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1. Introduction

In 1695, the foundation of non-integer order calculus become first of all discussed through
Guillaume de Leibnitz and Gottfried Wilhelm Leibnitz, and its development were very gradual for
long period. In practice, many real-world objects need to be described by fractional order models due
to the fact dynamics of fractional order models are more accurate than integer order models [14–18].
Currently, fractional order calculus has been very promising areas of research and thus successfully
applied in numerous fields such as circuit systems [9], market dynamics [21], biological models [26],
dielectric polarization [28], and so on. Recently, many researchers have investigated asymptotic
behavior of fractional-order dynamical systems and some interesting and important results were
accounted. In [12], the authors discussed the asymptotic stability of fractional order time delayed
systems based on the fractional order Halanay inequality. In [33], the author studied the global
asymptotic stability of Caputo-Liouville generalized fractional order electrical RLC circuit model
based on the Lyapunov stability theory.

Moreover, fractional order calculus has been integrated into artificial neural networks, and
fractional order neural network (FNNs) are a kind of potentially applicable networks. In past few
years, there has been an increasing interest in the investigation of dynamical behaviours of neural
networks, and some important scientific results were obtained [4–7, 37, 39]. In [1], authors discussed
the stability and synchronization of memristive FNNs with multiple delays, comparison principle, set
valued maps and the Lyapunov function method were utilized to assure the stability and
synchronization of memristive FNNs. In [7], synchronization with discontinuous activation have been
discussed. Differential inclusion theory, Lyapunov stability theory and some novel sufficient criteria
were applied to ensure the finite-time stabilization for the addressed model. In [42], authors studied
the stability of fractional-order multiple time varying delayed competitive type neural networks. By
means of Lyapunov method and graph theory techniques, some novel conditions were derived to
achieve global asymptotic stability for the addressed model. In [43], authors studied the
synchronization of FNNs in complex field. Based on the fractional comparison theorem, some novel
conditions were obtained to achieve asymptotical synchronization for the addressed model.

Over the past few years, a lot of consideration has been paid to complex systems in light of their
potential applications to different fields such as metabolic systems, communication networks, global
economic markets, and so forth, and lots of significant results about the synchronization analysis of
complex networks with fractional order derivative have been extensively investigated, see
instance [22–24, 31, 40]. As is known to all, coupled neural networks (CNNs) is a generalization of
complex networks. Due to widespread applications in many research fields like classification [2],
harmonic oscillation generation [11], pattern recognition [36], image encryption [47] and secure
communication [48], a complex structure on CNNs has been broadly investigated by many
researchers, see example [41, 44, 47]. Yanli et al. [44] researched generalized synchronization on
integer order CNNs with mismatched dimension nodes, which ensured that pinning synchronization
can be acquired by means of some inequality techniques and Lyapunov theory. Regrettably, there are
few results focused on synchronization of complex coupled neural networks with fractional order
derivatives, for instance [32, 34, 46].

In reality, the presence of external disturbances, environmental noises and model errors in many
practical circumstances, the correct estimations of parameters in fractional order CNNs are usually

AIMS Mathematics Volume 6, Issue 3, 2844–2873.



2846

cannot be acquired. Therefore, it is necessary and significant to research the fractional order CNNs
with uncertain parameters and very few consequences on studies were paid. For example, by means
of Kronecker product, Mittag-Leffler function and Lyapunov stability theory, Shuxue et al. [34]
considered several synchronization conditions which can ensure the asymptotical synchronization of
complex structure on fractional order CNNs with uncertain parameters and without time delays. On
the other hand, time delays are not omitted into the dynamical behavior of neural networks, which can
lead to the system oscillation, instability behaviors and divergence owing to the finite switching speed
of amplifiers. Therefore, it is much more important to consider time delays in studying in
investigating synchronization of fractional order CNNs and some remarkable results on this topic
have been paid in existing literature. For example, Zhang et al. [46] researched synchronization
stability of fractional order complex CNNs with coupling delays and several conditions to ensure the
synchronization stability of complex CNNs were established based on Riemann-Liouville fractional
order derivative properties, LMI approach, and Lyapunov theory.

Cohen-Grossberg neural networks (CGNNs) is a standout amongst the most renowned type and
its special case of Hopfield type neural networks, which became first of all originated by means of
Cohen and Grossberg in 1983 [3]. In recent years, CGNNs have received growing attention due to
their widespread application in different areas, such as secure communications, nonlinear optimization
problems, image processing, and parallel computation. As a type of FNN, fractional order CGNNs
dynamical behavior has been extensively investigated by many researchers and some excellent results
have been devoted to fractional order CGNNs, see Ref [30, 38]. On the other hand, the result of
complex coupled Cohen-Grossberg neural networks is more complicated and unpredictable dynamical
behaviors than different forms of CNNs. Owing to the complex structure of CGNNs, there is few
works published on synchronization analysis of coupled CGNNs [35,45]. The authors of [35] proposed
some criteria to ensure the synchronization criteria in finite time issues of integer order CGNNs with
linear coupling delays and nonlinear coupling delays. In [45], the authors derived several criteria
which can guarantee the synchronization criteria in fixed time issues for integer order CGNNs with
delayed couplings. To the best of our knowledge, nevertheless, asymptotical synchronization stability
of fractional order coupled Cohen-Grossberg neural networks with and without parameter uncertainty
has not yet been investigated.

Sparked by the above reason and discussion, the main aim is to study the synchronization stability
analysis of fractional order coupled complex interconnected Cohen-Grossberg neural networks under
with and without parameter uncertainties under linear coupling delays. The main contributions of this
work are indexed as pursues:

1). The complex interconnected fractional order coupled Cohen-Grossberg neural networks model
with and without parameter uncertainties are presented in the first time.

2). By using fractional-order stability theory, a new fractional-order comparison theorem for multiple
delayed fractional order linear system is established and it is improved those in the existing works
literature.

3). Several sufficient criteria in voice LMI techniques for synchronization stability and robust
synchronization stability are established theoretically via proposed fractional order comparison
theorem.

4). Our proposed synchronization stability results are enhancing the present fractional order Cohen-
Grossberg time delayed neural networks and integer-order coupled neural networks.
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5). Moreover, the presented results in this paper are also still valid for the synchronization stability
of delay-coupled integer order complex Cohen-Grossberg neural networks with and without
parameter uncertainties, and these results do not discuss in the previous works of literature.

Notations. In this paper, N signify the space of natural numbers from 1 to n, Rn stands for the space
of n-D Euclidean space, respectively, and Rn×n stands for a set of all n × n real matrices. ⊗ means the
Kronecker product of two matrices. λM(·) and λm(·) denote the maximum and minimum eigenvalues of
the corresponding matrix. In represent the identity matrix with n dimensions. C([−δ, 0],Rn) signifies
the set of all continuous functions from [−δ, 0] to Rn, where δ > 0. For m(t) = (m1(t), ...,mn(t))T ∈ Rn,
we denote

‖m(t)‖2 =

√√
n∑

l=1

m2
l (t).

2. Preliminaries and problem model formulation

In this part, some basic knowledge of fractional order calculus, some useful lemma’s, problem
statement and some necessary assumptions will be given.

Definition 2.1 [29] The Riemann-Liouville fractional integral order α ∈ (0, 1) for a function M(t) is
defined as

D−αt0,tM(t) =
1

Γ(α)

∫ t

t0
(t − θ)α−1M(θ) dθ, α > 0, t ≥ t0.

Definition 2.2 [29] The Caputo type fractional-order derivative with order α for a function M(t)
implies:

Dα
t0,tM(t) =

1
Γ(n − α)

∫ t

t0

M(n)(θ)
(t − θ)θ−n+1 dθ,

where t ≥ t0 and n − 1 < α < n ∈ Z+.

Preposition 1 [10] For n − 1 < α < n, the Laplace transform of the Caputo type fractional-order
derivative M(t) implies:

L
[
DαM(t)

]
= sαM(s) −

n−1∑
ρ=0

sα−ρ−1M(ρ)(0).

When M(ρ)(0) = 0, ρ = 1, 2, ..., n, we have

L
[
DαM(t)

]
= sαM(s).
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Preposition 2 [19] The linearity of Caputo type fractional-order derivative is defined by

Dα
t0,t

[
τ1M1(t) + τ2M2(t)

]
= τ1Dα

t0,tM1(t) + τ2Dα
t0,tM2(t).

Preposition 3 [19] For n − 1 < α < n, we have

D−αt0,t
[
Dα

t0,tM(t)
]

= M(t) −
n−1∑
ρ=0

(t − t0)ρ

ρ!
M(ρ)(t0), α ≥ 0.

Especially, 0 < α < 1, one has

D−αt0,t
[
DαM(t)

]
= M(t) − M(t0).

In the following lines Dα is an the abbreviation of Dα
t0,t.

Consider the fractional order linear systems with time delays as follows:

DαM(t) = EM(t) + M(tδ1) + M(tδ2), 0 < α < 1 (2.1)

where E =
(
ekl

)
n×n ∈ R

n×n, M(tδ1) =

(∑n
l=1 p1lml(t − δ1

1l), ....,
∑n

l=1 pnlml(t − δ1
nl)

)T

,

M(tδ2) =

(∑n
l=1 q1lml(t − δ2

1l), ....,
∑n

l=1 qnlml(t − δ2
nl)

)T

, M(t) =
(
M1(t), ...,Mn(t)

)T
∈ Rn.

Particularly, if δ1
k1 = δ1l, δ2

k1 = δ2l, k, l = 1, 2, ..., n, P =
(
pkl

)
n×n ∈ R

n×n, Q =
(
qkl

)
n×n ∈ R

n×n, fractional
order linear system (2.1) can be written as,

DαM(t) = EM(t) + PM(t − δ1) + QM(t − δ2), 0 < α < 1, (2.2)

where M(t − δ1) =
(
m1(t − δ11),m2(t − δ12), ...,mn(t − δ1n)

)T and
M(t − δ2) =

(
m1(t − δ21),m2(t − δ22), ...,mn(t − δ2n)

)T .
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Making Laplace transform of (2.2) on both sides, we get





sαG1(s) − sα−1ξ1(0) = e11G1(s) + p11e−sδ1
11

[
G1(s) +

∫ 0

−δ1
11

e−stξ1(t)dt
]

+ q11e−sδ2
11

×
[
G1(s) +

∫ 0

−δ2
11

e−stξ1(t)dt
]

+ e12G2(s) + p12e−sδ1
12

[
G2(s) +

∫ 0

−δ1
12

e−stξ2(t)dt
]

+ q12e−sδ2
12

×
[
G2(s) +

∫ 0

−δ2
12

e−stξ2(t)dt
]

+ ..... + e1nGn(s) + p1ne−sδ1
1n

[
Gn(s) +

∫ 0

−δ1
1n

e−stξn(t)dt
]

+q1ne−sδ2
1n

[
Gn(s) +

∫ 0

−δ2
1n

e−stξn(t)dt
]



sαG2(s) − sα−1ξ2(0) = e21G1(s) + p21e−sδ1
21

[
G1(s) +

∫ 0

−δ1
21

e−stξ1(t)dt
]

+ q21e−sδ2
21

×
[
G1(s) +

∫ 0

−δ2
21

e−stξ1(t)dt
]

+ e22G2(s) + p22e−sδ1
22

[
G2(s) +

∫ 0

−δ1
22

e−stξ2(t)dt
]

+ q22e−sδ2
22

×
[
G2(s) +

∫ 0

−δ2
22

e−stξ2(t)dt
]

+ ..... + e2nGn(s) + p2ne−sδ1
1n

[
Gn(s) +

∫ 0

−δ1
2n

e−stξn(t)dt
]

+q2ne−sδ2
2n

[
Gn(s) +

∫ 0

−δ2
2n

e−stξn(t)dt
]

.

.

.

sαGn(s) − sα−1ξn(0) = en1G1(s) + pn1e−sδ1
n1

[
G1(s) +

∫ 0

−δ1
n1

e−stξ1(t)dt
]

+ qn1e−sδ2
n1

×
[
G1(s) +

∫ 0

−δ2
n1

e−stξ1(t)dt
]

+ en2G2(s) + pn2e−sδ1
n2

[
G2(s) +

∫ 0

−δ1
n2

e−stξ2(t)dt
]

+ qn2e−sδ2
n2

×
[
G2(s) +

∫ 0

−δ2
n2

e−stξ2(t)dt
]

+ ..... + ennGn(s) + pnne−sδ1
nn
[
Gn(s) +

∫ 0

−δ1
nn

e−stξn(t)dt
]

+qnne−sδ2
nn
[
Gn(s) +

∫ 0

−δ2
nn

e−stξn(t)dt
]

(2.3)

where Gl(s) is the Laplace transform of Ml(t) with Gl(s) = L
[
Ml(t)

]
and

ξl(t)
(
0 ≤ l ≤ n, t ∈ [−δ̂ = −max{δ1, δ2}, 0]

)
are the initial conditions of Ml(t).

Equation (2.3) can be written as follows:

∆(s)



G1(s)
G2(s)
.

.

.

Gn(s)


=



h1(s)
h2(s)
.

.

.

hn(s)


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in which 


h1(s) = sα−1ξ1(0) + p11e−sδ1

11

∫ 0

−δ1
11

e−stξ1(t)dt + q11e−sδ2
11

∫ 0

−δ2
11

e−stξ1(t)dt

+p12e−sδ1
12

∫ 0

−δ1
12

e−stξ2(t)dt + q12e−sδ2
12

∫ 0

−δ2
12

e−stξ2(t)dt

+..... + p1ne−sδ1
1n

∫ 0

−δ1
1n

e−stξn(t)dt + q1ne−sδ2
1n

∫ 0

−δ2
1n

e−stξn(t)dt


h2(s) = sα−1ξ2(0) + p21e−sδ1

21

∫ 0

−δ1
21

e−stξ1(t)dt + q21e−sδ2
21

∫ 0

−δ2
21

e−stξ1(t)dt

+p22e−sδ1
22

∫ 0

−δ1
22

e−stξ2(t)dt + q22e−sδ2
22

∫ 0

−δ2
22

e−stξ2(t)dt

+..... + p2ne−sδ1
2n

∫ 0

−δ1
2n

e−stξn(t)dt + q2ne−sδ2
2n

∫ 0

−δ2
2n

e−stξn(t)dt

.

.

.
hn(s) = sα−1ξn(0) + pn1e−sδ1

n1

∫ 0

−δ1
n1

e−stξ1(t)dt + qn1e−sδ2
n1

∫ 0

−δ2
n1

e−stξ1(t)dt

+pn2e−sδ1
n2

∫ 0

−δ1
n2

e−stξ2(t)dt + qn2e−sδ2
n2

∫ 0

−δ2
n2

e−stξ2(t)dt

+..... + pnne−sδ1
nn
∫ 0

−δ1
nn

e−stξn(t)dt + qnne−sδ2
nn
∫ 0

−δ2
nn

e−stξn(t)dt,

∆(s) =



sα + Υ11 Υ12 · · · Υ1n

Υ21 sα + Υ22 · · · Υ2n
...

...
. . .

...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Υn1 Υn2
... sα + Υnn


,

where

Υ11 = −e11 − p11e−sδ1
11 − q11e−sδ2

11 , Υ12 = −e12 − p12e−sδ1
12 − q12e−sδ2

12 ,

Υ1n = −e1n − p1ne−sδ1
1n − q1ne−sδ2

1n , Υ21 = −e21 − p21e−sδ1
21 − q21e−sδ2

21 ,

Υ22 = −e22 − p22e−sδ1
22 − q22e−sδ2

22 , Υ2n = −e2n − p2ne−sδ1
2n − q2ne−sδ2

2n ,

Υn1 = −en1 − pn1e−sδ1
n1 − qn1e−sδ2

n1 , Υn2 = −en2 − pn2e−sδ1
n2 − qn2e−sδ2

n2 ,

Υnn = −enn − pnne−sδ1
nn − qnne−sδ2

nn .

∆(s) represent the characteristic matrix of system (2.2) and det
(
∆(s)

)
stands for the characteristic

polynomial of ∆(s). It’s obvious that the stability of system (2.2) is completely determined by the
distribution of eigenvalues of ∆(s).

Remark 2.3 If δ2
kl = 0, system (2.1) is equivalent to the following expression:

DαM(t) = ẼM(t) + M(tδ1), 0 < α < 1 (2.4)
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where Ẽ = E + Q =
(
ẽkl

)
n×n. The characteristic matrix of system (2.4) is denoted by:

∆̃(s) =



sα − e11 − p11e−sδ1
11 −e1n − p1ne−sδ1

1n · · · −e1n − p1ne−sδ1
1n

−e21 − p21e−sδ1
21 sα − e22 − p22e−sδ1

22 · · · −e2n − p2ne−sδ1
2n

...
...

. . .
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−en1 − pn1e−sδ1
n1 −en2 − pn2e−sδ1

n2
... −enn − pnne−sδ1

nn


.

It is obviously, stability of system (2.4) is completely determined by the distribution values of
eigenvalues of ∆̃(s).

Remark 2.4 If δ1
kl = δ2

kl = 0, system (2.1) is equivalent to the following expression:

DαM(t) = ÊM(t), 0 < α < 1 (2.5)

where Ê = E + P + Q =
(
êkl

)
n×n. The characteristic matrix of system (2.5) is denoted by:

Ê =



e11 + p11 + q11 e12 + p12 + q12 · · · e1n + p1n + q1n

e21 + p21 + q21 e22 + p22 + q22 · · · e2n + p2n + q2n
...

...
. . .

...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
en1 + pn1 + qn1 en2 + pn2 + qn2 · · · enn + pnn + qnn


.

It is obviously, stability of system (2.4) is completely determined by the distribution values of
eigenvalues of ∆(s).

Theorem 2.5 If 0 < α < 1, all the roots of characteristic equation det
(
∆(s)

)
= 0 have negative real

parts, then the zero solution of system (2.1) is Lyapunov globally asymptotically stable.

Proof. The proof of theorem is almost the similar as those of Theorem 3.1 in [13], so we omit it here.

Theorem 2.6 If a matrix Ê is stable, i.e., all the eigenvalues λ′s of Ê satisfy |arg
(
λ
)
| > π

2 and the
characteristic equation det

(
∆(s)

)
= 0 has no pure imaginary roots for any δ1, δ2 > 0, then the zero

solution of system (2.1) is Lyapunov globally asymptotically stable.

Proof. The proof of theorem is almost the similar as those of Theorem 3.2 in [13], so we omit it here.

Lemma 2.7 Consider the following delayed fractional order differential inequalityDαm(t) ≤ −Em(t) + Fm(t − δ1) + Gm(t − δ2), t > t0, 0 < α ≤ 1,
m(s) = m̂(s), s ∈ [−δ̂ = −max{δ1, δ2}, 0],

(2.6)

and delayed fractional order linear systemDαm̃(t) = −Em̃(t) + Fm̃(t − δ1) + Gm̃(t − δ2), t > t0, 0 < α ≤ 1,
m̃(s) = m̂(s), s ∈ [−δ̂ = −max{δ1, δ2}, 0],

(2.7)
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where m(t) and m̃(t) are continuous and non negative in [0,+∞), and m̂(t) ≥ 0, t ∈ [−δ̂, 0]. If
E, F, G > 0 are scalars, then m(t) ≤ m̃(t) for all t ∈ [0,+∞).

Proof. From (2.6), there exists a non negative function r(t) such thatDαm(t) = −Em(t) + Fm(t − δ1) + Gm(t − δ2) − r(t), 0 < α ≤ 1,
m(s) = m̂(s), s ∈ [−δ̂, 0].

(2.8)

Let δ̆ = min{δ1, δ2} and µ1 =
[ t1
δ̂

]
+ 1, where

[ t1
δ̂

]
is the greatest integer smaller than t1

δ̂
. Obviously,

[0, t1) ⊆ [0, µ1δ̆], and from [27], the unique solution of equation (2.8) has expressed by m(t) = mlδ̆, and

mlδ̆ = klδ̆Eα,1
(
− Etα

)
+

∫ t

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Ψlδ̆ds, 0 < α ≤ 1, t ∈ [(l − 1)δ̆, lδ̆], (2.9)

where klδ̆, l = 1, 2, .., µ1 is constant, Eα,1 is one parameter Mittag-Leffler function, m0δ̆ = m̂(s) and Ψlδ̆

is represented as

Ψlδ̆ =



Fm0δ̆(t − δ1) + Gm0δ̆(t − δ2) − r(t), 0 < t ≤ δ̆

Fm1δ̆(t − δ1) + Gm1δ̆(t − δ2) − r(t), δ̆ < t ≤ 2δ̆
.

.

.

Fm(µ1−1)δ̆(t − δ1) + Gm(µ1−1)δ̆(t − δ2) − r(t), (µ1 − 1)δ̆ < t ≤ µ1δ̆.

(2.10)

Since tα−1, Eα,α and r(t) are non negative functions. From (2.9) and (2.10), we have

mlδ̆ ≤ klδ̆Eα,1
(
− Etα

)
+

∫ t

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Fmlδ̆(s − δ1)ds

+

∫ t

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Gmlδ̆(s − δ2)ds, t ∈ [(µ1 − 1)δ̆, µ1δ̆]. (2.11)

Similarly, the unique solution of system (2.7) is expressed by

m̃lδ̆ = klδ̆Eα,1
(
− Etα

)
+

∫ t

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Fm̃lδ̆(s − δ1)ds

+

∫ t

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Gm̃lδ̆(s − δ2)ds, t ∈ [(µ1 − 1)δ̆, µ1δ̆]. (2.12)

Next, we will show that m(t) ≤ m̃(t), t ∈ [(µ1 − 1)δ̆, µ1δ̆], l = 1, 2, ..., µ1. Now we will use the method
of induction on µ1.

Firstly, we will show that m(t) ≤ m̃(t) for µ1 = 1. If t ∈ (0, δ̆], then t − δ j ∈ [−δ̂, 0] and
m(t − δ j) = m̃(t − δ j) = m̂(t − δ j) for j = 1, 2. From (2.11) and (2.12), we have

mδ̆(t) ≤ klδ̆Eα,1
(
− Etα

)
+

∫ t

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Fm̂lδ̆(s − δ1)ds
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+

∫ t

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Gm̂lδ̆(s − δ2)ds = m̃δ̆(t). (2.13)

Note that the initial values of system (2.7) and (2.8) into collection, one has kδ̆ = 0. Hence m(t) ≤ m̃(t)
for µ1 = 1. Next, we will assume that m(t) ≤ m̃(t) true for µ1 = 1, that is for t ∈ [(µ1 − 1)δ̆, µ1δ̆], we
have mlδ̆(t) ≤ m̃lδ̆(t), l = 1, 2, ..., µ1. Then, we will prove that m(t) ≤ m̃(t) for µ1 + 1.

For t ∈ [µ1δ̆, (µ1 + 1)δ̆], by virtue of inequality (2.9), one has

m(t) = m(µ1+1)δ̆

≤ k(µ1+1)δ̆Eα,1
(
− Etα

)
+

∫ t

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Fm(µ1+1)δ̆(s − δ1)ds

+

∫ t

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Gm(µ1+1)δ̆(s − δ2)ds

= k(µ1+1)δ̆Eα,1
(
− Etα

)
+

∫ δ̆

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Fm0δ̆(s − δ1)ds

+

µ1∑
l=2

∫ lδ̆

(l−1)δ̆
(t − s)α−1Eα,α

(
− E(t − s)α

)
Fmlδ̆(s − δ1)ds

+

∫ δ̆

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Gm0δ̆(s − δ2)ds

+

µ1∑
l=2

∫ lδ̆

(l−1)δ̆
(t − s)α−1Eα,α

(
− E(t − s)α

)
Gmlδ̆(s − δ2)ds

+

∫ t

µ1δ̆

(t − s)α−1Eα,α
(
− E(t − s)α

)
Fm(µ1+1)δ̆(s − δ1)ds

+

∫ t

µ1δ̆

(t − s)α−1Eα,α
(
− E(t − s)α

)
Gm(µ1+1)δ̆(s − δ2)ds

≤ k(µ1+1)δ̆Eα,1
(
− Etα

)
+

∫ δ̆

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Fm̃0δ̆(s − δ1)ds

+

µ1∑
l=2

∫ lδ̆

(l−1)δ̆
(t − s)α−1Eα,α

(
− E(t − s)α

)
Fm̃lδ̆(s − δ1)ds

+

∫ δ̆

0
(t − s)α−1Eα,α

(
− E(t − s)α

)
Gm̃0δ̆(s − δ2)ds

+

µ1∑
l=2

∫ lδ̆

(l−1)δ̆
(t − s)α−1Eα,α

(
− E(t − s)α

)
Gm̃lδ̆(s − δ2)ds

+

∫ t

µ1δ̆

(t − s)α−1Eα,α
(
− E(t − s)α

)
Fm̃(µ1+1)δ̆(s − δ1)ds

+

∫ t

µ1δ̆

(t − s)α−1Eα,α
(
− E(t − s)α

)
Gm̃(µ1+1)δ̆(s − δ2)ds

= m̃(µ1+1)δ̆ = m̃(t). (2.14)
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Set µ2 =
[ t2
δ̂

]
+ 1. Then, obviously, [t1, t2) ⊆ [t1, µ2δ̆]. The initial values of (2.7) and (2.8) is represented

by:

m(s) = m̂(s), s ∈ [t1 − δ̂, t1)
m̃(s) = m̂(s), s ∈ [t1 − δ̂, t1).

The proof is almost the similar for t ∈ [0, t1), we get that m(t) ≤ m̃(t), t ∈ [t1, t2). So splitting the union
of all subsets [0, t1) ∪ [t1, t2) ∪ ...., we show that m(t) ≤ m̃(t) for all t ∈ [0,+∞). This completes the
proof of Lemma 2.7.

Lemma 2.8 [8] Let m(t) ∈ Rn be a differentiable vector valued function and M ∈ Rn×n is constant,
symmetric and positive definite matrix. Then the following relationship is holds:

Dα[mT (t)Mm(t)] ≤ 2mT (t)MDαm(t), ∀ 0 < α < 1.

Lemma 2.9 [13] Consider the following delayed fractional order differential inequalityDαm(t) ≤ −Em(t) + Fm(t − δ1), t > t0, 0 < α ≤ 1,
m(s) = m̂(s), s ∈ [−δ1, 0],

and delayed fractional order linear systemDαm̃(t) = −Em̃(t) + Fm̃(t − δ1), t > t0, 0 < α ≤ 1,
m̃(s) = m̂(s), s ∈ [−δ1, 0],

where m(t) and m̃(t) are continuous and non negative in [0,+∞), and m̂(t) ≥ 0, t ∈ [−δ1, 0]. If E, F > 0
are scalars, then m(t) ≤ m̃(t) for all t ∈ [0,+∞).

Lemma 2.10 [13] If 0 < α < 1, all the roots of characteristic equation det
(
∆̃(s)

)
= 0 have negative

real parts, then the zero solution of system (2.4) is Lyapunov globally asymptotically stable.

Lemma 2.11 [13] If 0 < α < 1, all the eigenvalues of Ê satisfy |arg
(
λ
)
> π

2 | and the characteristic
equation det

(
∆̃(s)

)
= 0 has no pure imaginary roots for any δ1 > 0, and −E + F < 0, then the zero

solution of system (2.4) is Lyapunov globally asymptotically stable.

Lemma 2.12 [20] Let γ ∈ R, U, V, W, Z be matrices with suitable dimensions. Then the Kronecker
product has the following properties:

(1). (γU) ⊗ V = U ⊗ (γV);
(2). (U + V) ⊗W = (U ⊗W) + (V ⊗W);
(3). (U ⊗ V)T = (UT ⊗ VT );
(4). (U ⊗ V)(W ⊗ Z) = (UW ⊗ VZ);
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Lemma 2.13 [25] Let m = 0 be the equilibrium point of fractional order differential system Dαm(t) =

h
(
t,m(t)

)
. Assume that there exists a Lyapunov functional H

(
t,m(t)

)
and k-class function θl, (l =

1, 2, 3), satisfying:

θ1
(
‖m‖

)
≤ H

(
t,m(t)

)
≤ θ2

(
‖m‖

)
, DαH

(
t,m(t)

)
≤ θ3

(
‖m‖

)
, 0 < α < 1.

Then the fractional order differential system is asymptotically stable.

Lemma 2.14 [41] For any vectors β1, β2 ∈ R
m and any matrix 0 < G ∈ Rn×n, then the following

relationship holds:

2βT
1 β2 ≤ β

T
1 Gβ1 + βT

2 G−1β2.

In this article, we consider an array of linear coupled fractional order Cohen-Grossberg neural
networks (FCCGNNs) consisting of N identical nodes with each isolated node network being an n-
dimensional dynamical system, which is presented by:

Dαzl(t) = −D
(
zl(t)

)[
U

(
zl(t)

)
− Vh

(
zl(t)

)
−Wh

(
zl(t − δ1)

)
− J

]
+β1

N∑
k=1

AlkΦzk(t) + β2

N∑
k=1

AlkΨzk(t − δ2), (2.15)

with the singe delayed isolated node networks

Dαzl(t) = −D
(
zl(t)

)[
U

(
zl(t)

)
− Vh

(
zl(t)

)
−Wh

(
zl(t − δ1)

)
− J

]
(2.16)

in which l = 1, 2, ...,N, N is the total number of nodes in the networks, zl(t) =
(
zl1(t), ..., zln(t)

)T

signifies the state of the neuron at time t; D(·) signifies an amplification function; U(·) signifies an
an appropriately behaved function; h(zl(t)) =

(
h1(zl1(t)), ..., hn(zln(t))

)T
signifies the activation function

of the neurons at time t; V = (vlk)n×n and W = (wlk)n×n represents the connection weights of the k-th
neuron on l-th neuron; δ1 > 0 and δ2 > 0 represents the positive and constant delays, respectively;
J =

(
J1, ...., Jn

)
is the constant external input of the network; β1 > 0 and β2 > 0 represents the

strengths of constant and delayed coupling weights, respectively. Φ = diag{φ1, ..., φn} > 0 and Ψ =

diag{ψ1, ..., ψn} > 0 denotes the inertial coupling between two nodes; A =
(
Alk

)
N×N is the topological

structure of the network and coupling strengths, where Alk satisfies the following conditions: for k , l,
Alk = Akl > 0 if there is link between node l and k, otherwise Alk = Akl = 0; for l = k, the diagonal
elements are

All = −

N∑
k=1,k,l

Alk, l = 1, 2, ...,N. (2.17)

The initial values of system (2.15) are presented by

zl(s) = ηl(s), s ∈ [−δ̂, 0],
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where ηl(s) ∈ C([−δ̂, 0],Rn).

In order to prove our main results, we need the following fundamental assumptions.

Assumption [H1]. For every l = 1, 2, ..., n, the amplification function dl(τ) is continuous functions
and there exist positive constants 0 < dl ∈ R and 0 < dl ∈ R such that

0 < dl ≤ dl(τ) ≤ dl < +∞, for any τ ∈ R.

Assumption [H2]. For every l = 1, 2, ..., n, there exist a non-negative constant ul ∈ R for arbitrary
χ1, χ2 ∈ R and χ1 , χ2 such that

ul(χl) − ul(χ2)
χ1 − χ2

≥ ul > 0.

Assumption [H3]. The activation function h(·) satisfy the global Lipschitz condition, that is, there
exist a positive constant Lk > 0, k = 1, 2, ..., n such that

|hk(χ1) − hk(χ2)| ≤ Lk|χ1 − χ2|,

for any χ1, χ2 ∈ R and χ1 , χ2.

Supposing that the constant vector z̆ =
(
z̆1, ...., z̆N

)T satisfies

0 = −D
(
z̆l
)[

U
(
z̆l
)
− Vh

(
z̆l
)
−Wh

(
z̆l)

)
− J

]
+ β1

N∑
k=1

AlkΦz̆k + β2

N∑
k=1

AlkΨz̆k,

then it is said to be an arbitrary desired equilibrium solution for FCCGNNs (2.15), where
z̆l =

(
z̆l1, ..., z̆ln

)T
, l = 1, 2, ...,N.

Definition 2.15 The FCCGNNs with linear coupling delays (2.15) achieves global asymptotically
stable if

lim
t→+∞

‖zl(t) − z̆l‖2 = 0

holds, where l = 1, 2, ...,N.

Take ml(t) = zl(t) − z̆l, l = 1, 2, ...,N, then

Dαml(t) = −D
(
ml(t) + z̆l

)[
Ũ

(
ml(t)

)
− VH

(
ml(t)

)
−WH

(
ml(t − δ1)

)]
+β1

N∑
k=1

AlkΦmk(t) + β2

N∑
k=1

AlkΨmk(t − δ2), (2.18)

where Ũ
(
ml(t)

)
= U

(
ml(t) + z̆l

)
− U

(
z̆l
)

and H
(
ml(t)

)
= h

(
ml(t) + z̆l

)
− h

(
z̆l
)
.
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3. Main results

In this section, several synchronization stability results are derived to ensure that FCCGNNs with
and without parameter uncertainties is globally asymptotical synchronization stability depending on
comparison theorem and LMI techniques, respectively.

3.1. Asymptotical synchronization stability of FCCGNNs

Theorem 3.1 If the assumptions [H1] − [H3] hold, then the FCCGNNs (2.15) is globally
asymptotically stable, if the following conditions hold:

θ = λm

[
2DU − VVT −WWT − 4β1ϕΦ − 2β2ϕΨ − Λ

]
> 0

κ = λM(Λ) > 0, ς = 2β2ϕλM(Ψ) > 0 and 0 < (κ + ς) < θ sin(
απ

2
),

where D = diag{d1, ..., dn}, U = diag{u1, ..., un}, Λ = diag{d
2
1L2

1, ..., d
2
nL2

n}, ϕ = max1≤l≤N{|All|}.

Proof. For the FCCGNNs error system (2.18), construct the following Lyapunov functional:

H(t) = mT (t)m(t) =

N∑
l=1

mT
l (t)ml(t) (3.1)

Taking the fractional order time derivative of H(t) along the trajectories of (2.18) and, based on Lemma
2.8, one can get

DαH(t) ≤ 2
N∑

l=1

mT
l (t)Dαml(t)

= 2
N∑

l=1

mT
l (t)

{
− D

(
ml(t) + z̆l

)[
Ũ

(
ml(t)

)
− VH

(
ml(t)

)
−WH

(
ml(t − δ1)

)]

+β1

N∑
k=1

AlkΦmk(t) + β2

N∑
k=1

AlkΨmk(t − δ2)
}

= −2
N∑

l=1

mT
l (t)D

(
ml(t) + z̆l

)[
U

(
ml(t) + z̆l

)
− U

(
z̆l
)]

+2
N∑

l=1

mT
l (t)D

(
ml(t) + z̆l

)
VH

(
ml(t)

)
+ 2

N∑
l=1

mT
l (t)D

(
ml(t) + z̆l

)
WH

(
ml(t − δ1)

+2β1

N∑
l=1

N∑
k=1

mT
l (t)AlkΦmk(t) + 2β2

N∑
l=1

N∑
k=1

mT
l (t)AlkΨmk(t − δ2) (3.2)

By virtue of Assumptions [H1] − [H3] and Lemma 2.14, one gets

2
N∑

l=1

mT
l (t)D

(
ml(t) + z̆l

)
VH

(
ml(t)

)
≤ 2

N∑
l=1

mT
l (t)Vd̄lH

(
ml(t)

)
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≤

N∑
l=1

mT
l (t)VVT ml(t) +

N∑
l=1

mT
l (t)Λml(t) (3.3)

2
N∑

l=1

mT
l (t)D

(
ml(t) + z̆l

)
WH

(
ml(t − δ1) ≤ 2

N∑
l=1

mT
l (t)Wd̄lH

(
ml(t − δ1)

≤

N∑
l=1

mT
l (t)WWT ml(t)

+

N∑
l=1

mT
l (t − δ1)Λml(t − δ1) (3.4)

and

−2
N∑

l=1

mT
l (t)D

(
ml(t) + z̆l

)[
U

(
ml(t) + z̆l

)
− U

(
z̆l
)]
≤ −2

N∑
l=1

mT
l (t)d̄lulml(t)

≤ −2mT (t)DUml(t) (3.5)

By application of positive the diagonal property of matrix, positive definiteness and based on Lemma
2.14, and from (2.17), it is deduced to

2β1

N∑
l=1

N∑
k=1

mT
l (t)AlkΦmk(t) ≤ 2β1

N∑
l=1

N∑
k=1

|Alk|mT
l (t)Φ

1
2 Φ

1
2 mk(t)

≤ β1

N∑
l=1

N∑
k=1

|Alk|mT
l (t)Φml(t) + β1

N∑
l=1

N∑
k=1

|Alk|mT
k (t)Φmk(t)

= 2β1

N∑
l=1

|All|mT
l (t)Φml(t) + 2β1

N∑
k=1

|Akk|mT
k (t)Φmk(t)

≤ 4β1ϕ

N∑
l=1

mT
l (t)Φml(t). (3.6)

Similarly,

2β2

N∑
l=1

N∑
k=1

mT
l (t)AlkΨmk(t − δ2) ≤ 2β2

N∑
l=1

|All|mT
l (t)Ψml(t)

+2β2

N∑
k=1

|Akk|mT
k (t − δ2)Ψmk(t − δ2)

= 2β2ϕ

N∑
l=1

mT
l (t)Ψml(t)

+2β2ϕ

N∑
l=1

mT
l (t − δ2)Ψml(t − δ2) (3.7)
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Substituting (3.3)–(3.7) to (3.2), it yields

DαH(t) ≤ −

N∑
l=1

mT
l (t)

[
2DU − VVT −WWT − 4β1ϕΦ − 2β2ϕΨ − Λ

]
ml(t)

+

N∑
l=1

mT
l (t − δ1)Λml(t − δ1) + 2β2ϕ

N∑
l=1

mT
l (t − δ2)Ψml(t − δ2)

≤ −λm(Υ)
N∑

l=1

mT
l (t)ml(t) + λM(Λ)

N∑
l=1

mT
l (t − δ1)ml(t − δ1)

+2β2ϕλM(Ψ)
N∑

l=1

mT
l (t − δ1)ml(t − δ1)

= −θH(t) + κH(t − δ1) + ςH(t − δ2) (3.8)

Consider the following fractional order linear system:

DαQ(t) = −θQ(t) + κQ(t − δ1) + ςQ(t − δ2) (3.9)

where Q(t) ≥ 0 (Q(t) ∈ R), and take the similar initial values with H(t). Then, by application of
Lemma 2.7, one has 0 ≤ H(t) ≤ Q(t), ∀ t ∈ [0,+∞). It point out that, there exists a unique
equilibrium point in (3.9).

When δ1 , 0, δ2 , 0, assume that s = vi = |v|
(

cos(π2 ) + i sin(π2 )
)

is purely imaginary root of
characteristic equation det

(
∆(s)

)
= 0, where v is real number. Therefore, we have

det
(
∆(s)

)
= sα + θ − κe−sδ1 − ςe−sδ2 = 0 (3.10)

with e−sδk = cos vδk− i sin vδk, k = 1, 2. Then, by substituting s = vi = |v|
(

cos(π2 )+ i sin(π2 )
)

into (3.10),
we have

|v|α
(

cos(
π

2
) + i sin(

π

2
)
)α

+ θ − κ
(

cos vδ1 − i sin vδ1

)
− ς

(
cos vδ2 − i sin vδ2

)
= 0

which implies that

|v|α cos(
απ

2
) + θ − κ cos vδ1 − ς cos vδ2 + i

[
|v|α sin(

απ

2
) + κ sin vδ1 + ς sin vδ2

]
= 0 (3.11)

Separating real and imaginary part of (3.11), one can get|v|α cos(απ2 ) + θ = κ cos vδ1 + ς cos vδ2

|v|α sin(απ2 ) = −κ sin vδ1 − ς sin vδ2.
(3.12)

which is equivalent to

|v|2α + 2θ|v|α cos(
απ

2
) + θ2 − (κ2 + ς2) − 2κς cos v

(
δ1 − δ2

)
= 0. (3.13)
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When (κ + ς)2 < θ2 sin(απ2 ), because κ, ς > 0 holds, we have

|v|2α + 2θ|v|α cos(απ2 ) + θ2 − (κ2 + ς2) − 2κς cos v
(
δ1 − δ2

)
= |v|2α + 2θ|v|α cos(

απ

2
) + θ2 − (κ + ς)2 + 2κς

(
1 − cos v

(
δ1 − δ2

))
.

>
(
|v|α + θ cos(

απ

2
)
)2

+ 2κς
(
1 − cos v

(
δ1 − δ2

))
.

≥ 0. (3.14)

Which is contradiction. Obviously, when κ + ς < θ sin(απ2 ) and 0 < α ≤ 1, det
(
∆(s)

)
= 0 has no purely

imaginary roots for any δk , 0, k = 1, 2 if θ > κ+ ς, which means the zero solution of the system (3.9)
is globally Lyapunov asymptotically stable based on Lemma 2.6. According to Lemma 2.7, we have
0 < H(t) ≤ Q(t) and depending on the aforementioned analysis, H(t) is globally asymptotically stable.
i.e., H(t) → 0, [0,+∞). As H(t) = mT (t)m(t) =

∑N
l=1 mT

l (t)ml(t) → 0, then ml(t) → 0 as t → +∞.
Hence we declare that, the zero solution of (2.15) realizes globally asymptotically stable. The proof is
ended.

Theorem 3.2 If the assumptions [H1] − [H3] hold, then the FCCGNNs (2.15) is globally
asymptotically stable, if there exists a positive constant γ such that the following conditions hold:

θ̃ = −λm

[
−

(
IN ⊗

(
VVT + WWT − 2DU + Λ + γ−1β2Ψ

2
)

+ β1(A ⊗ Φ) + β1(AT ⊗ ΦT )
)]
> 0

κ̃ = λM(Λ) > 0, ς̃ = β2γλM(AAT ) > 0 and 0 < (κ̃ + ς̃) < θ̃ sin(
απ

2
),

where D = diag{d1, ..., dn}, U = diag{u1, ..., un}, Λ = diag{d
2
1L2

1, ..., d
2
nL2

n}.

Proof. For the FCCGNNs (2.18), construct the following Lyapunov functional:

H(t) = mT (t)m(t) =

N∑
l=1

mT
l (t)ml(t) (3.15)

Taking the fractional order time derivative of H(t) along the trajectories of (2.18) and, based on Lemma
2.8, one can get

DαH(t) ≤ 2
N∑

l=1

mT
l (t)Dαml(t)

= 2
N∑

l=1

mT
l (t)

{
− D

(
ml(t) + z̆l

)[
Ũ

(
ml(t)

)
− VH

(
ml(t)

)
−WH

(
ml(t − δ1)

)]

+β1

N∑
k=1

AlkΦmk(t) + β2

N∑
k=1

AlkΨmk(t − δ2)
}

(3.16)

By virtue of Assumptions [H1] − [H3] and Lemma 2.14, one gets

2
N∑

l=1

mT
l (t)D

(
ml(t) + z̆l

)
VH

(
ml(t)

)
≤ mT (t)

[
IN ⊗

(
VVT + Λ

)]
m(t) (3.17)

AIMS Mathematics Volume 6, Issue 3, 2844–2873.



2861

2
N∑

l=1

mT
l (t)D

(
ml(t) + z̆l

)
WH

(
ml(t − δ1) ≤ mT (t)

[
IN ⊗WWT

]
m(t)

+mT (t − δ1)
[
IN ⊗ Λ

]
m(t − δ1) (3.18)

Combined with (3.16)-(3.18), we have

DαH(t) ≤ mT (t)
[
IN ⊗

(
VVT + WWT − 2DUΛ

)]
m(t) + mT (t − δ1)

[
IN ⊗ Λ

]
m(t − δ1)

+2β1mT (t)(A ⊗ Φ)m(t) + 2β2mT (t)[A ⊗ Ψ]m(t − δ2)
≤ mT (t)

[
(IN ⊗Ω) + β1(A ⊗ Φ) + β1(AT ⊗ ΦT )

]
m(t)

+mT (t − δ1)
[
IN ⊗ Λ

]
m(t − δ1) + β2γmT (t − δ2)[AAT ⊗ In]m(t − δ2)

≤ λM(∆)mT (t)m(t) + λM(Λ)mT (t − δ1)m(t − δ1) + β2λM(AAT )mT (t − δ2)m(t − δ2)
= −λm(−∆)H(t) + λM(Λ)H(t − δ1) + β2γλM(AAT )H(t − δ2)
= −θ̃H(t) + κ̃H(t − δ1) + ς̃H(t − δ2) (3.19)

where Ω = VVT + WWT − 2DUΛ + β2γ
−1Ψ2. The rest of the proof for limt→+∞ ‖m(t)‖2 = 0 similar as

in Theorem 3.1. Therefore, the FCCGNNs (2.15) realizes globally asymptotically stable.

If there is no coupling delays in FCCGNNs (2.18), then the result is given as follows.

Corollary 3.3 If the assumptions [H1] − [H3] hold, then the FCCGNNs (2.15) is globally
asymptotically stable, if the following conditions hold:

θ̃1 = λm

[
−

(
IN ⊗

(
VVT + WWT − 2DU + Λ

)
+ β1(A ⊗ Φ) + β1(AT ⊗ ΦT )

)]
> 0

κ̃ = λM(Λ) > 0, and 0 < κ̃ < θ̃1 sin(
απ

2
),

where D, U, Λ are same definitions in Theorem 3.2.

Proof. For the error system (2.18) with no coupling delays, take the same Lyapunov functional (3.15)
as in Theorem 3.2:

DαH(t) ≤ 2
N∑

l=1

mT
l (t)Dαml(t)

= 2
N∑

l=1

mT
l (t)

{
− D

(
ml(t) + z̆l

)[
Ũ

(
ml(t)

)
− VH

(
ml(t)

)
−WH

(
ml(t − δ1)

)]

+β1

N∑
k=1

AlkΦmk(t)
}

≤ mT (t)
[
IN ⊗

(
VVT + WWT − 2DU + Λ

)]
m(t) + mT (t − δ1)

[
IN ⊗ Λ

]
m(t − δ1)

+2β1mT (t)(A ⊗ Φ)m(t)
≤ mT (t)

[
(IN ⊗ Ω̃) + β1(A ⊗ Φ) + β1(AT ⊗ ΦT )

]
m(t) + mT (t − δ1)

[
IN ⊗ Λ

]
m(t − δ1)
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≤ λM(∆1)mT (t)m(t) + λM(Λ)mT (t − δ1)m(t − δ1)
= −λm(−∆1)H(t) + λM(Λ)H(t − δ1)
= −θ̃1H(t) + κ̃H(t − δ1) (3.20)

where Ω̃ = VVT + WWT − 2DUΛ and ∆1 = (IN ⊗ Ω̃) + β1(A ⊗ Φ) + β1(AT ⊗ ΦT ).

Consider the following fractional order linear system:

DαQ(t) = −θ̃1Q(t) + κ̃Q(t − δ1) (3.21)

where Q(t) ≥ 0 (Q(t) ∈ R), and take the same initial values with H(t). By virtue of Remark 2.3 and
Lemma 2.9, the zero solution of (3.21) is globally asymptotically Lyapunov stable and the obtained
characteristic equation is

∆(s) = sα + θ̃1 − κ̃e−sδ1 = 0 (3.22)

for any δ1 > 0 and θ̃1 − κ̃ > 0. In the following we have to prove that system (39) has no purely
imaginary roots. Suppose that s = vi = |v|

(
cos(π2 ) + i sin(π2 )

)
is purely imaginary roots of (40), where v

is real number. With e−sδ1 = cos vδ1 − i sin vδ1 and substituting s = vi = |v|
(

cos(π2 ) + i sin(π2 )
)

into (40),
we get

|v|α
(

cos(
απ

2
) + i sin(

απ

2
)
)

+ θ̃1 − κ̃
(

cos vδ1 − i sin vδ1
)

= 0.

Separating real part and imaginary part of (41), we obtain

|v|α cos(
απ

2
) + θ̃1 = κ̃ cos vδ1 (3.23)

|v|α sin(
απ

2
) = −κ̃ sin vδ1 (3.24)

From (3.23) and (3.24), it follows that[
|v|α cos(

απ

2
) + θ̃1

]2
+

[
|v|α sin(

απ

2
)
]2
− κ̃2 = 0 (3.25)

which is equivalent to

|v|2α + θ̃2
1 + 2θ̃1|v|α cos(

απ

2
) − κ̃2 = 0 (3.26)

Since |v|α > 0, cos(απ2 ) > 0 and κ̃ > 0, thus if θ̃1 − κ̃ > 0. Eq (3.26) has no real roots. Hence the
characteristic equation of (3.26) has no purely imaginary roots for any δ1 > 0 if θ̃1 − κ̃ > 0, which
means the zero solution of the system (3.21) is globally Lyapunov asymptotically stable according to
Lemma 2.10 and Lemma 2.11. Again by using Lemma 2.9, we have 0 < H(t) ≤ Q(t) and depending
on the aforementioned analysis, H(t) is globally asymptotically synchronize. i.e., H(t) → 0, [0,+∞).
As H(t) = mT (t)m(t) =

∑N
l=1 mT

l (t)ml(t) → 0, then limt→+∞ ‖m(t)‖2 = 0. Hence we conclude that, the
zero solution of system (2.18) with no coupling delays realizes globally asymptotically stable. The
proof is completed.

If there is no coupling delays and time delays in FCCGNNs (2.15), then the result is given as follows.
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Corollary 3.4 If the assumptions [H1] − [H3] hold, then the FCCGNNs (2.15) is globally
asymptotically stable, if the following conditions hold:

θ̃ = −λm

[
−

(
IN ⊗

(
VVT − 2DU + Λ

)
+ β1(A ⊗ Φ) + β1(AT ⊗ ΦT )

)]
> 0

where D, U, Λ are same definitions in Theorem 3.2.

Proof. For the error system (2.18) without coupling delays and time delays, take the same Lyapunov
functional (3.15) as in Theorem 3.2:

DαH(t) ≤ 2
N∑

l=1

mT
l (t)Dαml(t)

= 2
N∑

l=1

mT
l (t)

{
− D

(
ml(t) + z̆l

)[
Ũ

(
ml(t)

)
− VH

(
ml(t)

)]
+ β1

N∑
k=1

AlkΦmk(t)
}

≤ mT (t)
[
IN ⊗

(
VVT − 2DU + Λ

)]
m(t) + 2β1mT (t)(A ⊗ Φ)m(t)

≤ mT (t)
[
(IN ⊗

(
VVT − 2DU + Λ

)
+ β1(A ⊗ Φ) + β1(AT ⊗ ΦT )

]
m(t)

= −λm

[
−

(
IN ⊗

(
VVT − 2DU + Λ

)
+ β1(A ⊗ Φ) + β1(AT ⊗ ΦT )

)]
H(t)

= −θ̃1‖m(t)‖22. (3.27)

The rest of the proof is similar to the proof of Theorem 4.1 in Ref [34], the FCCGNNs (2.15) with no
coupling delays and time delays realizes globally asymptotically stable, thus the proof is ended.

3.2. Robust asymptotical synchronization stability of FCCGNNs

In fact, the existence of external disturbances and model errors are unavoidable in many situations.
Therefore in this subsection we introduce the FCCGNNs with uncertainty consisting N identical nodes
described by:

Dαzl(t) = −D
(
zl(t)

)[
U

(
zl(t)

)
− Vh

(
zl(t)

)
−Wh

(
zl(t − δ1)

)
− J

]
+β1

N∑
k=1

AlkΦzk(t) + β2

N∑
k=1

AlkΨzk(t − δ2), (3.28)

where zl(t), D
(
zl(t)

)
, U

(
zl(t)

)
, h

(
zl(t)

)
and J defined same as in (2.15). The parameters

β1, β2, V, W, Φ, Ψ, A change in some given precision, which is intervalized as follows:

βI
1 :=

{
0 < β−1 ≤ β1 ≤ β

+
1 , ∀ β1 ∈ β

I
1

}
;

βI
2 :=

{
0 < β−2 ≤ β2 ≤ β

+
2 , ∀ β2 ∈ β

I
2

}
;

ΦI :=
{
Φ = diag(φl) : Φ− ≤ Φ ≤ Φ+, 0 < φ− ≤ φ ≤ φ+, l = 1, 2, ..., n ∀ Φ ∈ ΦI

}
;

ΨI :=
{
Ψ = diag(ψl) : Ψ− ≤ Ψ ≤ Ψ+, 0 < ψ− ≤ ψ ≤ ψ+, l = 1, 2, ..., n ∀ Ψ ∈ ΨI

}
;
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V I :=
{
V = (vlk)n×n : V− ≤ V ≤ V+, 0 < v−lk ≤ vlk ≤ v+

lk, l = 1, 2, ..., n,

k = 1, 2, ..., n ∀ V ∈ V I
}
;

W I :=
{
W = (wlk)n×n : W− ≤ W ≤ W+, 0 < w−lk ≤ wlk ≤ w+

lk, l = 1, 2, ...., n,

k = 1, 2, ..., n ∀ W ∈ W I
}
;

AI :=
{
A = (Alk)N×N : A−lk ≤ Alk ≤ A+

lk, l , k, l = 1, 2, ...,N, k = 1, 2, ...,N ∀ A ∈ AI
1

}
;

(3.29)

In order to convenience, we define

ṽlk = max{|v−lk|, |v
+
lk|}, l = 1, 2, ..., n, k = 1, 2, ..., n

w̃lk = max{|w−lk|, |w
+
lk|}, l = 1, 2, ..., n, k = 1, 2, ..., n

Ãll =

N∑
k=1,l,k

A+
lk, Ãlk(l , k) = A+

lk, l = 1, 2, ...,N, k = 1, 2, ...,N

Supposing that the constant vector z̆ =
(
z̆1, ...., z̆N

)T satisfies

0 = −D
(
z̆l
)[

U
(
z̆l
)
− Vh

(
z̆l
)
−Wh

(
z̆l)

)
− J

]
+ β1

N∑
k=1

AlkΦz̆k + β2

N∑
k=1

AlkΨz̆k,

then it is said to be an equilibrium solution of (3.28). The error ml(t) = zl(t)− z̆l, l = 1, 2, ...,N is given
as follows:

Dαml(t) = −D
(
ml(t) + z̆l

)[
Ũ

(
ml(t)

)
− VH

(
ml(t)

)
−WH

(
ml(t − δ1)

)]
+β1

N∑
k=1

AlkΦmk(t) + β2

N∑
k=1

AlkΨmk(t − δ2), (3.30)

where Ũ
(
ml(t)

)
and H

(
ml(t)

)
have similar meanings as in error system (2.18).

Theorem 3.5 If the assumptions [H1] − [H3] hold, then the FCCGNNs (3.28) is globally robust
asymptotically synchronize, if the following conditions hold:

ζ = λm

[
−

(
− 2DU +

(
ε1 + ε2

)
L + β+

1
(
γa + γφ

)
In + β+

2γψIn + ε−1
1 γvD

2)]
> 0

µ = ε−1
2 γwλM

(
D

2)
> 0, $ = β+

2γψ > 0 and 0 < (µ +$) < ζ sin(
απ

2
),

where D = diag{d1, ..., dn}, U = diag{u1, ..., un}, L = diag{L2
1, ..., L

2
n}, γa =

∑N
l=1

∑N
k=1 Ã2

lk,
γv =

∑n
l=1

∑n
k=1 ṽ2

lk, γw =
∑n

l=1
∑n

k=1 w̃2
lk, γφ =

∑n
l=1 φ

+
l

2, γψ =
∑n

l=1 ψ
+
l

2, ε1 > 0 and ε2 > 0 are arbitrary
constants.

Proof. For the error system (3.30), choose the same Lyapunov functional in (3.15), then one has

DαH(t) ≤ 2
N∑

l=1

mT
l (t)Dαml(t)
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= 2
N∑

l=1

mT
l (t)

{
− D

(
ml(t) + z̆l

)[
Ũ

(
ml(t)

)
− VH

(
ml(t)

)
−WH

(
ml(t − δ1)

)]

+β1

N∑
k=1

AlkΦmk(t) + β2

N∑
k=1

AlkΨmk(t − δ2)
}

(3.31)

By some relevant inequality techniques, we can get

2
N∑

l=1

mT
l (t)D

(
ml(t) + z̆l

)
VH

(
ml(t)

)
≤ 2

N∑
l=1

mT
l (t)DVH

(
ml(t)

)
≤

N∑
l=1

ε1mT
l (t)Lml(t) +

N∑
l=1

ε−1
1 mT

l (t)D
2
VVT ml(t)

= mT (t)
(
IN ⊗ ε1L

)
m(t) + mT (t)

(
IN ⊗ ε

−1
1 γvD

2)
m(t)

(3.32)

2
N∑

l=1

mT
l (t)D

(
ml(t) + z̆l

)
WH

(
ml(t − δ1)

)
≤ 2

N∑
l=1

mT
l (t)DWH

(
ml(t − δ1)

)
≤

N∑
l=1

mT
l (t)ε2Lml(t)

+

N∑
l=1

mT
l (t − δ1)ε−1

2 D
2
WWT ml(t − δ1)

= mT (t)
(
IN ⊗ ε2L

)
m(t)

+mT (t − δ1)
(
IN ⊗ ε

−1
2 γwD

2)
m(t − δ1)

(3.33)

2β1

N∑
k=1

N∑
k=1

AlkΦmk(t) = 2β1mT (t)
[(

A ⊗ In
)
(IN ⊗ Φ)

]
m(t)

≤ β1mT (t)
[
AAT ⊗ In

]
m(t)

+β1mT (t)
[(

IN ⊗ Φ2)]m(t)

= mT (t)
[
IN ⊗ β

+
1
(
γa + γφ

)
In

]
m(t) (3.34)

2β2

N∑
k=1

N∑
k=1

AlkGΨmk(t − δ2) ≤ mT (t)
[
IN ⊗

(
β+

2γaIn
)]

m(t)

+mT (t − δ2)
[
IN ⊗

(
β+

2γψIn
)]

m(t − δ2)
(3.35)

Combined with (3.31)–(3.35), we have

DαH(t) ≤ mT (t)
[
IN ⊗

(
− 2DU +

(
ε1 + ε2

)
L + β+

1
(
γa + γφ

)
In + β+

2γψIn
)

+ ε−1
1 γvD

2]
m(t)
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+mT (t − δ1)
(
IN ⊗ ε

−1
2 γwD

2)
m(t − δ1) + mT (t − δ2)

[
IN ⊗

(
β+

2γψIn
)]

m(t − δ2)

≤ λM(Θ)mT (t)m(t) + ε−1
2 γwλM

(
D

2)
mT (t − δ1)m(t − δ1) + β+

2γψmT (t − δ2)m(t − δ2)

= −λm(−Θ)H(t) + ε−1
2 γwλM

(
D

2)
H(t − δ1) + β+

2γψH(t − δ2)
= −ζH(t) + µH(t − δ1) +$H(t − δ2) (3.36)

The rest of the proof for limt→+∞ ‖m(t)‖2 = 0 similar as in Theorem 3.1. Therefore, the FCCGNNs
(3.28) achieves globally robust asymptotically stable.

If there are no coupling delays in FCCGNNs (3.28) with the ranges of parameters given by (3.29),
then the result is given as follows.

Corollary 3.6 If the assumptions [H1] − [H3] hold, then the FCCGNNs (3.28) with the ranges of
parameters given by (3.29) achieves globally robust asymptotically stable, if the following conditions
hold:

ζ = λm

[
−

(
− 2DU +

(
ε1 + ε2

)
L + β+

1
(
γa + γφ

)
In + ε−1

1 γvD
2)]

> 0

µ = ε−1
2 γwλM

(
D

2)
> 0 and 0 < µ < ζ sin(

απ

2
),

where D, U, L, γa, γv, γw, γφ, ε1 and ε2 are already defined in Theorem 3.5.

Proof. For the error system (3.30) without coupling delays, choose the same Lyapunov functional in
(3.15), then one has

DαH(t) ≤ 2
N∑

l=1

mT
l (t)Dαml(t)

= 2
N∑

l=1

mT
l (t)

{
− D

(
ml(t) + z̆l

)[
Ũ

(
ml(t)

)
− VH

(
ml(t)

)
−WH

(
ml(t − δ1)

)]

+β1

N∑
k=1

AlkΦmk(t)
}

≤ mT (t)
[
IN ⊗

(
− 2DU +

(
ε1 + ε2

)
L + β+

1
(
γa + γφ

)
In
)

+ ε−1
1 γvD

2]
m(t)

+mT (t − δ1)
(
IN ⊗ ε

−1
2 γwD

2)
m(t − δ1)

≤ −ζH(t) + µH(t − δ1) (3.37)

The rest of the proof for limt→+∞ ‖m(t)‖2 = 0 similar as in Corollary 3.3. Therefore, the FCCGNNs
(3.28) with no coupling delays is globally robust asymptotically stable.

If there is no coupling delays and time delays in FCCGNNs (3.28) with the ranges of parameters
given by (3.29), then the result is given as follows.
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Corollary 3.7 If the assumptions [H1] − [H3] hold, then the FCCGNNs (3.28) with the ranges of
parameters given by (3.29) achieves globally robust asymptotically stable, if the following conditions
hold:

ζ = λm

[
−

(
− 2DU + ε1L + β+

1
(
γa + γφ

)
In + ε−1

1 γvD
2)]

> 0

where D, U, L, γa, γv, γφ, ε1 and ε2 are already defined in Theorem 3.5.

Proof. For the error system (3.30) with no coupling delays and no time delays, choose the same
Lyapunov functional in (3.15), then one has

DαH(t) ≤ 2
N∑

l=1

mT
l (t)Dαml(t)

= 2
N∑

l=1

mT
l (t)

{
− D

(
ml(t) + z̆l

)[
Ũ

(
ml(t)

)
− VH

(
ml(t)

)]
+ β1

N∑
k=1

AlkΦmk(t)
}

≤ mT (t)
[
IN ⊗

(
− 2DU + ε1L + β+

1
(
γa + γφ

)
In
)

+ ε−1
1 γvD

2]
m(t)

≤ −ζ‖m(t)‖22 (3.38)

The rest of the proof for limt→+∞ ‖m(t)‖2 = 0 similar as in Corollary 3.4. Therefore, the FCCGNNs
(3.30) with no coupling delays and no time delays achieves globally robust asymptotically stable.

Remark 3.8 The author of [46] presented the synchronization stability conditions of Riemann
Liouville sense fractional-order complex coupled neural networks under coupling delays. By using,
Riemann Liouville derivative properties and some inequality techniques, several algebraic sufficient
conditions are derived to verify the global asymptotic synchronization stability conditions of the
proposed model. While in this paper, Caputo derivative properties, Cohen-Grossberg neural networks
type models, Kronecker product and uncertain parameter are taken into consideration. Moreover, our
obtained corollaries are new and purely different from those existing works.

4. Numerical examples

To verify the advantage of the above analytical results, two numerical simulations are performed in
the following few lines.

Example 4.1 A FCCGNNs consisting of six identical two dimensional fractional order
Cohen-Grossberg neural network is considered in the following:

D0.95zl(t) = −D
(
zl(t)

)[
U

(
zl(t)

)
− Vh

(
zl(t)

)
−Wh

(
zl(t − 0.2)

)
− J

]
+β1

6∑
k=1

AlkΦzk(t) + β2

6∑
k=1

AlkΨzk(t − 0.1), (4.1)
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where l = 1, 2, ..., 6, D(τ) = diag{0.1, 0.1}, U1(τ) = U2(τ) = 20τ, h1(τ) = h2(τ) = 0.05 ∗ tanh(τ),
β1 = 0.25, β2 = 0.45, J =

(
0 0

)T , the matrices V, W, A, Φ, Ψ are selected as, respectively

V =

[
2 3

1.3 1.2

]
, W =

[
2.5 1
1.5 2

]
, Φ =

[
0.95 0

0 0.95

]
, Ψ =

[
0.9 0
0 0.9

]
.

The topology structure of (4.1) is described by

A =



−1 0 0.7 0.7 0 0.45
0 −2 0 0.6 0.12 0.4

0.7 0 −2 0.3 0.67 0.25
0.7 0.6 0.3 −1.4 0.6 0.97
0 0.12 0.67 0.6 −2.5 0

0.45 0.4 0.25 0.97 0 −2


Apparently,

(
0 0

)T
∈ R2 is an equilibrium point of FCCGNNs (4.1). It is clear that, the activation

function hk(τ), k = 1, 2 satisfy the Lipschitz condition with Lk = 1.5, and the function D(·) and U(·)
meets the assumptions [H2] − [H3] with dl = 0.05, dl = 0.5, ul = 1. Employing the MATLAB LMI
contol Toolbox, it is simply to calculate θ = 28.758, κ = 0.5625 and ς = 1.6009 of Theorem 3.2 with
γ = 1, and it satisfy all the conditions in proposed Theorem 3.2. Therefore, the FCCGNNs (4.1) is
globally asymptotically stable from Theorem 3.2. The numerical simulations are depicted in Figures 1
and 2.
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Figure 1. The change processes of
zl1(t), zl2(t), l = 1, 2..., 6.
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Figure 2. The change processes of
‖ml(t)‖2, l = 1, 2..., 6.

Example 4.2 The model of FCCGNNs with uncertainty consisting five identical nodes can be
described as follows:

D0.988zl(t) = −D
(
zl(t)

)[
U

(
zl(t)

)
− Vh

(
zl(t)

)
−Wh

(
zl(t − 0.5)

)
− J

]
+β1

N∑
k=1

AlkΦzk(t) + β2

N∑
k=1

AlkΨzk(t − 0.5), (4.2)
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where l = 1, 2, ..., 5, D(τ) = diag{0.9, 0.9}, U1(τ) = U2(τ) = 14τ, h1(τ) = h2(τ) = 0.08 ∗ tanh(τ),
J =

(
0 0

)T .
The parameters β1, β2, V, W, Φ, Ψ, A in the networks (4.2) change in some given precision,

which is intervalized as follows:

βI
1 :=

{
0 < 0.03 ≤ β1 ≤ 0.3, ∀ β1 ∈ β

I
1

}
;

βI
2 :=

{
0 < 0.02 ≤ β2 ≤ 0.2, ∀ β2 ∈ β

I
2

}
;

ΦI :=
{
Φ = diag(φl) : Φ− ≤ Φ ≤ Φ+, 0 <

1
l + 1

+ 0.01 ≤ φ ≤
1

l + 1
+ 0.4, l = 1, 2 ∀ Φ ∈ ΦI

}
;

ΨI :=
{
Ψ = diag(ψl) : Ψ− ≤ Ψ ≤ Ψ+, 0 <

1
l + 1

+ 0.02 ≤ ψ ≤
1

l + 1
+ 0.3, l = 1, 2 ∀ Ψ ∈ ΨI

}
;

V I :=
{
V = (vlk)2×2 : 0 <

1
l + k

+ 0.04 ≤ vlk ≤ 0 <
1

l + k
+ 0.06, l, k = 1, 2, ∀ V ∈ V I

}
;

W I :=
{
W = (wlk)2×2 : 0 <

1
l + k

+ 0.02 ≤ wlk ≤
1

l + k
+ 0.08, l, k = 1, 2, ∀ W ∈ W I

}
;

AI :=
{
A = (Alk)5×5 :

1
2l + 3k

+ 0.01 ≤ Alk ≤
1

2l + 3k
+ 0.03, l , k, l, k = 1, 2, .., 5 ∀ A ∈ AI

}
.

It is easy to obtain that Dl(·), Ul(·) and hk(·) satisfy assumptions [H1] − [H3] with dl = 0.2, dl = 0.4,
ul = 7, Lk = 0.5 for l, k = 1, 2 and z̆ = (0 0)T ∈ R2 is an equilibrium point of (4.2). By simple
calculation, it is easy to get ζ = 0.541, µ = 0.223 and $ = 0.104 with ε1 = 0.5 and ε2 = 1, and the
conditions of Theorem 3.5 holds. Hence the FCCGNNs (4.2) achieve globally asymptotically stable
from Theorem 3.5. Figures 3 and 4 demonstrate the numerical simulation results, which confirms the
obtained theoretical findings.
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Figure 3. The change processes of
zl1(t), zl2(t), l = 1, 2..., 5.
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Figure 4. The change processes of
‖ml(t)‖2, l = 1, 2..., 5.

5. Conclusions

In this paper, we have investigated the global asymptotical synchronization stability and global
robust asymptotical synchronization stability topic for FCCGNNs under coupling delays. On the one
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side, via Lyapunov method, LMI technique, and proposed comparison principle theorem, we have
derived the several asymptotical synchronization stability results for the considered complex network
without parameter uncertainties. On the other side, thanks to some inequality techniques and robust
analysis skills, the author’s concerns the issues of global robust asymptotical synchronization stability
for the considered complex network with parameter uncertainties. In the end, we provide two computer
simulations to demonstrate the validity of the proposed analytical methods. Our future work will
be extended to stability, stabilization and synchronization of Riemann-Liouville sense delay-coupled
fractional order memristive Cohen-Grossberg BAM neural networks with time varying discrete and
distributed delays.
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