i fractal and fractional

[

Article

Analytic Solution of the Langevin Differential Equations
Dominated by a Multibrot Fractal Set

Rabha W. Ibrahim 1**

check for

updates
Citation: Ibrahim, R.W.; Baleanu, D.
Analytic Solution of the Langevin
Differential Equations Dominated
by a Multibrot Fractal Set. Fractal Fract.
2021, 5, 50. https://doi.org/10.3390/
fractalfract5020050

Academic Editors: Minghua Chen,
H Jafari, Can Li, Yajing Li and
Lijing Zhao

Received: 18 April 2021
Accepted: 19 May 2021
Published: 25 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Dumitru Baleanu

2,34,

Institute of Electrical and Electronics Engineers (IEEE: 94086547), Kuala Lumpur 59200, Malaysia
Department of Mathematics, Cankaya University, Balgat, Ankara 06530, Turkey; dumitru@cankaya.edu.tr
Institute of Space Sciences, R76900 Magurele-Bucharest, Romania

Department of Medical Research, China Medical University, Taichung 40402, Taiwan

Correspondence: rabhaibrahim@yahoo.com

1t These authors contributed equally to this work.

S N

*

Abstract: We present an analytic solvability of a class of Langevin differential equations (LDEs)
in the asset of geometric function theory. The analytic solutions of the LDEs are presented by uti-
lizing a special kind of fractal function in a complex domain, linked with the subordination theory.
The fractal functions are suggested for the multi-parametric coefficients type motorboat fractal set.
We obtain different formulas of fractal analytic solutions of LDEs. Moreover, we determine the max-
imum value of the fractal coefficients to obtain the optimal solution. Through the subordination
inequality, we determined the upper boundary determination of a class of fractal functions holding
multibrot function ®(z) = 1+ 3« z + 2°.

Keywords: analytic function; subordination and superordination; univalent function; open unit disk;
algebraic differential equations; complex fractal domain; fractional calculus; fractional differential operator

1. Introduction

The class of Langevin differential equations (LDEs) is considered indifferently in the as-
sessment of different categories of geometric investigations. The partial group is considered
by consuming the cramped geometries [1]. It is termed the evolution of physical events
in fluctuating situations [2—4]. For instance, Brownian motion is fit selected by the LDEs
while the arbitrary fluctuation force is reflected to be white noise. In the sample, the random
fluctuation force is not white noise, the motion of the particle is adapted by the improved
LDEs [5]. A fractional type of LDEs is considered in [6-9]. Additionally, the solvability
of LDEs is demonstrated by proposing the geometric ergodic and other geometry in [10,11].
Generally, the class of LDEs is employed to design the broader classes of polymer field
theory models. One of significant investigation in the area of polymer theory, systems
is the geometric representation of the polymer. Therefore, we focus the geometric analytic
univalent results of LDEs with a complex variable [12].

In this analysis, we investigate the upper bound result of a class of complex Langevin
differential equations (LDEs) in the aim of fractal theory. The result is an analytic univa-
lent solution in the open unit disk. The method of the proof is assumed by employing
a type of fractal function constructed by the subordination notion. The fractal functions
are suggested for the multi-parametric coefficients type motorboat fractal set.

2. Methods
A class of second order LDEs is formulated by the structure [13]

¢"(2) +71¢'(z) = S(9(2)),

where T > 0 presents the damping connection and S is the noise term. To investigate
the geometric properties of Equation (1), we assume thatz € U = {z € C: |z] < 1}

ze C, 1)
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and ¢(z) is a normalized function achieving the series ¢(z) = z+ Y, ¢,z". We reorganize
Equation (1) with complex connection, then we obtain the homogeneous equation

() = T<z>(zzqf<"z(f)) T (Z;‘)’(S)) ey, @

where 7(z) is analytic function in U. Obviously, ®(0) = 1, for all 7(z) € U (see the follow-
ing instruction)

Example 1.
*  Suppose that ki(z) = z/(1 —z), T(z) = z, which implies ®(z) = 1+ z + 32> +52° +
724 +92° + O(z%);

o Consider ky(z) = z/(1 —z2)?, ©(z) = z, which yields ®(z) = 1+ 2z + 62> + 122> +
18z* +24z° + O(z°);

o Assume that T(z) = 1 —z and ¢(z) = z/(1 — z), which brings ®(z) = 1+ 3z + 3z* +
323 + 3z% +32° + O(z°)

*  Suppose that T(z) = 1and kq(z) = z/ (1 — z), which yields ®(z) = 1+ 3z + 52> +72% +
924 +112° + O(z°).

Moreover, we consider the following concepts.

Definition 2.

e A function ¢, which is analytic in U, is subordinated to the holomorphic function ), denoted
by ¢ < x, if an analytic function @ with |@(z)| < |z| exists, having ¢ = (x(@)) [14].

e The classes S*(0) and K(o) of starlike and convex functions, respectively, are satisfied
(Zf;éz))) < 0(z) and (1 + Z(z),/ég)) < 0(z), where R(c(z)) >0, 0(0) =1, 0/(0) > 1.

*  Theclass P(a, B) contains functions of the form

Cl4aw(z)  1+az

o(z) = 1+B@(z2) = 1+Bz’

where @ is the Schwarz function and —1 < B < a < 1. Then P(a, B) C P(%_;g) is the class
of Janowski functions.

The ¢ € P is used to construct the class in Definition 3.

Definition 3. For the normalized analytic function
pz)=z+ ) a2, z€ U,
n=2

the class M (o) is a set of all functions of the form (2)

() (450) <t

where T(z) is analytic in U.

Multibrot Fractal Set Generator

A multibrot set in the complex plane satisfies that the absolute value remains a finite
value, taking the formula

;Bn(z) =a,z" + anflznil +...+ay, a,#0,
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where a;, i = 0,...,n are constant coefficients. Additionally, a multibrot set Figure 1
is presented by parametric connections such as the full cubic connected locus, which maps
the complex number z € Uinto ¢ (z) = z% + 3k z + 1 (see [15]).

Figure 1. The plot of 9(z) and the relation with «; the fractal constant x = —1/3.

Define a function with the parameter «, taking the construction

o (2) :H_z(;c—kz)

K\K—2Z

272 273 274 275
(z)+(2)+(i)+(z)
K K K K

4)
+0(z%), |x| > |z|.

z
=1+=+
K

Furthermore, a computation implies that

K—Zz
whenever
k >0, k — V22 < R(z) < x.
3. Results

In this section, we illustrate our computational results by utilizing the function 9(z).

2 /
Proposition 4. Let ¢ € A. Define the functions ®(z) = 7(z) (Z 4 (Z)> + <zq) (Z)>,

¢(2) ¢(2)
ox(z) =1+ 2(H2) and 8(z) =1+ 3k z + 22, If

. z®'(z2) , _
1+ <@%ﬂﬁ> < oe(z), k=0,1,2,

holds then
D(z) <0%(z) =1+3xkz+2>, z€ U
where k> max ki, and
e k= 1.07044;
o k1 =1.27994;
e ¥, = 1.5895.

Proof. Step (i): letk=0=1+x (z®'(z)) < ox(z).
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Define a function X : U — C with the formula

2
XK(z)zl—i—K(log(KKZ) —;{), z€e U.

Clearly, for the analytic function X (z) with X, (0) = 1, we have

1+x (zXi'(2)) = ox(z), ze U. 5)

= 2(222)

which is starlike in U (see [16]). Therefore, for &(z) := 4(z) + 1, we get

()5 (551

Thus, Miller-Mocanu Lemma (see [14], p. 132) admits that

Define a function

1+x (z®'(2)) <1+« (2X((2)) = P(z) < Xk(2).

To finish this conversation, we must show that X (z) < 0x(z) under the necessary condition
k¥ < —1orx > 1such that

1+i<10g(Kil) v 21;<> = Xe(—1) < Xc(1) = 1+i<log(Kfl) - 21;<>

Moreover,
1_1<" ‘1) = 0e(—1) < 0x(1) = 1+1<’;f11)

k\k+1 K
whenever —1 < ¥ < 0 and ¥ > 1. Hence, we obtain

1/x —1 1/x +1
1—- <Xe(—1) < Xe(1) <1+ =
K<K+1)_ (1) = Xell) < +K<K—1)

whenever x > 1. Finally, we have that
Xe(z) < 0(z) =143k z+2°

when
=31 < Xe(—1) < Xi(1) <243k

which is provided
K > kg =1.07044 > 1.

This implies the relations
Xk(z) < 0(z) = P(z) < ¥(z), z€ U.

z®'(z)

Step (ii): assume thatk =1 =1+ K( B0 ) =< 0x(z).

Define a function Yy : U = C by

K

2log(

_z
K—Z) x

Yi(z) = exp .
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Obviously, the analytic function Yy (z) achieves Y, (0) = 1 and

1+x (Z;':(IZ()Z)> = 0x(z), z€ U. (6)

By considering 4l(z) = 0y (z) — 1, which is starlike in U and 20(z) = (z) + 1, we attain

W(35) 535 0 =

Thus, the Miller-Mocanu Lemma yields

1+x (Z;’(/S)) <14k (ﬁig) = B(2) < Ye(2).

Proceeding, we have the following inequality

K K
exp p, =Y (—1) <Yi(1) = exp p

when x > 1 or k < —1. In addition, we have Yy(z) < 0x(z) provided that for x > 1,
the inequality
Te(—1) < Yi(—1) < Yi(1) < 0y (41)

holds. Thus, for ¥ > k1 = 1.27994, we get
Ye(z) < 0(z) =1+43xkz+2°

when
=3k < YK(_l) < YK(1> <243k

This yields the following subordination

Ye(z) < 8 (z) = P(z) < 8(z), z€ U.
Step (iii): Letk = 2 = 1+ K(qu;'g))
Define a function D : U — C formulated by the design

0o~ (-2(m(:) )

Clearly, for the analytic function Dy(z), we have that D,(0) = 1 and

1+K<Zgg(/z()z)> = ox(z), z€ U. (7)

) < 0x(z), then we obtain the following construction.

By considering the functions 4(z) = oy (z) — 1, which is starlike in U and 20(z) = (z) + 1,

we receive W) o ()
z4(z 20 (z
R =R .
(i) —*(am ) >0 =< v
Hence, the Miller-Mocanu Lemma yields

1+x (zq)d;’((;))) <1+« <Zg%'/‘(f))> = ®(z) < Dx(2).
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Accordingly, for x < —1 or x > 1.50957, we obtain

<1— i(log(}{j{rl) +21K>>1 < Dy(~1) < Dy(1) = <1_ i(log(KKl) B 21K>>1

Moreover, the subordination Dy (z) < 0x(z) when x = 1.7723 > 1.50957 such that

0x(—=1) < Dx(—1) < Di(1) < 0y (1).
Thus, for x = 1.5895 > 1.50957, we have
=3k < Dy(—1) < Dy(1) <24 3«.
Consequently, this implies that
Di(z) < 9(z) = P(z) < ¥z), z€ U.
O

Proposition 4 can be generalized by assuming an analytic function p(z), z € U such
that p(0) = 1. The proof is similar to the proof of Proposition 4; therefore, we omit it.

Proposition 5. Let p € H (the set of analytic functions in the open unit disk) such that p(0) =
1,0'(0) > 1,R(p(z)) > 0and let

UK(z):1+i(K+Z),ze U,

where « is a real parameter. If one of the differential inequalities hold

zp'(2) _
1+x ([p(z)]k> < oc(z), k=012,

then
p(z) <8(z) =1+3xkz+2% z€ U,k > 1.5895.

In the next result, we consider two different parameters « and .

Proposition 6. Consider ¢ € A such that

z®'(z ol _
1 (fogrt) < @@ k=012

2 I /
where ®(z) = 1(2) (Z (Z)(z()Z)> + (Zz(g)) and o (z) =1+ 2(X£2), z € U.Then

®(z) <0(z) =1+3Bz+2% z€ U

when B > max By, k = 0,1,2 such that

K 1 K
—x —— —2log( ) —k ——=+42log(——)
. ﬁo:max{ — L K N Ll G Y
1 o ( & Y9 1 ol \ @R
° — A G V2 N - (=1/%%) . .
B1 max{ 3¢ <K+1> 131 (K_1> 2 },K>1,
—x2 1 K2
. ﬁzzmax{ 5 % ,§ 5 T -2 },K>1.
3(x?% — 2k log(K +1) -1) K2 — 2K log(m) +1
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Proof. Step (i): suppose thatk =0 =1+« (z®'(z)) < 0x(z).
Define an analytic function X : U — C constructed as follows:

2
XK(z):lJrK(log(Kiz) ZZK>' z€ U.

Thus, we obtain X, (0) = 1 and

1+x (zXc'(2)) = ox(z), z€ U. (8)

() = Z(K—i—z)/

K\K—2Z

Define a function

which is starlike in U (see [16]). Therefore, for &(z) := (z) + 1, we get

() 555 -0

Thus, Miller-Mocanu Lemma (see [14], p. 132) admits that

1+x (z@'(2)) <1+« (zXi(z)) = P(2z) < Xi(2).

To finish this conversation, we must show that X (z) < 0x(z) under the necessary condition
x < —1orx > 1such that

1+i<log(K_T_1) + 21K> = Xi(—1) < X((1) = 1+i<log<Kf1) - 211<>

Moreover,
1/x —1 1/x +1
- = = 1) < 1))=1+ -
1 K<K+1> ox(=1) < ox(1) +K<K—1>

whenever —1 < ¥ < 0 and ¥ > 1. Hence, we obtain

1/x -1 1/x +1
1—-- < Xe(—1) < Xe(1) <1+ =
K<K+1)_ (1) s X(1) < +K<K—1)

whenever x > 1. Finally, we have that

Xie(z) < 0(z) =1+ 3Bz +2°

when
=38 < Xi(—1) < X(1) <2+38
which is provided
k=L olog(— )k — L oiog(— )
:max{ K gx—f—l K gx—l}
3k ’ 3k

= max{3 (2log(2) - 2), 73 (410g(2) - 5)}
~ max{—0.204569, —0.185618}
= —0.185618, «x > 1.

Hence, we have
Xk(z) < 0(z) = P(z) < ¥(z), z€ U.

Step (ii): putk =1 =1+ K(z£(’S)) < 0x(z).
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Define an analytic function Yy : U — C formulating by the structure

K
ZIOg(E) -

Yi(z) = exp .
Obviously, Yi(z) is satisfying Y, (0) = 1 and
zY'(2)\
1—|—K( Y. () = o0x(z), z€ U. )

By considering £((z) = 0y (z) — 1, which is starlike in U and 20(z) = (z) + 1, we attain

o(35) 525 0 e

Thus, Miller-Mocanu Lemma implies

1+« (Z;’(/S)) <1+« <ng((27‘))> = ®(2) < Ye(2).

Proceeding, the following inequality indicates

210g(L1)+1 210g(L1)71
exp K;: K =Ye(=1) < Yc(1) = exp K; K

if x > 1 orx < —1.In addition, we have Yy (z) < 0x(z) provided that for x > 1 the inequal-

it
’ 0x(—1) < Yy(~1) < Y,(1) < ox(+1)

holds. Thus, we have
Y(z) < %(z) =1+38z+2°

when
=38 <Yi(—1) <Yi(1) <2+3B

satisfying

1 2 K (2/x) 1 2 K (2/x)
- N O V2l B il R C VA N L _
p = max{ 3° (K+1) 3\°¢ (K*l) 2)}
(2/x) (2/x) (10)
_ _ anm® [ _* (=162 K _
max { (~0.333333) (2.71828) (K - 1) ,(0.333333) <2.71828 (K < 1) 2)}
~ —0.333333, x> 1.

This leads to the following subordination

Ye(z) < 9 (z) = ®(z) < ¥(z), z€ U.

Step (iii): consume thatk =2 =1+ K(zgzl((zz))) =< 0x(z).

Define a function Dy : U — C formulating by the design
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Clearly, Di(0) = 1 and

By considering the functions 4(z) = oy (z) — 1, which is starlike in U and 20(z) = 4(z) + 1,

we receive Wz ' (2)
z zW'(z
§R( ) >0, z€ U.
< 4(z) > 4(z)
Hence, the Miller-Mocanu Lemma implies

14+« (zqi’((;))) <14« (zll))%,’(((zz))> = ®(z) < Dy(2).

( g ):UK(z), z€e U. (11)
) =
z)

Accordingly, for k < —1 or x > 1.50957, we obtain

(- 2on(c5) +2)) " smi s - (- 2om(et) )

Moreover, the subordination Dy (z) < 0x(z) when k = 1.7723 > 1.50957 such that

0e(—1) < De(—1) < Di(1) < o (1).

S
~ 0.333333, «>1,

then we have
=3B < Dy(—1) < Di(1) <2+ 3B.

Consequently, this implies that
Di(z) < 9(z) = P(z) < ¥(z), z€ U.
O

Proposition 6 can be extended by consuming an analytic function ¢(z), z € U such
that 0(0) = 1. The proof is similar to the proof of Proposition 4; therefore, we omit it.

Proposition 7. Let ¢ € H such that 0(0) = 1,0'(0) > 1,R(0(z)) > 0and let

K+z
o (z )—1+K(K_Z),z€ U,

where « is a real parameter. If one of the differential inequalities holds

(292 lz _
v (G ) < 5@ k=012

then
0(z) <0(z)=1+3Bz+2% z€ U, B >1/3.

We proceed to consider three parameters &, f and x. We obtain the following result:
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Proposition 8. Let the function ¢ € A designing the inequality

. z®'(z) - _
1+ <[<I>(Z)}") < oe(z), k=0,1,2,

20" (2 20 (2
where ®(z) = T(Z)( (I(;D(Z() )> + ( i(i))> and o (z) =1+ 2(X£2), z € U.Then

O(z) <8(z)=1+3Bz+2%, z€ U

when B > max By, k = 0,1,2 such that
(a1 20log(— 2 ) +1) —(a® —2alog(—2 ) +1
(@ + 2wlog( ) +1) —(@ = 2wlog(F5) 1))

*  po=max 302 ! 302 } 3

0.5(20 —2.82843||) 0.5(2.82843a |a| — 242) }>_

> —0.211728, k =
(0( > , kK = max{ (2.82843|a| —3a) " (a (2.82843|a| — 3a))

-1 14 (2/0() 2 1 14 2 -1
. _ - (1/a%) = (2/a)p(=1/2%) _ o ~__
p1 = max { 3 (oc +1) ¢ '3<(a—1) ¢ )} 3
(oc>1,;c2—2);
o? 1 o? -1
) 'Bzzmax{—?ﬂxz—l—mlo (L)—H’),5 a? —2u lo (L)—f—l_2 }%?
ga—i—l th—l
22
1 = —(0.4142
v > LK = im0

Proof. Step (i): letk=0=1+a (z®'(2)) < 0x(z).
Define an analytic function X, : U — C by

2
X,X(z)_l—b-a(log(“iz) —21), z€e U.

Clearly, X,(0) = 1and

1+a(zXy'(z)) = ox(z), z€ U. (12)

Define a function

by
CORIE R

Thus, Miller-Mocanu Lemma implies
T4+a (z9'(z)) <1+a (2Xp(2)) = D(z) < Xul(2).

It is clear that X, (z) < 0x(z) under the necessary condition « < —1 or &« > 1 such that

s e
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K — K +
_ = — _1) < — -
1 K<K+1> e(—1) < 0x(1) 1+K<K1)
whenever —1 < k¥ < 0 and k¥ > 1. Hence, we obtain
1/x -1 1/x +1
i < X, (=1) < <1+->
1 K<K+l) < Xu(=1) = %(1) _1+K<K—1)
whenever
0.5(2a — 2.82843|a|) 0.5(2.82843a |a| — 242)
> —0.21172 = .
& = —021728, k =max{ = e aal —30) * (a (282843]a] —3a)) |
Finally, we have that
Xa(z) = 0(z) =1+3Bz+2°
when
=38 < Xu(—1) < Xu(1) <2+3B
which is provided
—(a? +2alog( 1)+1) —(a? —2u log( 1)+1)
- max{ 3042 ’ 30(2 }
~ L
T3
B 0.5(2¢ —2.82843|a|) 0.5(2.82843« |a| — 242)
(”‘ >0k = max B —3u)  (a (2.82883]a] — 34)) })
Which implies that
Xu(z) < 0(z) = P(z) < ¥(z), ze€ U.
Step (ii): considerk =1= 1+ a( d>(§ ) < o (z
Define an analytic function Y, : U — C by
2log( s )— 2
Yu(z) = exp a-z
o
Obviously, Y, (0) =1 and
z Yy ’(z))
1+a = 0x(z), ze€ U. 13
(Fpad) = o 13)

By considering £l(z) = 0y (z) — 1, which is starlike in U and 20(z) = (z) + 1, we attain

2 (z)\ (20 (2)
8%( e > _é}%< ) >0, ze U.
Thus, Miller-Mocanu Lemma implies

1+a (?é?) <1+a (ZY“/‘(Z)) = ®(z) < Yal2).
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Proceeding, the following inequality holds when a # 0,

ZIOg(Ll)—i-l 210g(L1)—1
exp “I E 1 =Y (=1) < Ya(1) = exp “; =

In addition, we have Y, (z) < 0x(z) whenever

R R )

(uc >1,K2—2)

holds. Thus, we have
Yu(z) < 0(z) =1+3Bz+2°

when
=38 < Ya(—1) < Ya(1) <2438

satisfying

—1/ a \¥Y a1 ® 2
= — = (1/a%) 2 [ (2 (2/a)p(=1/a%) _
B max{3 <1x+1> e '3((1x1) e 2>}

~ —0.333333, « > 1.
Consequently, we have the following subordination

Yo(z) < 0 (2) = @(z) < 08(z), z€ U.

Step (iii): putk =2 =1 +a(z¢((z))> < 0x(2).

Define an analytic function D, : U — C by

Clearly, D, (0) =1 and

By considering the functions 4(z) = ox(z) — 1, which is starlike in U and 20(z) = 4(z) + 1,

we receive Wz o0 (2)
z z z
5)&‘:( ) >0, z€ U.
< U(z) > $U(z)
Hence, the Miller-Mocanu Lemma yields

14+« (zqi’(f))) <14« (Z[I));((ZZ))) = P(z) < Dqu(z).

( g )zaK(z), ze U. (14)
) =
z)

Accordingly, for « < —1 or & > 1.50957, we obtain

(- 2on(st) ) 5wz (- () -4)
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Moreover, the subordination D, (z) < 0x(z) when

o2

44 >1,K :m:04142,
such that . . . .
K — K +
1—-~ < D,(-1)<D,1) <1+ = .
K(K+1>_ (=) = Dull) = +K<K—1>
Thus, if
a2 1 o?
P :max{—3tx2—|—6a lo (L)—I—\’il5 a2 —2u lo (L)—O—l_2 }
gzx+1 8l —1
-1 -1
_max{T’T}
~ —0.333333,
2
o
1 =
(¢ >1 1.414210424—042)’

then we have
=3B < Do(—1) < Du(1) <2+ 3B.

Consequently, this implies that
Du(z) < 8(z) = ®(z) < ¥(z), z€ U.
O

Proposition 8 can be generalized by assuming an analytic function w(z), z € U such
that w(0) = 1. The proof is similar to the proof of Proposition 8; therefore, we omit it.

Proposition 9. Let w € Hsuch that w(0) = 1,0’ (0) > 1, R(w(z)) > 0and let

z[(K+z
O'K(Z)—l—i—K(K_z),ZE U,

where « is a real parameter. If one of the differential inequalities holds

!/
1+« (zw(z)) < ox(z), k=0,1,2,

[w(z)]k
then
w(z) <0(z) =14+3Bz+2% z€ U
o2 -1
1 = = 04142 > — ).
("‘ S WV pr = 3>

More generalization can be suggested by assuming four parameters «, 8, ¥ and m such
that 8(z) = 1+ mx z + z°. Then, we obtain the next extended result. The proof is omitted.

Proposition 10. Let A € H such that A(0) =1, A’ (0) > 1, R(A) > 0and let

z[(K+z
UK(Z):1+K(H),Z€ U,
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where « is a real parameter. If one of the differential inequalities hold

« zA'(2) o (z =
e (S < e k=012

then
Az) <0(z)=1+mpz+2%, z€ U,m#0

where m > max{my, my, my} satisfying

~(a? —2a 1og(a‘"j) +1) —(e? ~2n log(—7) +1)
mO:{ a?B ! a?B }
forallx >1,a € R\ {-1,0,1}, p #0.

() /e )
(« +1)
my = { ‘B ’ —1}

(K >1,ae R\{-1,0,1}, g ;éo);

(a2 — a
A2 (a* — 4u log( @ =1

(=) + 20 p Lo ))+ﬁ (26 20 B log((—37) + )

) +2)
My :max{

(B #20plog("7) +5 & =21).

In the next result, we study the conditions for four parameters a, 8, ¥ and < such that
(z) =1+ Bz+2>

Proposition 11. Let A € H such that A(0) =1, A’ (0) > 1,R(A) > 0and let

oc(z) =1+ = (K+Z),z€ U,

K—2z

where « is a real parameter. If one of the differential inequalities holds

. z N (z) (s _
o (Sag) <o) k=012

then
A(z) <0(z)=1+Bz+72% z€ Um#0

where v > max{vyo, 11,72} forallx >1,a« € R\ {-1,0,1}, B # 0 satisfying

bt «
—(a?B + 2« log( @ +1))—1—1) —(a?B —2a log((‘x _1)) +1)

a2

Yo =

v = {1 - e((er log(
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a
—a? 420 log( %) +1)

14
@ —2a og(Z) +1) P -1}

- B +1,

'yz:max{(

Example 12. Consider the function p(z) = 1+ 2« z which satisfies the subordination

1
1+2wz<1+z(1+z)

—Z

then for B = 1 and x = 1, Proposition 10 yields for my = —09 and « € R\ {-1,0,1}
the subordination
p(z) <1+mz+2% m>myze U.

Or by using Proposition 11, where yg = —0.9 we have the subordination
p(z) <1+z+72%, 5 >v,z€ U.

The above example shows the sufficient conditions for a function p(z) to have a fractal domain us-
ing the multibrot function 9(z). Consequently, the LDEs can be considered such that p(z) =
P(z),z€e U.

4. Conclusions

A discussion of a style of Langevin differential equations (LDEs) of complex variables
is studied in the statement of geometric function theory. This class of LDEs is a gener-
alization of the well known class given in [16,17]. We organized a class of normalized
functions relating the formation of LDEs. By the subordination inequality, we figured
the upper bound determination of a class of fractal functions holding multibrot function
8(z) = 1+ 3« z + z3. Moreover, we illustrated the extended results based on the class
P (p(z) € P when p(0) = 1,p'(0) > 1,R(p(z)) > 0). As present determinations
in this method, one can consider Equation (3) in terminologies of differential operators
such as fractional differential and convolution operators in the open unit disk. On the other
hand, one can commend a quantum calculus.
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