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KEYWORDS Abstract Our motive in this contribution is to find out the operational matrix of fractional deriva-
Fractional partial differential tive having non singular kernel namely Rabotnov fractional-exponential (RFE) kernel which is
equation; recently introduced and seeking numerical solution of non-linear Lienard equation which have
Lienard equation; Rabotnov fractional-exponential kernel fractional derivative. First we derive an approximation for-
Fractional derivative with mula of the fractional order derivative of polynomial function z* in term of RFE kernel. Using this
RFE kernel; formula and some properties of shifted Legendre polynomials, we find out the operational matrix of
Operational matrix; fractional order differentiation. In the author of knowledge this operational matrix of RFE kernel
Legendre polynomial fractional derivative is derived first time. We solve a new class of fractional partial differential equa-

tion (FPDEs) by implementation of this newly derived operational matrix. We show that our newly
derived operational matrix is valid by taking an fractional derivative of a polynomial. Also, we
study a new model of Lienard equation with RFE kernel fractional derivative and we can easily pre-

dict the feasibility of our numerical method to this new model.
© 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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equation viz., transport in porous medium, ground water con-
tamination problem through porous medium etc. Fractional
calculus is that branch of mathematics that originates from
the classical one [1]. The integral and derivative in fractional
calculus is obtained from the integer order by replacing integer
order exponent by real or arbitrary order.

N.H. Abel and J. Liouville first developed the theory of this
fractional calculus we can found the more details on fractional
calculus in [2,3]. We can extend the real order to variable order
in differentiation or integration with the help of theory given in
fractional calculus. There are many physical phenomena that
can not be represent by classical derivative so we need the dif-
ferential equation having fractional order. These fractional dif-
ferential equation have a lot of application in control theory,
biology, physics and medical science. In starting only frac-
tional derivative with power law kernel was investigated. These
types of fractional derivative include Caputo definition, Rie-
mann-Liouville definition (RL), Hadamard and Griinwald-
Letnikov definition. The theory of fractional differential equa-
tion boosts the application and research in many fields of
science and engineering. But the main difficulty was to find
out the solution of these FPDEs. By analytical method like
as Laplace transform method, Homotopy analysis method
and Fourier transform method it is too difficult to solve every
linear and non linear FPDEs. So the researchers started to find
out the method to solve these equation numerically. There are
many method available in literature: eigen-vector expansion,
Adomain decomposition method [4], fractional differential
transform method [5], homotopy perturbation method [6], pre-
dictor—corrector method [7] and generalized block pulse oper-
ational matrix method [§], etc. A method named as operational
matrix method is so popular due to its simplicity and good
accuracy. Many numerical methods which are based upon
operational matrices of integration and differentiation with
Legendre wavelets [9], Chebyshev wavelets [10], sine wavelets,
Haar wavelets [11] are given in literature to derive the numer-
ical solution of fractional PDEs and integro differential equa-
tions. Legendre polynomial [12], Laguerre polynomial [13],
Chebyshev polynomial and semi-orthogonal polynomial as
Genocchi polynomial [14] are commonly used polynomial in
deriving the operational matrix and then numerical solution
of FPDEs.

Nowadays many different fractional operator which are
generalization of classical ones are developed. The classical
derivative as Caputo and Riemann-Liouville have power ker-
nel. If we replace this kernel with exponential kernel and Mit-
tag—Leffler kernel than we get a new generalized class of
fractional derivative. The derivative having exponential kernel
is known as Caputo-Fabrizio derivative while having Mittag—
Leffler is known as Atangana-Baleanu derivative. These non-
singular derivative a lot of application in chaos theory [15],
groundwater flow [16], medical sciences [17] and others areas
[18-33].

We have organized our article as follows. Section 2 contains
the some useful definition of fractional derivative like as
Caputo, R-L and RFE kernel fractional derivative. In Sec-
tion 3, we derived the general formula of RFE derivative of
the function #*. Some properties of orthogonal Legendre poly-
nomial is also included in this section. In Theorem 2 we have
derive the shifted Legendre operational matrix of this RFE
kernel fractional derivative. In Section 4, we described the pro-

posed method for solving FDEs with fractional RFE kernel
derivative and discussion of our Lienard model. The conclu-
sion of all over work in given in last section.

2. Preliminary definitions

In the last few years, many definitions of fractional integration
and differentiation has been come into the light. All of them
have own special properties and applications. Caputo defini-
tion is more reliable as compare to Riemann—Liouville defini-
tion as application point of view. These definition are with
power or singular kernel law. Nowadays many generalized def-
initions of fractional derivative with exponential and Mittag—
Leffler kernel law have been introduced. We discussed a brief
definitions and properties of R-L, Caputo and recently devel-
oped RFE derivative.

2.1. Riemann—Liouville order derivative and integration

The R-L integration of order ¢ > 0 of a function A(¢) is given
by
1 zZ
Ih(z :—/ z— )" '"h(w)do,z > 0,9 € R*. 1
(2) @ ), ( )" h(m) (1)

Now Riemann-Liouville fractional order differentiation of
a function A(¢) with order ¥ > 0 is defined as

DIA(r) = (%)m(l’””’h)(t), (m—1<9<md>0). 2)

2.2. Definition of Caputo derivative

The Caputo derivative of a function /(¢) having order ¥ > 0 is
given as follows

s Jo (=07 ()
0|

I-1<9<]

D7h(1) =
9=1¢€N,

3)

with / an integer and time interval ¢ > 0.

Some important properties of Caputo differentiation are
given as follows
D’C =0, (4)

where C is a constant.
A relation between Caputo and Riemann—Liouville frac-
tional operator can be defined as

~1 .
(I'Dlg)(1) =g(t) = Y _¢"(0") ;5.1 — 1<V <L (5)
k=0 :

2.3. Definition of fractional derivative having RFE kernel [34]

The fractional integral with RFE kernel of function /(x, ¢) of
order 6 and with respect to ¢ is defined as follows

REEPR(x, 1) = /Orh(x, 5) X My [fk(t - S)U] ds, (6)

where the parameter A€ R and Rabotnov fractional-
exponential function can be defined as follows
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(=) D) (0+1)-1

Ml “T((i+ )0+ 1)

Now the left sided Caputo fractional order derivative on
interval [0, 1] with RFE kernel is defined as follows
t 1
REEDOh(x,t) :/ w x My [fﬂ,(t fs)ﬂ] ds, n—1<0<n,
0 s
(7)

with 1 € R".
The right sided Caputo fractional order derivative with
RFE kernel on interval [0, 1] can be defined as follows

- d"h(x,s
e = (-1 [

XM()[ (t—s)“]ds7 n—1<0<n.

(8)

3. Operational matrix of fractional differentiation with RFE
kernel derived from shifted Legendre polynomial

3.1. Approximation of fractional order derivative of z*

In the literature there are lot of articles in which we can see the
derivation of operational matrix of differentiation and integra-
tion in both Caputo and Riemann—Liouville sense. In this sec-
tion we will derive the operational matrix of fractional order
differentiation with respect to RFE kernel based on Legendre
polynomial. In our knowledge this operational matrix is
derived for the first time.

Theorem 1: The RFE derivative of order n — 1 < 0 < n of
function f{(z) = zF with k > [0] is given by

é{FEDka = % X g[Qo,/c(So, z) + Qo (Sm, 2)
+4{Qp s (51,2) + Qoi(s3,2) + - + Qoy(Sp-1,2)}
+2{Q (82, 2) + Qoyc(84,2) + - + Qoy(Sp-2,2)}]

Proof: Using the definition of RFE kernel based fractional
differentiation in Caputo sense we get
D'z5 =0,k =0,1,---,n— 1. Now for k > [0] we have

RFEDOIZE = [T D"s*M, [—/l(z - 5)0] ds
k- c—n 0
=l l'(k/:trJlr)l) M, [_)'(Z =) ]ds

_ T(k+1) fo gk "Mo[ )(z—s)ﬂ]dS.

T T(k—n+1)

The integral in above equation is a complicated integral. So we
have used a numerical scheme to evaluate this. We can use any
of available numerical integration scheme available in litera-
ture like as Simpson 1

C(k+1) /1 k—n
= Th—ntD) 55 "My

+4{ "Me{ Z*Sl
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>J
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|
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Q)
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[E—

st
1My [ = Sm—1

+2{ k= ”Mg{ (z—5

~ ~— ~— ~—
5
[t By Wt By S—

k_
+S,,,_"2M0[ 0z = Sma

= l"{k(i;lr)l) X I% [Q()J<(So7 Z) + QO,/( (sm: Z)
+4{Qpx(51,2) + Qox(s3,2) + - + Qop(Sm-1,2)}
+2{Qpx(52,2) + Qos(84,2) + - + Qop(Sm-2,2)}]-

We have divided the domain [0, 1] into m equal segments and %
represents the length of each segment

h=20 0 (s, 2) = 5" M, [—).(z — s)o] ,

_ _ 1 _2 _
so=0,s =Sy =Sy = 1.

3.2. Legendre polynomials

Now we discussed here about Legendre polynomials and their
some properties. We shifted Legendre polynomials on the [0, 1]
from the interval [—1, 1] by the transformation z = 2x — 1. The
analytical form of these polynomials of degree i are given as
follows
i (_1)L+k(l+ k)' )

where i =0,1,---

These polynomials are orthogonal on the interval [—1,1]
with respect to the weight function 1 and the orthogonality
condition can be described as

/ e { = (10)

0 i .
A function {(x) which belongs to the L?[0, 1] can be approxi-
mated by a linear combination of shifted Legendre polynomi-
als as

{x) = In(x) = D _a (), (11)
where the linear coefficients are given by

4=+ 1) / Lo (x). (12)

Similarly, a function {(x,¢) of two variable can be approxi-
mated as

N-1IN-1

a,/lp (13)

i=0 /=0

where a; are unknown coefficient. The matrix formation of
above equation (14) is represented by following equation

N—1N—-1
() = G = Yo a0 (x) = O5(0ATO (1), (14)
=0 =0
where,
AT = (a07a17 te 7aN71)7

r (15)
On(x) = Wo(x), ¥, (%), -+ ¥y (X))
In view of equation (16) we will derive the Legendre opera-
tional matrix of RFE derivative in the following theorem.
Theorem 2: Let O y(x) be the shifted Legendre vector with
n—1< 0 < nthen,

(" DjON(1) = 0"6x(1), (16)
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where Q” denotes the N x N RFE operational matrix of order
0. It can be defined as

0 0 . 0 h
0 0 e 0
[0] [0] [0]
W07 ke 1 Z W101,0,k Z W10),m—1,k
k=[6] k=[0] =[0]
QH _ : : :
Z Wi 0.k Z W1k Z Wim-1k
k=[0] k=[0] k=[0]
m—1

m—1
E Win—1,0,k E Win—1,1,k é Wm—1,m—1k

k=[0] k=[0] k=[0]

where @, is obtained by the following relation

S ey
(ﬂ)zo'—/)'

(=D (+k)! o Tlket1)
(kD2 (1—k)! * T(k—n+1)

Wijk =

x (2j+1)

Here range of i and j varies from i=[0]---,N—1 and

j=0,1,---, N —1 respectively.
Proof: By using Theorem 1 we have
RFE D0 e — TG+

T(k—n+1) g[Q()Jc(Sm t) + Q()?k (Sm7 t)
FA{Qox(s1,1) + Qou(s3, 1) + - + Qog(sm1,1)}
+2{Q()‘k(s27 Z) + Q()‘k(&‘7 Z) + -+ QO,/((Smfb Z)}]

The RFE derivative of the i-th degree shifted Legendre polyno-
mial is

4 (=D k) : .
RFE py0,, (4 :Z( REEDOk 0.1,
B TR T T

_ — 1)K ikt T(k+1 ) .
= P W l"(k—n+)1) X %[Qo,k(so, 1) + Qo (S, 1)
+4{ngk(sl, l) + Q(),k(537 l) + -+ Q()J((Sm—l, Z‘)}

+2{ Qs (52 + Qo (s, 1) }]-

The (i,/)" element p;; of operational matrix 0’ is deter-
mined by the taking inner product with shifted Legendre poly-
nomial ¢,(x),j=0,1,---N—1

s l) -+ Q()vk(Sz;, f) + -

RFEDO p; (p
Z ST (17)
Pij = <§FED?90i( )a(Pj( ))
N (—1>"'"<f+k>r [(k+1)
- (/(V) (I—k)! T(k—n+1)
k=[0]
XA [(Qox(s0,2),9;(1)) + (Qo(s2,1), 0;(1))
+4{(Qox(s1,0), 0;(1)) + Qo (53,1), (1)) + (18)

F2{(Qox (52,8),0,(1)) + (Qos (54, 1),0,(2)) +- -+

), 0;(1) +
), 0;(1) +
H(Qox(sa-1,1),0;(0))}
), 0;(1))
+(Qox(s0-2,1),0;(1))}]

Above expression contains many inner products which are
determined as follows

<Qe,k(5p7l),(ﬂ,-(l‘)>:(2_/+1)/0 Qoi(sp, ) ;(0)dt, p=0,1,---Q

(19)
J /+/
l+])
(2]+1 / Qﬂksm Z 71 ldl

= U

=2j+1) z/: 1)’”(}+1)'(/0 Q,,_k(smz)t’dz)

= (G—0!

J I
= 2j+1 Z /ll)ﬂ(lﬂ L .ng(i‘,,,l0)01+99‘k(sp,lg)91
1=0

(/+/’2

FA{ Q0 (5p, 1) T+ Qoa(5p,13)3 4+ + Qos (5,10 1) (@ — 1)}
+2{ Q0 (5p, 12)2" + Qo (5, 12)4 + -+ Qo (5,10 2)(2—2)'}

J
_ /+/)‘
= (2j+1 ; T 1+;)' ps
where,
A[, :g [Q(;.k(s,,, l())ol + Q(}A’k(sp, [Q)Ql
F4{ Qs (59, 1)1+ Qo (5, 13)3 4+ -+ Qo (55,10 1) (R 1)}

F2{Qui(5p,12)2 + Qo (5p, ta)4 + -+ Qos (5, 102) (2 —2)} |

Putting the value of both of inner product in equation (19) we
obtained the following expression of p,;

J
(=D (k) O T(k+1) 2 1)/*’(/+1
+1)
Z k' (I—k)! C(k—n+1) j ; (20)

(A0+A1+ -+ Ag).

Considering p;; = Zlm @;j, we get the final desired result

(=G0
X (+ I)ZO 7G-1

The operational matrix obtained above is applicable for frac-
tional order. For the integer case we have the following

R J=i— k7
Pij = 0

otherwise,
where k =1,3,---mif misodd and k=1,3,--

even. The function #; is defined as

n=2x(2+1).

[N V31RO w(S))
(kY2 (1=k)t 7 T(k—n+1)

Wijike =

(1)

-m—1if mis

4. Proposed algorithms

In this section we use the previous newly derived operational
matrix for RFE based fractional derivative. Now we investi-
gate the following model of Lienard equation having RFE
based fractional derivative

0" FDLL(X) + w1 (G )DL + 1ea(Cx) = s (). (22)

with initial conditions
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£(0) = by, L'(0) = by. (23)

As we have derived the new operational matrix of fractional
differentiation based on RFE kernel derivative. Now we will
implement this matrix for finding the numerical solution of
model (22). The unknown function {(x) can be written as finite
linear combination of shifted Legendre polynomials

() = Y i), (24)

where ¢; are unknown coefficients for i=0,2,---; and
j=0,1,2,---.

The expression given in (24) can be written in matrix form
as follows

((x) = C.ON(x), (25)

where C=[¢],,y 18 an 1 x N matrix of unknowns and
On(x) = (do(x), b, (x), -+, Py, (x))" is a column vector. With
the help of derived operational matrix and approximate
expression of {(x) given in equation (25) we have the following

SEDIL(x) = 0'C(x) = C.0".Ox(). (26)
Similarly
FEDIL(x) = 0'1(x) = €.0"O(x). @n

Similarly we can approximate the initial conditions in the
matrix form by taking help of equation (23). we get,
C@N(O) = b],
C.0".0,(0) = b,.
With the help of Eqgs. (26)—(28) and by putting the value of {(x)
and their fractional derivative, we get the residual function as
follows
Ex) = C.0".05(x) 4+ K (C.Oy(x),x)C.0".Oy(x)
—12(C.On(x),x)C.ON(X) + K3(x).

(28)

(29)

Now collocating Egs. (28) and (29) at Legendre notes, we get
an non linear system of algebraic equations. By Solving that
system of equations and finding C we obtained numerical solu-
tion of our proposed model.

5. Results and discussion

In this section we will show the validity of newly derived oper-
ational matrix of differentiation of RFE derivative. We use the
newly derived operational matrix of shifted Legendre polyno-
mials to finding out the numerical solution. We have used the
Wolfram Mathematica version-11.3 in all numerical
computations.

Example 1: Considering the function s(x) = x>, we find out
the RFE derivative of this function. Let us assume
s(x) = O%(x).C where coefficient vector C can be find out by
using the orthogonal properties of Legendre polynomial. Now
taking derivative of order 0.9 and using operational matrix

(DY Y = Q"0 (x).C. (30)

We plot the graph of absolute error between exact deriva-
tive and derivative find out by the RFE operational matrix.
We conclude from this plot that our newly derived operational
matrix has a good accuracy. It can be easily seen by Fig. 1.

Example 2: Considering 1({,x) = {,x,({,x) =¢* and
0 = 0.9 we get the following RFE kernel based fractional Lien-
ard equation

o EDUL(x) + GTEDLL() + O = ws (). (31)
We can take following initial conditions
0)=1,
- 32
o) =1

We are choosing the exact solution of this problem
{(1,x) = e*and the function x3(x) can be found accordingly
to the exact solution. Fig. 2 represent the graphs of absolute
error between approximate and existing exact solution for
N=38.

3.5x10-8;
3.x1078 |
2.5x1o-8§
2.x10-8 1
1.5x1078
1.x1078 |

5.x1079 |

0.2 0.4 0.6 0.8 1.0

Fig. 1  Plots of absolute error for N = 7.

2.x1076

15x106 -

1.x1076 |

5.x1077 |

0.2 0.4 0.6 0.8 1.0

Fig. 2 Plots of absolute error for N = 7.

7.x1076 |
6.x106 F
5.x106 F
4.x1078 F
3.x1076 |
2.x1076 |

1.x1076 |

0.2 0.4 0.6 0.8 1.0

Fig. 3  Plots of absolute error for N = 7.
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Example 3: Considering x; = {(1 — {),x; = ¢* and 0 = 0.9
our model reduces to the following equation

0 EDRL(x) + (1 = OFEDLL(x) + € = K3 (x). (33)
with following initial conditions
{(0) =0,
34
¢0) =0, e

We take the exact solution {(x) = x? with suitable force
function. Fig. 3 represent the variations of absolute error
drawn between approximate and exact solution.

6. Conclusion

In this paper, we have solved numerically the RFE kernel
based fractional Lienard equation. We derived an accurate for-
mula of RFE derivative of z& for the first time. For the first
time the RFE operational matrix of shifted Legendre polyno-
mials is derived. The accuracy and validity of this operational
matrix is also shown by operating it on function s(¢) = x>. We
show the successful implementation of this operational matrix
to solve the RFE kernel based fractional ordinary differential
equation. We easily conclude that our proposed method is
valid for such type of FDEs which have RFE fractional deriva-
tive. The graphical and exhibitions is presented to validate the
effectiveness of the proposed method used for solving various
cases of Lienard equation having RFE fractional derivative.
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