DE GRUYTER

Open Physics 2020; 18: 897-905

Research Article

Hassan Khan*, Saima Mustafa, 1zaz Ali, Poom Kumam*, Dumitru Baleanu, and

Muhammad Arif

Approximate analytical fractional view of
convection-diffusion equations

https://doi.org/10.1515/phys-2020-0184
received June 05, 2020; accepted August 27, 2020

Abstract: In this article, a modified variational iteration
method along with Laplace transformation is used for
obtaining the solution of fractional-order nonlinear con-
vection—diffusion equations (CDEs). The proposed tech-
nique is applied for the first time to solve fractional-order
nonlinear CDEs and attain a series-form solution with the
quick rate of convergence. Tabular and graphical repre-
sentations are presented to confirm the reliability of the
suggested technique. The solutions are calculated for
fractional as well as for integer orders of the problems.
The solution graphs of the solutions at various fractional
derivatives are plotted. The accuracy is measured in
terms of absolute error. The higher degree of accuracy
is observed from the table and figures. It is further inves-
tigated that fractional solutions have the convergence
behavior toward the solution at integer order. The applic-
ability of the present technique is verified by illustrative
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examples. The simple and effective procedure of the cur-
rent technique supports its implementation to solve other
nonlinear fractional problems in different areas of ap-
plied science.
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transform method, Mittag—Leffler function

1 Introduction

Fractional calculus (FC) is the branch of mathematics
which can be used to analyze various problems in science
and engineering more accurately as compared to or-
dinary calculus. In the last few decades, significant in-
terest has been shown by the researchers to FC in dif-
ferent areas, such as edge detection, electromagnetic,
engineering, viscoelasticity, electrochemistry, cosmology,
turbulence, diffusion, signal processing material science,
physics and acoustics. Many other problems in applied
sciences are modeled by fractional-order partial differen-
tial equations (PDEs) [1-3]. Various dynamical systems
in physics and engineering are also modeled by using
fractional-order differential equations. A number of re-
searchers have contributed a lot to provide an outstanding
history of fractional-order derivative and integration op-
erators such as Caputo [4], Yin et al. [5], Rashid et al., Arife
et al. [6] and Oldham and Spanier [7].

Over the last decade, the study of nonlinear PDEs
modeling different physical processes has become a sig-
nificant tool. Nonlinear processes are of fundamental
interest in the diverse fields of science and engineering.
Most of the nonlinear phenomena are the best represen-
tations of our real-world problems. Fractional PDEs
are important mathematical models which can model
many complicated phenomena more accurately in var-
ious areas of sciences such as diffusion equations [8],
heat equations, wave equations [9], telegraph equations
[10,11], local fractional dissipative and damped wave
equations [12], time-fractional Zakharov-Kuznetsov
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equation [13], nonlinear Schrodinger equation [14],
homogeneous Smoluchowski’s coagulation equation
[15], third-order dispersive fractional-order PDEs [16],
Kortewege—De Vries equations [17], local fractional
transport and Fokker Planck equations [18,19], nonlinear
predator—prey biological population dynamical system
[20], fractional wave equation and dynamical model
[21,22], fractional-order Helmholtz equations [23] and
Navier—Stokes equation [24].

In this article, convection—diffusion equations
(CDEs) of fractional-order are solved by the homotopy
perturbation method (HPM) and variational iteration
technique along with Laplace transform (VHPTM).

by o

—_— -Cc— + ) + 8(x, t),
of - o o o) + g(x, )
O0<x<1l, 0<B<1l, t>0,
initial condition is
v(x, 0) = f(x),

where ¢(v) is a sensible nonlinear operator, that is se-
lected as an energy capacity, ¢ is a constant parameter
and B representing the time fractional-order derivative.

The CDE is a mixture of the equations of diffusion
and convection (advection) and explains physical phe-
nomena in which particles, electricity or other physical
quantities are transmitted within a physical structure
through two procedures: convection and diffusion. The
CDEs are commonly used as mathematical models for
computational simulations in engineering and science,
for example, in models of oil reservoirs, mass and energy
transport and worldwide climate manufacturing, where
the originally discontinuous model is reproduced by dif-
fusion and convection, the latter at ¢ velocity. Depending
on the situation that the same equation can be named the
CDE or drift-diffusion equation and fractional diffusion
equations and anomalous diffusion [25,26].

Fractional-order CDEs (FCDEs) are the extended
form of ordinary CDEs. FCDEs can express physical pro-
blems more accurately as compared to ordinary CDEs. In
this regard, the numerical and analytical solutions for
FCDEs are the focus point for the researchers, and there-
fore different techniques have been established such as
adomian decomposition method [27], Sumudu transform
method and homotopy analysis transform method were
used by Singh et al. [28]; HPM was applied by Yildrim
and Momani [29]; variational iteration technique was
used by Merdan [30]; and Irandoust-pakchin et al. suc-
cessfully implemented the flatlet oblique multiwavelet
and found a mathematical approach for the class of
FCDEs [31].

DE GRUYTER

The VHPTM is a mixture of three techniques, namely,
HPM, variational iteration technique and Laplace trans-
form (LT). VHPTM [34-39] is a hybrid technique and
carry the beneficial features of both HPM and varational
iteration method (VIM) and is very consistent with var-
ious physical problems. The proposed technique pro-
vides the closed and series-form solution having easily
computable and convergent terms [40].

2 Basic concepts
2.1 Definition

LT of g(t), t > 0 is denoted as [42]

(o]

Q) = LIg®)] = Je‘s‘g(t)dt.

0

2.2 Theorem

LT in the forms of convolution [42]

Llg x &l = Ligi(t)] x L(g(H)],

where g, x g, defines the convolution between g, and g,,

T
@ x &)t = [gmelt - nd.
0
LT of the fractional derivative

n-1
LDFg(t)) =sPQ(s) - Y sP1kg®(0),
k=0
m-1<fB<m,

where Q(s) is the LT of g(t).

2.3 Definition

The Riemann-Liouville definition of fractional integral is
(34]

1

IB =
x8(x) )

I(X - 5)P-1g(s)ds,
0

where

[e¢]

B = J‘ef"xﬁ*dx, B ecC.

0
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2.4 Definition

The Caputo definition of fractional derivative of order f is
given as follows:

oPg(t)
oth

[mfﬁ[aggt;”}, if m-1<pf<m,meN,

Dbg(t) =

dbg(t)
otk

with the following properties

IPI%g(x) = IP*9g(x),
T'A+1)
I'y+A+1)

m-1
Zg(k)(o*)—
k=0

for x>0,m-1<B<m.

a,fp=0.

IBx = xFA B >0,1>-1,x> 0.

I°DPg(x) = g(x) -

3 General implementation of
VHPTM

To illustrate the basic principle of VHPTM [34,35], we
consider the following equation:

DPu(x, t) + Ru(x, t) + Nu(x, t) = g(x, t), o))
with the initial solution
v(x, 0) = g(x),

where the linear and nonlinear terms are represented by
R and N and inhomogeneous term is g(x, t).
Applying LT to equation (1), we get

u(x, t)
8 p-1-k 9 VX, 1)
sBE{u(x, t)} — Zs i .
= —f£{Rvu(x, t) + Nu(x, t) — f(x, t)}.

Using the variation iteration method

£uja(x, O} = £{ui(x, O} + AS) [sPE{(x, t)}

m-1

k
-y ek EVOD T g b))
k=0 o't t=0
+ NU(X, t) _f(X’ t)}]’

where A(s) = ;—; is the Lagrange multiplier [35].
Applying inverse LT to equation (2)
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Vi, t) =vj(x, t) - E‘l{iﬁ{sﬁﬁ{vt(x, )}
S

ZS” v, )

N + E{Ru(x, £) (3)

t=0

+ Nu(x, t) - f(x, t)}H-

The basic HPM approximation is

v(x, t) = prv,-(x, t) = Vo + pus + p?vs + PPUs + -, (4)

j=0
and the nonlinear functional can be written as

(e¢]

Y PHW). (5)

j=0

Nu(x, t) =

‘H; is He’s polynomial,

Hi(vo + v1 + -+ ) = F apl{ [lz(:)p vlﬂ (6)

VHPTM solution of equation (3) along with He’s polynomial is

S vt 0 -y P, 6 + £ ﬁ{sﬂﬁ{Zp’—%x s)
j=0 j=0
+ YPIRY(x, 6) + Y PIH ) - fx, t)H .
j=0 j=0
@)

The coefficient resulting from powers of p.

UO(X’ t) = g(X)’

aUO

3 (x,s)

vilx, t) =vo(x, t) + E‘{iﬁ{sﬁﬁ{
s
(8)

+ Rug(x, t) + How) - f(x, t)}H.

Equation (8) represents the generalized scheme for
VHPTM to solve fractional PDEs.

4 Numerical examples

4.1 Example 1

The nonlinear homogeneous CDE of fractional order is

W
af  ax?

O0<x<l,

v@ -vi+u
x2 ’ 9

0<B<1, t>0,
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with boundary conditions

v(0,t) =e', u(l,t)=e, (10)

and initial condition

v(x, 0) = e*.

(11)
For the following fractional PDEs, the functional correc-
tion is given by

Vji(x, ) = v(x, )+ E‘l{}l(s)ﬁ{sﬁg_l:(x, t)

621)]' an
- ﬁ(x’ ) + a—X(X, t) (12)
o%;
- Ui(X’ t)ﬁ(x, t) + U]-2(X, t) - U]‘(X, t)}:|’

where A(s) is the Lagrange multiplier
-1
/\(S) = ? .
Using He’s polynomial, equation (12) can be written as:

Poui(x, t) + plua(x, t) + pPus(x, t) +--

= ) Py, t) - E{ﬁﬁ{sﬁ[p"% s p2

= a Dot
v p°ov % %
29Y1 ) 0 o 2 2
TP atj ( w P TP e
v v v o
o YYo 1 2 9V2 0 0
—_— _ JR— e - U
+(p x P TP T ] {p o2

+plv o +v 9o + p?lv 9o +v
o2 Vax? iz

+ } + (poug + pQRuguy) + p2(2U0U2

+ v
 ax2

+0f) ++) = (%o + pus + PPV, + )H (13)

Comparing the coefficients of the same power of p, we get
vo(x, t) = e*

Poui(x, t) = pPuo(x, t) - E{iﬁ {pos —

0% v 3
e P TP TP p”m
tB
vi(x, t) = ¥ + eX ,
rg+1
1 v o
lu,(x, t) = plugx, t) — £ =£{plsf—2 — pl—2L
P O = pute 0 L/’{p o P o
2 2
wl% —pl[vo—%;; + U 6;;20 + p'2vo01 —plvle,
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tB t28
+ eX ,
rg+1 r'eg+1)

va(x, t) = e* + e¥

p?us(x, t) = p’uy(x, t) — £7 iﬁ{pzsﬁ%
sk ot
% v %
2 2 2 YYV2 2 0
-pr—x, t)+p-—=(x, t) — Uy ———
p ax2( )+p ax( ) p(zaxz
62111 azl)z 5
+U;——=+VUg——|+p*QRuo(x, Hv(x,
132 oaxsz(o( Juilx, )
2 2
+U7(x, £)) = p7ua(x, t)H,
th t2
vs(x, t) = eX + eX + eX
rB+1 g +1)
3B
reg+1)
R ey —_—
cvilx, t) = eX———.
LG TGB + 1)
The VHPTM solution of Example 1 is
B 28 38
vix,t) =eX|1+ ¢ + t + t
rg+1y TEB+1) TGEB+1)
; (14)
po VB
LGB +1)

The series obtained in equation (14) at § = 11is as follows:

[ S o
v(x, t)=e"[l+t+—+—+—+-~} (15)
20 31 4]
The actual solution is
v(x, t) = extt, (16)
4.2 Example 2
The nonhomogeneous nonlinear fractional CDE is
Py w o)
otF  x?  ox ot ox? ’ 17)
O0<x<1l, 0<fB<1, ¢t>0,
with boundary conditions
v(,t)=2t, v(d,t)=1+2t, (18)
and initial condition
v(x, 0) = x2. (19)

For the following fractional PDEs, the functional correc-
tion is given by
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oB
Vjn(x, t) = vj(x, t) + E‘I{A(S)E{?Z(x, t)

Oy ;
™ 50+ —(x, t)

)
at (U](X, t)—- (x, t)} + ZXH

The Lagrange multiplier is

(20)

A(s) =

Using He’s polynomial, equation (20) can be
written as

Poui + pluy + pPus + -

= ) plyx t)

j=0
1 oV o o
— E_l —£ sﬁ[ 0_0 + _1 + 2_2)
Lﬁ { Pooe P TP
% % , 0%
| pP=—= 4+ p—L s p?—2 +.
[p ox2 pax2 v’ B ] 21

0o | Oup 500 j
( ox pax TP ax+

_ E aZUO azvl 621)0
ot ox? ox? ox?
% % %
+P2[U2 ax20 Ula—zl + U axzzj + } + ZXH

Comparing the coefficients of the same power of p, we get

vo(x, t) = x?,
1 K1Y %
0 ,t= 0 ,t—E_l O—E poY0 0
Pouilx, t) = pPvo(x, t) {p " {s = o
2
+%—i anuo + 2|,
ox ot ox?
vix, t) = x2 + (2 - 4x)
1 F(ﬁ
o %
lu,(x, t t sh—L L
p'ua(x, t) = plus(x, t) - { %
2
+%—— a— ulavo +2x¢ |,
ax ot ox? ax?2
t2
va(x, t) = x2 + (2 - 4x) +4
(ﬁ +1) 2B +1)
28-1

- 4x(3x - 1) e
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1 v % v
205(x, t) = pPug(x, t) — £ p2—gisp2 222 T2
pus(x, t) = p*ui(x, t) {p v { o 3G o

J azl)o azul aZUZ
_ &{Uzﬁ + Ul? + on} + 2X}:|,
0 =x2+@-a)—L 4t
PO E =X T T ey T T 1)
) tZﬁ—l tBﬂ—l
-G )r<213> BRTET)
a1 -1 - 362
e )Wﬁ)_l‘x( RCTE
37 —
_8(1 - 20) B + 1t¥h-1 . Xt3ﬁ 1
IGA)T(B + 1)) I'(3B)
8x2(1 e
+ 8x4(1 - 3X)m,

Therefore, obtained analytical result in the following
form:

th %
vix,t) =x2+ (2 - 4x) 4
rB+1 I'2g +1)
tZﬁ—l t3/3—1
—4x(3x - 1) -
I'(2B) I'GA)
a6x + DL - — o
o )F(ﬁ)_ Aoy @
8- 20 T(2B + 1)1 " 361
I'GB) TP + 1)) I'3B)
81— 30—
+ 8x4(1 - X)F(B,B—l) +
The exact solution of § =1 is
vix, t) = x2 + 2t. (23)

5 Discussion on graphs and tables

In this section, the graphical representation and analysis
are discussed to highlight the novelty of the present re-
search work. In this connection, Figure 1 shows the solu-
tion graphs of actual and VHPTM solutions at § = 1.
Figure 1 reveals that the graphs of both solutions are
very close and confirms the higher efficiency of the sug-
gested technique. In Figure 2, the solutions at different
values of f are calculated and a very committed relation
can be seen among the solutions of example 1. The error
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Figure 2: 3-D plot of VHPTM solution of example 1 at different
fractional orders g = 0.5, 0.6, 0.8, 1.

Table 1: VHPTM and HPM [28] solutions of example 1
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Figure 3: VHPTM solutions of example 1 at different fractional orders
B =0.5,0.6,0.8,1.

graph is presented in Figure 3, which shows that the
accuracy of the suggested method is sufficient. The re-
sults of example 2 are presented by graphs in Figures 4
and 5. The sub-plots in Figure 4 express the actual and
VHPTM results and are shown to be very close in relation.
Various fractional behaviors of the model given in ex-
ample 2 are displayed in Figure 4. The values of beta =
0.6 and 0.8 are used for graphical representation of the
derived results. Besides the graphs, Table 1 is used to
compare the results of VHPTM and VIM. The overall, gra-
phical and tabular analyses have justified the accurate
and effective implementation of the present technique
(Figures 6-8).

VHPTM HPM Exact Error

x B =0.50 B =0.75 B=1 B=1 B=1 =1

0.0 4.934171 3.484061 2.718253 2.718155 2.718281 2.78 x 107
0.2 6.026610 4.255441 3.320082 3.320840 3.320116 3.40 x 107°
0.4 7.360918 5.197608 4.055158 4.055862 4.055199 4.15 x 107
0.6 8.990646 6.348373 4.952981 4.952820 4.953032 5.07 x 10~
0.8 10.98120 7.753920 6.049585 6.049543 6.049647 6.20 x 10~
1 13.41246 9.470660 7.388980 7.388441 7.389056 7.57 x 107
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0.00005—|

0.00004—]
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0.00001—|

Figure 4: VHPTM-error plot of example 1 at 8 = 1.

Figure 6: VHPTM solution plot of example 2 at 8 = 1.

Figure 5: Exact solution plot of example 2. Figure 7: VHPTM solution plot of example 2 at 8 = 0.8.
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Figure 8: VHPTM solution plot of example 2 at 8 = 0.6.

6 Conclusions

In this article, an efficient technique is used to solve
FCDEs. The proposed technique is the mixture of the var-
iational iteration method, HPM and LT method. The non-
linear terms in the targeted problems are expressed in
terms of He’s polynomials. The suggested hybrid method
has an easier and straightforward procedure to obtain
the solution of fractional problems. For understanding,
some numerical examples are solved to determine the
reliability and applicability of VHPTM. The obtained re-
sults are plotted by using its graphical representation.
Through graphs, a very strong relation is shown between
the actual and VHPTM solutions. The fractional solutions
are plotted to show the behavior of various dynamics of
the given physical phenomena. A sufficient rate of con-
vergence of the fractional solutions toward integer order
solution is achieved. The higher rate of convergence
is achieved by using Laplace Homotopy Perturbation
Transform Method (LHPTM). In conclusion, the current
method has simple and straightforward implementation
to attain the actual solution, and therefore VHPTM is
preferred to solve other nonlinear fractional problems
in various areas of applied science.
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