=
u(t)v(t) – u(t)v(t – h) + u(t)v(t – h) – u(t – h)v(t – h)

h
,

∇h
[
u(t)v(t)

]
= u(t)∇hv(t) + v(t – h)∇hu(t),

u(t)∇hv(t) = ∇h
[
u(t)v(t)

]
– v(t – h)∇hu(t).

Now considering w(t) = ∇hv(t) and taking ∇–1
h on both sides gives (20). �
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3 Generalized nabla discrete h-Laplace transform and its convolution
Following the time scale calculus, one gave the following definition for the nabla discrete
Laplace transform on Na,h modifying Lemma 2.6 using the closed form(inverse difference
operator).

Definition 3.1 Assume that u(t) is defined on Na,h. Then the generalized nabla discrete
Laplace transform of u is defined by

Na,h
{

u(t)
}

(s) =
∫ ∞

a
hẽρ


s(t, a)u(t)∇ht

=
∫ ∞

a

hẽ
s(t, a)
1 – hs

u(t)∇ht =
∫ ∞

a
(1 – hs)

t–a–h
h u(t)∇ht. (21)

Using the closed and summation form solution, the above equation can be written as

Na,h
{

u(t)
}

(s) = a∇–1
h u(t)(1 – hs)

t–a–h
h |∞a = h

∞∑

i=a/h+1

u(ih)(1 – hs)i– a
h –1. (22)

Remark 3.2 (i) In the case a = 0,

N0,h
{

u(t)
}

(s) = ∇–1
h u(t)(1 – hs)

t–h
h |∞0 = h

∞∑

i=1

u(ih)(1 – hs)i–1. (23)

(ii) In the special case h = 1,

Na
{

u(t)
}

(s) = a∇–1u(t)(1 – s)t–a–1|∞a =
∞∑

i=a+1

u(ih)(1 – hs)i–a–1. (24)

Theorem 3.3 For t ∈Na,h, h,μ > 0 and s �= 0,

∇–1
h

[
tμ

h (1 – hs)
t
h –1] = –

μ+1∑

i=1

μ(i–1)tμ+1–i
h (1 – hs)

t
h

si . (25)

Proof Taking u(t) = t and w(t) = (1 – hs)
t
h –1 in (20), using (7) and (17), then

∇–1
h t(1 – hs)

t
h –1 = –

t(1 – hs)
t
h

s
–

(1 – hs)
t
h

s2 . (26)

Again taking u(t) = t2
h and w(t) = (1 – hs)

t
h –1 in (20) gives

∇–1
h t2

h(1 – hs)
t
h –1 = –

t2
h(1 – hs)

t
h

s
+

2
s
∇–1

h
[
t(1 – hs)

t
h
]
. (27)

Now applying (26) and simplifying give

∇–1
h t2

h(1 – hs)
t
h –1 = –

t2
h(1 – hs)

t
h

s
–

2t1
h(1 – hs)

t
h

s2 –
2(1 – hs)

t
h

s3 ,
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which can be rewritten as

∇–1
h

[
t2
h(1 – hs)

t
h –1] = –

3∑

i=1

2(i–1)t3–i
h (1 – hs)

t
h

si .

By proceeding the above process up to μ times one finds (25). �

Lemma 3.4 Let μ, h > 0 and s �= 0, then

Nh
[
tμ–1
h

]
=

(μ – 1)!
sμ

. (28)

Proof The proof follows by applying the limits 0 to ∞ in (25) and using (24). �

Example 3.5 By equating (24) and (28),

Nh
[
tμ–1
h

]
= h

∞∑

i=0

(ih)μ–1
h (1 – hs)i–1 =

(μ – 1)!
sμ

,

which is verified by MATLAB for the particular values of h = 2, s = 1/3 and μ = 3 being
numerically equal as regards both closed and summation form solution as 54.

Remark 3.6 For the fraction ν , one can write (28) as

Nh
[
tν–1
h

]
=

�(ν)
sν

. (29)

Definition 3.7 ([29]) Let s ∈ R, 0 < ν < 1 and u, v : Na,h → R be a function. The nabla
h-discrete convolution of u with v is defined by

(u ∗ v)(t) =
∫ t

a
u(s)v

(
t – ρ(s) + a

)∇hs = h
t/h∑

k=a/h+1

u(kh)v
(
t – ρ(kh) + a

)
. (30)

Theorem 3.8 ([29] The h-convolution theorem) For any ν ∈ R/{. . . , –2, –1, 0}, s ∈ R and
u, v defined on Na,h, we have

Na,h
[
(u ∗ v)(t)

]
(s) = Na,h

[
u(t)

]
(s) ×Na,h

[
v(t)

]
(s). (31)

Lemma 3.9 For λ ∈ R, |λ| < 1 and θ ,β ,ν, t ∈ C with Re(θ ) > 0,

Nh
[

hEν

θ ,β (λ, t)
]

=
sαν–β

(sα – λ)ν
. (32)

Proof Applying the Laplace transform in (12) and using (29) give

Nh
[

hEν

θ ,β (λ, t)
]

=
∞∑

k=0

λk(ν)k

�(θk + β)k!
Na,h

[
tkθ+β–1
h

]
=

∞∑

k=0

λk

sθk+β

(ν)k

k!

= s–β

∞∑

k=0

(
λ

sθ

)k (ν)k

k!
= s–β

(
sθ

sθ – λ

)ν

,



Meganathan et al. Advances in Difference Equations        (2021) 2021:222 Page 7 of 12

Nh
[

hEν

θ ,β (λ, t)
]

=
sαν–β

(sα – λ)ν
. �

4 Solution of discrete Bagley–Torvik equation
In this section, we find the analytic solution of the discrete fractional Bagley–Torvik equa-
tion given as

∇2
hu(t) + AC∇ν

h u(t) + Bu(t) = f (t), t > 0, (33)

where 0 < ν < 1 or 1 < ν < 2, subject to u(0) = a and ∇hu(0) = b, with a and b being real
numbers.

Here, one can solve the above fractional equation in the two cases of the particular values
of ν = 1

2 and 3
2 with numerical analysis.

4.1 Case 1: ν = 1
2

Here, the researchers solve the discrete fractional Bagley–Torvik equation for ν = 1
2 by

employing the Laplace transform.

Theorem 4.1 The discrete fractional Bagley–Torvik equation

∇2
hu(t) + AC∇1/2

h u(t) + Bu(t) = f (t), t > 0 (34)

where 0 < ν < 1, subject to u(0) = a and ∇hu(0) = b, has the solution

u(t) = a
∞∑

n=0

(–1)nAn
hEn+1

2, 3n
2

(–B, t) + b
∞∑

n=0

(–1)nAn
hEn+1

2, 3n
2 +2

(–B, t)

+
∞∑

n=0

(–1)nAn
t∑

τ=1
hEn+1

2, 3n
2 +2

(–B, τ )f (t – ρτ ),
∣
∣∣
∣

B
s2

∣
∣∣
∣ < 1. (35)

Proof By applying the Laplace transform on (34) and using Lemma 2.6, one finds

s2Nh
[
u(t)

]
(s) +

1∑

k=0

s1–k∇k
h u(0) + As1/2Nh

[
u(t)

]
(s) + BNh

[
u(t)

]
(s) = f̄ (s), (36)

simplifying and applying the initial conditions lead to

(
s2 + As1/2 + B

)
Nh

[
u(t)

]
(s) = as + b + f (s)

Nh
[
u(t)

]
(s) =

1
(s2 + As1/2 + B)

(
as + b + f (s)

)
.

(37)

Now,

1
(s2 + As1/2 + B)

=
1

s2 + B
1

1 + As1/2

s2+B

=
1

s2 + B

∞∑

n=0

(–1)n Ansn/2

(s2 + B)n ,

1
(s2 + As1/2 + B)

=
∞∑

n=0

(–1)n Ansn/2

(s2 + B)n+1 ,
∣
∣∣∣

As1/2

s2 + B

∣
∣∣∣ < 1.

(38)
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Now using (38) in (37),

Nh
[
u(t)

]
(s) = a

∞∑

n=0

(–1)n Ansn/2+1

(s2 + B)n+1 + b
∞∑

n=0

(–1)n Ansn/2

(s2 + B)n+1

+
∞∑

n=0

(–1)n Ansn/2

(s2 + B)n+1 f (s). (39)

Now applying the inverse Laplace transform and using (32) give (35). �

4.2 Case 2: ν = 3
2

Theorem 4.2 The discrete fractional Bagley–Torvik equation

∇2
hu(t) + AC∇3/2

h u(t) + Bu(t) = f (t), t > 0, (40)

where 1 < ν < 2, subject to u(0) = a and ∇hu(0) = b, has the solution

u(t) = a
∞∑

n=0

(–1)nAn
hEn+1

2, n
2 +1

(–B, t) + a
∞∑

n=0

(–1)nAn+1
hEn+1

2, n
2 + 3

2
(–B, t)

+ b
∞∑

n=0

(–1)nAn
hEn+1

2, n
2 +2

(–B, t) +
∞∑

n=0

(–1)nAn
t∑

τ=1
hEn+1

2, n
2 +2

(–B, τ )f (t – ρτ ). (41)

Proof By applying the Laplace transform on (40) and using Lemma 2.6,

s2Nh
[
u(t)

]
(s) –

1∑

k=0

s1–k∇k
h u(0) + A

[

s1/2Nh
[
u(t)

]
(s) –

1∑

k=0

s1/2–k∇k
h u(0)

]

+ BNh
[
u(t)

]
(s) = f̄ (s), (42)

and simplifying and applying the initial conditions,

(
s2 + As3/2 + B

)
Nh

[
u(t)

]
(s) = a

(
s + As1/2) + b + f (s),

Nh
[
u(t)

]
(s) =

1
(s2 + As3/2 + B)

[
a
(
s + As1/2) + b + f (s)

]
.

(43)

Now,

1
(s2 + As3/2 + B)

=
1

s2 + B
1

1 + As3/2

s2+B

=
1

s2 + B

∞∑

n=0

(–1)n Ans3n/2

(s2 + B)n ,

1
(s2 + As1/2 + B)

=
∞∑

n=0

(–1)n Ans3n/2

(s2 + B)n+1 ,
∣
∣∣∣

As3/2

s2 + B

∣
∣∣∣ < 1.

(44)

Now using (44) in (43) gives

Nh
[
u(t)

]
(s) = a

∞∑

n=0

(–1)n Ans3n/2+1

(s2 + B)n+1 + a
∞∑

n=0

(–1)n Ans(3n/2+1)/2

(s2 + B)n+1

+ b
∞∑

n=0

(–1)n Ans3n/2

(s2 + B)n+1 +
∞∑

n=0

(–1)n Ans3n/2

(s2 + B)n+1 f (s). (45)
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Now applying the inverse Laplace transform and using (32) give (41). �

5 Results and discussion
In this section, we give numerical solutions and graphical illustrations for the considered
Bagley–Torvik equation for particular values of some parameters.

For the particular values of a = b = A = B = h = 0.1 and ν = 1/2, f (t) = 1, the solution (35)
is graphically shown in Fig. 1.

Again for the particular values of a = b = 0.0001, A = B = 0.001, h = 0.1 and ν = 1/2,
f (t) = t, the solution (35) is graphically shown in Fig. 2.

When the non-integer order is ν = 3/2 and for the values a = 0.01, b = 0.02, A = 0.1,
B = 0.2, h = 0.15 and f (t) = t2 + 1 the solution (35) graphically is shown in Fig. 3.

Finally, for the values a = 0.125, b = 0.15, A = B = 0.25, h = 0.05 and f (t) = 0 the solution
(35) is graphically shown in Fig. 4,

Figure 1 Solution of Bagley–Torvik equation f (t) = 1, ν = 1/2

Figure 2 Solution of Bagley–Torvik equation f (t) = t, ν = 1/2
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Figure 3 Solution of Bagley–Torvik equation f (t) = t2 + 1, ν = 3/2

Figure 4 Solution of Bagley–Torvik equation f (t) = 0, ν = 3/2

6 Conclusion
In this article, the authors discussed a certain version of the discrete Bagley–Torvik equa-
tion involving a nabla h-fractional Caputo difference. The researchers obtained the ana-
lytical solutions favorably associated to the discrete Laplace transform and the discrete
Mittag-Leffler functions. The researchers presented the numerical solutions for specific
values of initial values, parameters and the right hand side of the equation. The nabla
difference considered can be replaced by the delta difference operator. In this case, one
should not think that the analytical solutions can be easily obtained. On the other hand,
researchers may also replace the h-fractional Caputo difference by newly defined frac-
tional differences involving non-singular kernels.
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