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The article studies the exact traveling wave solutions to the Schrodinger-Poisson system which has applications
in gravity’s role of quantum state and approximate the coupling between quantum mechanics with gravitation.
Diverse exact solutions in hyperbolic, trigonometric and plane wave forms are obtain using two norms of inte-
gration. For this sake modified extended direct algebraic (MEDA) and (G /G)-expansion techniques are used. The
3D plots and their corresponding contour graphs are also depicted. The constraints conditions for the exact of
solutions are also emerged during the derivation of solution.

Introduction

Nonlinear partial differential equations (NPDEs) have been
comprehensively studied in recent years. These equations play funda-
mental role in the modeling of various fields of science and engineering
such as solid state physics, thermodynamics, civil engineering, soil
mechanics, economics and quantum physics [1-7]. Many nonlinear
systems are also emerged in coupled form, and these systems have great
important impact in different fields of sciences [1].

Thus in this article, the Schrodinger-Poisson system is under inves-
tigation. This system is fundamentally the Schrodinger equation
together with the gravitational potential, which has application of
gravity’s role in quantum state [2]. Also this nonlinear system can
approximate the coupling between quantum mechanics with gravitation
[3]. Further this system can also be viewed as the junction of Einstein-
Klein Gordon and Einstein-Dirac system [4]. MEDA and (G /G)-expan-
sion methods [8-11] are applied to find the exact solutions to this sys-
tem to find the exact solutions, has impressive impact in the theory of
solitons [12-15]. These types of solutions play multiple significant role
in the appropriate understanding of qualitative features of numerous
phenomena and processes in different areas of natural science. The
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Schrodinger-Poisson system is read as
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The wave profile function is defined by (x, t). Here, function ¢ is
additionally has an elliptic behavior ie., a solution of Schrodinger-
Poisson system. In this case where ¢(x) is determine by charge of the
wave function itself. Using the definition of A, the last system can be
converted into single equation which has the following form,
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Much concentration has been paid to the models of NLPDE:s for finding
exact solutions in last few years. There are many powerful methods have
been constructed and developed to analytically solve NPDEs with the aid
of computational software such as Maple, Mathematica and Matlab [5].
The efficiency and reliability of such software is much better. In recent
decades, exact solutions [6], analytical solutions [7] and numerical
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solutions [8] of many NPDEs have been successfully obtained [9]. The
methods for obtaining exact explicit solutions of NPDEs are the tanh-
function method [10], the exp-function method [11], the F-expansion
method [16], Hirota method [17], Kudryashov method [9], the MEDA
method [18], the extended auxiliary equation method [19] and modi-
fied method of simplest equation, the (G /G?)-expansion method [20],
modified mapping method [21] and extended Fan-sub equation method
[22]. Examples of the methods for solving NPDEs numerically are the
finite element method [23], finite volume method [24], generalized
finite difference method [25], spectral collocation method [26] and
Galerkin finite element method [27]; (G /G), 1/G)-expansion method
[28]; the unified method [29]; simplified Hirota’s method [30]; the exp
(—®(¢)) method [31]. Hence, there are results containing the extended
and modified direct algebraic method, extended mapping method, and
Seadawy technique of valuable researches in which may well comple-
ment the existing literature such as [32-39] In the following section, the
model is a investigated analytically.

Analysis of Schrodinger-Poisson system

In this section, we adopt two integration norms namely MEDA [40]
and (G /G)-expansion method [41].

Using MEDA-method

Let us find the new exact traveling wave solutions to the system Eq.
(1). For this, we convert Eq. (2) into nonlinear ordinary differential
equation using the following complex transformation.

w(x,t) = U(z) x e?, 3

where y/(x, t) is the wave amplitude of wave profile, z = x —vt, and x is
independent spatial variable and trepresents the temporal variable, vis
the velocity of the wave. Also note that p = p; x + p2t, where p;and
poare arbitrary constants. Hence substituting the results of Eq. (3) into
Eq. (1) can get the equation, then separating the real and imaginary
parts yields a pair of relations. The imaginary part gives the following
constraint condition.

prv = (20:(x) +2p2 + p7) “
and real parts take the form,

U™ (2) + (2vp, — 6p% — pr — ¢(x) )U"(2) = 2(¢ ) 0)U (2) + (p1* + pop?
+o0p] )UR) + U (2)
=0.
5)
The value of the positive integer N can be determined using the homo-

geneous balance principle, i.e, by balancing between the highest order
derivatives and the nonlinear terms occurring in Eq. (5).

N+4 =3N=>N =2.
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of §'(z) =y + 1%(2), by collecting all the terms with the same power of
n(z) [42]. After equating each coefficient equal to zero, this yields a set
of following algebraic equations. Solving this system of algebraic
equations with the aid of maple, we obtained following set of solutions.

For Case-1: The f,,7,,v,y are free parameters while along with the
value of fy = 0,4, = 0,7; = 0,8y = £2v/=30, y, = £2y*>v/=30,v =

— 2 . o e .
%W.The constraint condition hold for the following results,

when v is putting in it, y = —2 ¢(x) -3 p2 + 15 p}. For y <0, thus
following families of hyperbolic solutions are obtained.

v, = (£2,V=30(— y=Fuanh(y=72))’
£27V=30(~ /=7 tanh(y=72)) " )e”,
or
v = (£2V=30( - y=Feoth(y72) )
£27V=30(— /T eoth(y72)) e

For y > 0, thus following periodic wave solutions are obtained.

o= (2 (rn(or)) <2 (7)o

or
v, = (:I:Z\/—_30 ( - ﬁcot(ﬁz) )2
+2y°V=30 ( - ﬁcot(ﬁz) )72>e"‘”.

For y = 0, the following plan solutions are obtained.
vy = ( 42230 + 2230 z*z)e"ﬂ

The graph and its corresponding contour plot of the solutions y, (x, t)
are shown in Fig. 1, for the values of parameters p; = 0.5,p, = 0.008,
y = 0.0005, ¢(x) = sin(x) and v = 0.0009.

The graph and its corresponding contour plot of the solutions ,(x, t)
are shown in Fig. 2, for the values of parameters p; = 0.5, p, = 0.008,
y = 0.0005, ¢(x) = sin(x) and v = 0.0009.

The graph and its corresponding contour plot of the solutions y, (x, t)
are shown in Fig. 3, for the values of parameters p; = 0.5, p, = 0.008,
y = 0.0005, ¢(x) = sin(x) and v = 0.0009.

The graph and its corresponding contour plot of the solutions y (x, t)
are shown in Fig. 4, for the values of parameters p; = 0.5, p, = 0.008,
y = 0.0005, ¢(x) = sin(x) and v = 0.0009.

For Case-2: The y;,7,,7,vare free parameters while along with g, =0,

fr =0 =0, = i%VTZ(qb’(x)f\/512y3+<¢’<x>>2)7 2 =

+2y2/-30.

16p1y*y = 48pi7” + (¢ (x))° +8(x)y” — 647> + 8pay® — %512«/% @) + (¢ ()

Thus, Eq. (5) the formal solutions are obtained using the following
result.

U(z) = By +pin(2) +ﬁ2'72(1) +rn ' (2) +?’27772(Z)7 (6)

where S, 1, P2, 71,7, are unknown constants, and 7 (z) = y +4%(z) in
which y is a free-parameter. Substituting Eq. (6) into Eq. (5) with the aid

The constraint condition holds for the following results, when vis putting
247°9(x) = —24pay® +  32p1° +  ((9)(x))* 647 —
\/512((¢/)(x) Y293 4+ ((¢)(x))*,For y <0, thus following families of
hyperbolic solutions are obtained.
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Fig. 1. The 3D plot and the corresponding contour representation of the traveling wave solutions y, (x,t) for different values of parameters.
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Fig. 3. The 3D plot and the corresponding contour representation of the traveling wave solutions y,(x,t) for different values of parameters.

Ve = ((im%m—\/51273+(¢’(x)2))<—ﬁtanh(—J——rz))*‘ ve — ((iﬁqﬁ’(x)_\/m)(ﬁm(m))fl
s 4

£ 27V=30 (= tanh(—y/7 ) ) e, +27°V30 (Vrtan(v72)) )e"”,

or
or

n= (#5250 2y + (- vreom(- v72)) %:((iﬁf’&)_mxwm(m))*

£ 2 V30(=yreoth(=vr) )e"’. + 2}/2\/—_30 ( - ﬁcot(ﬁz)) B )ei‘”.

For y > 0, thus following periodic wave solutions are obtained. For y — 0, thus following plane solutions are obtained
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Fig. 4. The 3D plot and the corresponding contour representation of the traveling wave solutions y5(x,t) for different values of parameters.

-276
-277

il

D v

276 - Q\\NN&{S\W\N&{}&\&&\&‘“\“N‘{&“‘&\“\“ I
\\\\\V\\\\\\\\\\\\\\\m\m\\u\\\\\\\\n\\\\\\&{\“\W\N\\k\m&\

Real(we)

-280

-281

-282

-283
40

30

20

20 f

-30
30

-20 -10 0 10 20
X

Fig. 5. The 3D plot and the corresponding contour representation of the traveling wave solutions g (x,t) for different values of parameters.
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Fig. 6. The 3D plot and the corresponding contour representation of the traveling wave solutions v, (x,t) for different values of parameters.

Vi = (( i\/__zfqu* V51278 + ¢ () (=2 1) iZyZ\/-:g@z’z)ei"

The graphs and its corresponding contours plot of the solutions y (x,
t) are shown in Fig. 5, for the values of parameters p;, = 0.007, p, =0.08,
y = 0.005, ¢(x) = sin(x) and v = 0.0019.

The graphs and its corresponding contour plot of the solutions y, (x,
t)are shown in Fig. 6, for the values of parameters p; = 0.007,p, =
0.08,y = 0.005,¢(x) = sin(x)and v = 0.0019.

The graphs and its corresponding contour plot of the solutions yg(x,
t) are shown in Fig. 7, for the values of parameters p; = 0.007,p, =
0.08,y = 0.005,¢(x) = sin(x)and v = 0.0019.

For Case-3: The f3,,y; ,v,yare free parameters while along with y, = 0,

bo = 0, p= 0, py = +21/-30,
\/—407 — 4vp, +12p% + 20(x) + 2ps, 2p1v = —407 + 6p} + P(x) +

D2, ¥ = %1/P?+Dp2+¢(x)p1,The constraint condition holds for the

following results, when vis putting in it, y = —43—0 ¢(x) —% D2 + 11—0 p?.
For y < 0, thus following families of hyperbolic solutions are ob-
tained.

7= +

Y= (:l:2v —30(7\/7_ytanh(\/7_yz))2

+ \/—407/ —4vp, +12p} +26(x) +2ps (—y/~7tanh(y/772)) "' )e"’ﬁ
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Fig. 7. The 3D plot and the corresponding contour representation of the traveling wave solutions yg(x,t) for different values of parameters.

or

v = ((£2V730 (- Feom(y72)*

+ \/—40}/ —4vp, + 12pF +2¢(x) +2p» (—y/=7 coth(,/=7z))"" )ei”.

For y > 0, thus following periodic wave solutions are obtained.

W= (:l: Zm(ﬂtan(ﬁz>)2

+ \/—40}/ —4vp, +12pF +2¢(x) +2p» (\/}7tar1<\/172>)71 )ei”,

t) are shown in Fig. 10, for the values of parameters p; =1.1,p, =
0.0002,y = 0.001, ¢(x) = sin(x) and v = 0.001.

The graph and its corresponding contour plot of the solutions y/5(x,
t) are shown in Fig. 11, for the values of parameters p; =1.1,p, =
0.0002,y = 0.001, ¢(x) = sin(x) and v = 0.001.

For Case-4: The S, 5, 72, v, are free parameters while along with
n= 0 p= pinizn)

£2V-30, fy = 4
1
7 (#6010 18477 +papl? +6 V=303 +pi2+48 (¢ (x)(230) )* )
16(p1%¢ (x)(2v=30)) ’
_ —6p8—p(0p} —papi+4v/=304 (x)(2 V=30 ) +2p}
40p]

0, B =

, 2
169777 = = d(0)p}’ + 1367°D} — 8(x)rp} — 8parp + papl’ +63/=30p} + pf* —48p!%y +48 (¢ (1) (230 )

or

W= ( +2v-30 (—ﬁcot(ﬁz))z

+ \/—40}/ —dup, + 1292 +26(x) + 2 (—\/ycot(\/fz))*‘ )e"ﬂ.

For y = 0, thus following plane solutions are obtained.

Vs = (:I: 2v-30z72+ \/7407 —dvp, + 12p2 +2¢(x) +2py (=27") )ei”

The graph and the corresponding contour plot of the solutions vy, (x,
t) are shown in Fig. 8, for the values of parameters p; = 1.1, p, = 0.0002,
y = 0.001, ¢(x) = sin(x) and v = 0.001

The graph and the corresponding contour plot of the solutions y,(x,
t) are shown in Fig. 9, for the values of parameters p; =1.1,p, =0.0002,
y = 0.001, ¢(x) = sin(x) and v = 0.001.

The graph and its corresponding contour plot of the solutions y4(x,

80 WV0) Ly 736 — Franh(yT2)?

Vie=| * P!

N (¢(x)p}° — 18472p% + pap!® + 6sqrt — 30p° + p!2 4 48 (¢ (x) (2v/=30) ) )

The constraint condition holds for the following results, when vis putting
in it,

(895 — 6ptp: —6pl(v) — var ¥ @ )

= 68yt
where
ay = —30p12 +130pp!° + 130 (x)pl® — 36 p°p2 — 7128 pach(x) — 36 p3p* (x)

@ = 204V/=30p% + 1632 (¢(x) (2 \/—“3‘0) )2

For y < 0, thus following families of hyperbolic wave solutions are ob-
tained.

(- V=7tanhy/=7z)” | e,

16(1’14415, () (2\/:3‘0))
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or

1

Wi = (ig’“)f, 70) 42V (- oty 7))

L7 (qs(x)p}" — 18478 + pap!® + 65grt — 30p% + p!2 + 48 (¢ (x) (2v/=30) ) )
16(p1*¢ (x) (2V/=30))

— \/=7cothy/=7z7)* ) ev.

For y > 0, thus following periodic wave solutions are obtained.

YVis = (iwgi)i2\/—( \/_tan(\/_z))

1

Y <¢(x)p:° — 184y2p} + pop)® + 6sqrt — 30p% + pi* + 48 (¢ (x )(2v/=30 ) )
16(p1*¢) (x)(2v/=30))

— J/=7tany/=yz)" ) ev,

or

Pl

(//19( MiZ\/—( \/:700t(\/:7/z))2

R (¢(X)pi° — 1847°p} + pap!® + 6sgrt — 30p + pi2 + 48 (4 (x) (2v=30) ) )
16(p1*¢ (x)(2v/=30))

_ \/17(:0t\/:7z)72 ) ev.
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Fig. 8. The 3D plot and the corresponding contour representation of the traveling wave solutions v, (x, t) for different values of parameters.
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Fig. 12. The 3D plot and the corresponding contour representation of the traveling wave solutions y4(x, t) for different values of parameters.
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For y = 0, thus following plane solutions are obtained. The graph and its corresponding contour plot of the solutions v, (x,

v — ( L84 (x)(z/fso) I (¢(x)p}° — 1847°p% + pop!® + 6sqrt — 30p% + pi2 +48 (¢ (x) (2v/=30) ) ) . ) "

pi 16( "¢ (x) (2v/=30))
The graph and its corresponding contour plot of the solutions w4 (x,t) t) are shown in Fig. 13, for the values of parameters p; = 0.9190, p, =
are shown in Fig. 12, for the values of parameters p; = 0.9190,p, = 1000.08,y = 0.005, ¢(x) = e* and v = 0.005.

1000.08,y = 0.005, ¢(x) = e* and v = 0.005 The graph and its corresponding contour plot of the solutions y;4(x,
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Fig. 16. The 3D plot and the corresponding contour representation of the traveling wave solutions y, (x, t) for different values of parameters.

t) are shown in Fig. 14, for the values of parameters p; = 0.9190,p, =
=e* and v = 0.005.

The graph and its corresponding contour plot of the solutions y4(x,
t) are shown in Fig. 15, for the values of parameters p; = 0.9190,p, =
=e* and v = 0.005.
For Case-5: The y,,f,,vare free parameters while along with g, = 0,

1000.08, 7 = 0.005, ¢(x)

1000.08, 7 = 0.005, ¢(x)

fa =07, =0,
11/24¢(x)y—3p} —48vp,y+144pty—408y>+24pry —3¢ (x)p} —3popi X @
7y ~2vp, +6p} +h(x)+p2—8y ’
where

ay = (4¢(x)y +p} — 8vpy + 24ply — 6872 + 4pyy + p(x)p} + pap?)

+4p,p° +2p2pt

Bo=1 / 3 \/ 24¢)(x)y—3p}—48vp,y+144ply —408y> +24pay =3¢ (x)pi —3papi,

For Case-5: The y,, f,, vare free parameters while along with ;= 0,

p=0,7,=0,

Fig. 17. The 3D plot and the
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_ 1/24¢(x)y—3pt—48vp,y+144p2y—408y2+24p,y —3¢(x)p?

—2vp, +6p3 4 (x)+p2—8y

—3pp?xay

a; = (4¢(x)y +pt — 8vpy +24p7y — 687 + 4pay + p(x)pt + pap? )

Bo=1 / \/24¢ (x)y—3pi—48vp -+ 144pty—408y>+24psy =3¢ (x)pi —3papi,

3
v= 1/14p‘}+3p§y+1/14p2p%+1/14¢(x)p} 74y2+1/2q§(x)y+ I/ZpnyTN{56y2¢(x)pf +56%pt

— 4032y +2p% + 567%pp? }

+4¢(x)pS + 4papih(x) +2

(@(x) )P}

For y<0, thus following families of hyperbolic wave solutions are

obtained.

corresponding contour representation of the traveling wave solutions y,,(x, t) for different values of parameters.
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Fig. 20. The 3D plot and the corresponding contour representation of the traveling wave solutions y (x, t) for different values of parameters.
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Fig. 21. The 3D plot and the corresponding contour representation of the traveling wave solutions y,(x, t) for different values of parameters.
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Fig. 22. The 3D plot and the corresponding contour representation of the traveling wave solutions y,(x,t) for different values of parameters.

or

Yoy = { + 1/3 \/24¢(x)3/ = 3p} — 48vpy + 144ply — 4087> + 24pyy — 3(x)p — 3papi

L L V24¢()y = 3p] — 48wp,y + 144piy — 408y* + 24poy — 34()pi
9 —2vp, +6p7 + ¢(x) +p2 — 8y

-3 2 . )
P8 (- v eonly=72) }
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For y= 0, thus following plane solutions are obtained.

Wos = { + 1/3 \/24(/’()‘))’ —3p} —48wpy + 144piy — 408y + 24pyy — 3¢(x)pt — 3papi

1\/24¢(x)y —3p} — 48vp,y + 144ply — 40872 + 24p,y —3¢(x)pt —3popt x i, . | 4
+< 5 (—272) pe
9 —2vp, +6pi +¢(x)+172—87

The graph and its corresponding contour plot of the solutions y, (x, y= % (12¢(x);4 —3¢p(x)A2 + 18p22* = 3pyp? + 12pou — 3pad?
t) are shown in Fig. 16, for the values of parameters p; =0.1,p, =2,y = 6(4u = 2)pr
0.005, ¢(x) = sin(x) and v = 0.009 +3 = 72piu+3pt + 3P

The graph and its corresponding contour plot of the solutions y, (x, — (9= 18pap? + 18 (x)p? + 484 (¢ (0)* — 1222(¢ (x))* — 18p°ps

t) are shown in Fig. 17, for the values of parameters p; =0.1,p, =2,y =
0.005, ¢(x) = sin(x) and v = 0.009.

The graph and its corresponding contour plot of the solutions y,3(x,
t) are shown in Fig. 18, for the values of parameters p; =0.1,p, =2,y =
0.005, ¢(x) = sin(x) and v = 0.009.

The graph and its corresponding contour plot of the solutions y,4(x, VTT28p2patt — 54> + 2304 p i+ 90p" pr — 54h(x) +  + 648 (x)ap
t) are shown in Fig. 19, for the values of parameters p; =0.1,p, =2,y = A= - 3(x)+ 87 +3ps )
0.005, ¢(x) = sin(x) and v = 0.009.

1/2
+9pH(B(x))* + 1859 () + 9pip +9p} — 18pig(0p: + 18p1) 7 )

The constraint condition holds for the following results, when vis putting
in it,

where
Using (%) -expansion method

ar = 1728 p(x)up} + 324 pyu — S4pip(x)* — 144p5 +54p3p] — 12(¢ (x) )* — 144} + 324 (h(x) ) — 198 pjp(x)

The solution of Eq. (5) has the formal solutions of the following form.

Differentiating Eq. (7) w.r.t zand then putting G (2) + AG (2) + uG(z) =

(i) When 42 —4yu > Othus following hyperbolic solutions are obtained.

(ii) When 42 —4y < Othus following trigonometric solutions are ob-
tained.

(1) = \/72¢(x) +4vp, —2py + 12p2 (3¢(x)/1 — 18p3A — 6vp, A+ 3psd — 2¢/(x
= 64(x) — 12vp, + 6p> — 3697

))+\/—21/)(x)+4vp1—2p2+12pf X (—;

®

P ap Acosh(z/ZM)+Bsinh<z/2m> »
T \dsinn (/27— an) + eon(s /27 —an) ) ) |

0.

V=2 (xX)+4vp, —2pr+12p7 (3 (x) A—18p2A—6vp, A+3p2A—2¢) (x))
6¢)(x)—12vp,+6p,—36p}

following algebraic equations. For Case-1: The vis free parameter while

After equating each coefficient equal to zero, this yields a set of
wy(x t)—{

along with g, =0, p; = i\/—2¢(x) +4vp, — 2py + 12p3,

Po==%

V=20 () F4vp, —2p, + 1293 (3(x)A— 18p2 2 — 6vp, A+3pa 224 (x)) +\/—2¢(x)+4vp1—2p2+12pfx (_%

6¢)(x) —12vp, +6p, —36p}
P ~Asin (z / 2\/m> +Bc0s(z / 2\/,12—4,4) )
‘ 2 ( Acos (Z/Z\//lz_:étﬁ)+35in<z/2\/ﬂ274ﬂ) )) }Xe

)

(iii) When 42 —4u = Othus following plane solutions are obtained.

12
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Real(y)

Fig. 23. The 3D plot and the corresponding contour representation of the traveling wave solutions y(x, t) for different values of parameters.
W, (x, 1) = ( _ % + ) x &P (10) The graph and its corresponding contour plot of the solutions y; (x, t) are
A+ Bz shown in Fig. 20, for the values of parameters p; = 700, p, = 0.0008,
A=0.05,4 =0.001,A = 0.001,B = 50, ¢(x) = sin(x) and v = 0.02
The graph and its corresponding contour plot of the solutions y (x, t)

where
In particular, if A»0Oand B # 0 and 1 > 0 then the solution Eq. (8)

1

I=x————— (12¢(x);4 —3p(X)A* + 18p2A% — 3popt + 12pop — 3py2> +3 — T2pu + 3p} + 3 (x)p3
6(4p —2%)p:
’ 1 1/2
— (9= 18p2p} + 18 ()57 + 481 (¢ () — 12228 (x) )" — 18pip2 + 9p}((x) ) + 18p{b(x) + 9pipd + 95} — 18pip(x)ps +18p1) " e

are shown in Fig. 21, for the values of parameters p; = 700, p, = 0.0008,
4 =0.05,4 = 0.001,A = 0.001, B = 50, p(x) = sin(x) and v = 0.02.

The graph and its corresponding contour plot of the solutions , (x, t)
are shown in Fig. 22, for the values of parameters p; = 700, p, = 0.0008,

converges to
A=0.05,4 =0.001,A = 0.001,B = 50, ¢(x) = sin(x) and v = 0.02.

(et)= V=20 (x)+4vp, —2p,+12p7 (3(x)A— 18p3 A—6vp, A+3p2A—24 (%))
vl 6(x)—12vp,+6p,—36p]

VA —4p z /5
—————tanh(-4/A"—4
<2 ,u) For Case-2; The v is free parameter while along with g, =0, f; =
49 ()4 / 20 £

+\/—2q‘)(x)+4vp1 —2p,+12p} <—2+ 2
1\/—204 g, — :
an 5 4072 7 (~6072+80 )¢ (x)+254 (pr*+1—papt +(x)p3 ) )’

_ =30p2 A+ S5p(x)A+ 5prd — 24 (x)
- 10p4
The constraint condition holds for the following results, when v is

xe’.

)

Also, if B>0and A # Oand A > Othen the solution Eq. (8) converges to
()= V20 (x)+4vp,—2pr 4127 (3 (x) A—18p A—6vp, A-+3p2A—24 (%))
Vsinh= 66(x)—12vp,+6p,—36p7

2_
AV G\ /12—4;;)) } 24 ()
A= T 40p% + 15¢(x) + 15p,

+\/—2¢(X)+4VP|—2pz+12pf< A
(i) When 42 —4u > Othus following families of hyperbolic solutions

putting in it,

(12)

xe.

Fig. 24. The 3D plot and the corresponding contour representation of the traveling wave solutions y, (x, t) for different values of parameters.
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are obtained.

2

NENETE 2 7 —an Acosh(l/%ﬂ)+Bsmh<1/zz\/m)
ws(x, 1) = 5 7 -5t 2 Asinh(l/zz\/m>+Bcosh<l/2Z\/m>

2

e, (2 Acosh(1/22/7=ap ) + Bsinh (1 /227/7F = 4p ) o , )
+8¢ (x) Tl( R (Asmh( /zzm)+3c03h( /zzm) ((—604% +80u)¢ (x) +254 (p1* + 1
—ppt Hppt)) " p x el 3

(iii) When 42 —4u = Othus plane solution are obtained.
If A—»Oand B # Oand 4 > Othen the solution Eq. (13) converges to

A B )
Wo(x, 1) = <—*+ > x e a7
; 2 A+Bz
2 [=5¢(x) [ A A —4pu 2
We(x,1) = {5 — f§+ 5 % tanh 22\//1 —4pu +
where
, —5¢ (x) 2 2 —du > z e <730pf/1+5¢(x)/1+5p2/172¢,(x))t 18)
8¢ (x) p A —E+ > tanh Z\//l —4u b4 10p17
g -1 i The graph and its corresponding contour plot of the solutions y (x, t) are
—604* +80u) ¢ (x) + 254 (pi* + 1 — pop? + p(x)p? x e?. grap p g p We (X,
(( me (x) (P 2P} @rt)) } shown in Fig. 23, for the values of parameters p; = 0.7,p, = 0.008,4 =

(4 0.05,4=0.09,A =10,B = 0.005, $(x) = sin(x) and v = 0.2

The graph and its corresponding contour plot of the solutions y, (x, t)
are shown in Fig. 24, for the values of parameters p; = 0.7, p, = 0.008,
2 =0.054=0.09,A =10,B = 0.005, $(x) = sin(x) and v = 0.2.

For Case-3: The p, is free parameter while along with g, = f,, f, =

o) = {§ —5(2}(}0( 2y LV P —4p tanh( /2 )) } 0, f = —2 ¢(x)—2v;;}—6p{+p2’

Also, if B0 and A # Oand 1 > O then the solution Eq. (13) converges
to

0

1
e T v= ————(362%2(p(x) )} — 4324 ((( = 1/12p1 — 1/6ps + p?)4
8¢ (x) 5? (x)/l(—%—k A 5 i coth( /A — > ) 24}””17‘( I
=1/36p1 ) —1/12p1 By Jup(x) — 48Aup1dp (x),
((— 6047 +804) ¢ (x) + 254 (pr* + 1 — pap? + () I}Xeip. +1296 ((( = 1/12p; — 1/6ps +p2)A— 1/36p; ) — 1/12p, 3, )’
12
(1s) +64u(x) + (= 3p1 +6p2 —36p}) 2 —p1 Ju=3pipy ) -
(ii) When 42 —4u < Othus following trigonometric wave solution are
obtained. The constraint condition holds for the following results, when vis
1) 2 75¢'(x) 1 \/——2 —Asin(l/sz/4ﬂ—/12)+Bcos(1/21\/4u—/12>
WX, 1) =4z - =+ 4,“ -2
' 5 4 2 Acos(l/ZZ\/4ﬂf/12)+Bsin<1/21\/4y722>
2
, —5¢/(x) 2 . 7Asin(l/2z\/4/47/12)+Bcos(l/2z\/4ﬂ7/12) B ) ,
+8¢ (x) T TtV Ak A = : = ((— 604> +80u)¢ (x) + 251 (p
Acos(l/Zz\/4ﬂ iy} ) +Bsm(1/2z\/4,u iy} )
1= pop? +dp)pt)) " b x e (16)
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putting in it,

pi(8upt +9p(x)By + 20 (x)f, +24p2By + 9pafy + 3u(x) +3upy )

A= — .
3u (8P} +24p3 +32p} +24(h(x) ) + T6papt + 3h(x)p1 + 48 (x)p2 + T6(x)p} + 3pip2 )

(i) When 42 —4u > 0 thus following hyperbolic solutions are obtained.

2

Asinh(l/Zz \/m)Jchosh(l/Zz\/m)

Wio(x: 1) = § Po — x €. 19)
By
If A0 and B # 0 and A > 0, then Eq. (19) becomes
2
2(p(x) —2vp, —6p% +p2) ( L (tanh(% VZS —4;;) ) >
Wi (1) = q Po— x e (20)
Po
Also, if B»0and A # Oand A > 0, then Eq. (19) becomes
2
2 (p(x) —2vp, —6pF +p2) ( —iq4 7@ (coth(% /22— 4;4) ) >
Vi1 =96 — x eP. 2D

Po

(ii) When 4% —4u < Othus following traveling wave solutions are ob-

tained.
2
_ ) 2 Y —asin(1/221/4p—22 ) +Beos(1/22/4p-2)
2(¢(x) 2vpy = 6pi +p2) ( 2t VaR—4 (Acos(l/Z:\/éw/12)+Bs'm(l/27,\/4y12)
wis(x 1) = B — x e”. (22)
Bo
(iii) When 42 —4u = Othus plane solutions are obtained.
A B .
= —— P
Wis(x,1) ( 2+A+BZ> xer. (23)
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where

1
ST 24,

Results in Physics 27 (2021) 104369

(3622ﬂ2(¢(x) Y = 4324 ((( = 1/12p1 = 1/6p; +p2) A — 1/36p1 ) u — 1 /1213y ) up(x) — 48 Apprdp (x)B, + 1296 ((( — 1/12py — 1/6ps

12
+p1)A—1/36p) )u—1/12pB, )2+6l/4¢(x) + ((=3pi +6p —36p1)A—pi )u — 3P1ﬁo) Xt.

Remark

Since the relation between ¢ and y is the defined in Eq. (1), so using
the definition of A operator. The value of ¢ can be obtained by twice
integrating to |y| w.r.t space variable for above each solutions y;, where
i=1,23,...,25.

Conclusion

In this article, the diverse exact traveling wave solutions are obtained
in the form of hyperbolic, trigonometric and plane wave families. The
system under investigation is the Schrodinger—Poisson system which has
applications in gravity’s role of quantum state. The solutions are con-
structed using two norms of integration MEDA and (G’/G)-expansion
techniques. The constraints conditions for the existence of solutions also
emerged during the derivation of solutions. The 3D graphs and their
corresponding contour graphs are also being plotted by the proper
choice of parameters. The results are new and helpful to compare with
numerical results.
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