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Abstract The current investigation is related to the

design of novel integrated neuroswarming heuristic

paradigm using Gudermannian artificial neural net-

works (GANNs) optimized with particle swarm opti-

mization (PSO) aid with active-set (AS) algorithm,

i.e., GANN-PSOAS, for solving the nonlinear third-

order Emden–Fowler model (NTO-EFM) involving

single as well as multiple singularities. The Guder-

mannian activation function is exploited to construct

the GANNs-based differential mapping for NTO-

EFMs, and these networks are arbitrary integrated to

formulate the fitness function of the system. An

objective function is optimized using hybrid heuristics

of PSO with AS, i.e., PSOAS, for finding the weights

of GANN. The correctness, effectiveness and robust-

ness of the designed GANN-PSOAS are verified

through comparison with the exact solutions on three

problems of NTO-EFMs. The assessments on statis-

tical observations demonstrate the performance on

different measures for the accuracy, consistency and

stability of the proposed GANN-PSOAS solver.
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Abbreviations

GANNs Gudermannian artificial neural networks

PSO Particle swarm optimization

AS Active set

NTO-

EFM

Nonlinear third-order Emden–Fowler

model

Med Median

S.IR Semi-interquartile range

FIT Fitness

TIC Theil’s inequality coefficient

AE Absolute error

SD Standard deviation

G.TIC Global Theil’s inequality coefficient

NSE Nash–Sutcliffe efficiency

Min Minimum

1 Introduction

The singular nonlinear models are of great signifi-

cance in the variety of fields, i.e., biology, technology,

applied mathematics, engineering and physics. The

typical mathematical representation of the singular

Emden–Fowler equation is written as [1–5]:

d2U

dX2
þ !

X

dU

dX
þ gðXÞhðUÞ ¼ 0; 0\X� 1;!� 0;

Uð0Þ ¼ a;
dUð0Þ
dX

¼ 0;

8
><

>:

ð1Þ

where a is constant, ! represents the shape factor and

X shows the singular point. The singular model (1) has

been applied to mathematically development of the

numerous model arising in broad fields like stellar

structure, astrophysics, isothermal gas spheres and

mathematical physics [6–8]. It is always considered

tough to solve the singular nonlinear models due to

singular points at the origin. Few numerical/analytical

techniques available in the literature to solve the

singular models. Parand et al. [9] introduced meshfree

numerical computing procedure for Emden–Fowler

system, and Singh et al. [10] used Haar wavelet quasi

linearization method for numerical solution of

Emden–Fowler model. Bencheikh [11] applied Bern-

stein polynomial method for nonlinear singular

Emden–Fowler equations. Parand et al. [6] imple-

mented Hermite functions based collocation

scheme for solving the singular models. Sabir et al.

[12] solved third-order nonlinear singular functional

differential model using the differential transforma-

tion scheme. Sadaf et al. [13] introduced Legendre-

homotopy method for boundary value problems

(BVPs) with higher order terms. Dizicheh et al. [14]

present a Legendre wavelet spectral technique to solve

the Lane–Emden differential systems. Parand et al.

[15] solved singular astrophysics problems using the

rational Chebyshev based collocation procedures.

The said approaches have their specific potential,

exactness, sensitivity and competence as well as

accountabilities and defects over another. The present

study is related to solve the third-order Emden–Fowler

model using the Gudermannian neural network (GNN)

as an activation function along with the optimization

of global search with particle swarm optimization

(PSO) and local search with active set (AS) scheme,

i.e., GANN-PSOAS approach. The general form of the

nonlinear third-order Emden–Fowler model (NTO-

EFM) is written as [16]:

The above model clearly indicates the double

singular points at X = 0 and X2 = 0. Few current

applications of the stochastic solvers are seen in broad

fields [17–21] and particularly, in plasma physics

problems [22], financial model [23], dusty plasma

models [24], bioinformatics problem of HIV infection

spresd [25], Thomas–Fermi atom’s models [26, 27],

nonlinear reactive transport model [28], fin model

d3U

dX3
þ 2!

X

d2U

dX2
þ !ð!� 1Þ

X2

dU

dX
þ gðXÞhðUÞ ¼ 0;

Uð0Þ ¼ a;
dUð0Þ
dX

¼ d2Uð0Þ
dX2

¼ 0:

8
>><

>>:

ð2Þ
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[29], neuro-fuzzy model [30], nonlinear singular

models [16, 31], doubly singular nonlinear models

[32], prey-predator models [33], nonlinear models

[34], model of heartbeat dynamics [35], corneal shape

model [36], multi-point boundary value problems

[37], atomic physics model [38], temperature distri-

bution dynamics of human head [39], singular func-

tional differential system [40] and novel COVID-19

dynamics with nonlinear SITR system [41]. These

motivations demonstrated the worth of the stochastic

numerical solvers due to their better precision/accu-

racy and convergence. Thus, we are interested to

exploit/explore the stochastic computing paradigm to

design a reliable methodology based on GANN,

trained with PSO and AS scheme to solve the NTO-

EFM including single/multi singularities.

The innovative characteristics of the GANN-

PSOAS scheme are listed as follows:

• A new continuous differential mappings of GANN

models are presented for the solution of singular

NTO-EFMs by construction of merit function in

mean square sense and optimization is performed

with combined heuristics of PSOAS.

• The proposed GANN-PSOAS scheme is efficiently

implemented to solve three problems of the NTO-

EFM with singularity at origin with reasonable

precision.

• The achieved numerical outcomes of proposed

GANN-PSOAS approach matched with the refer-

ence exact solutions for each variant of singular

NTO-EFM that indicates the exactness, precision

and consistency.

• The outcome of statistics for proposed GANN-

PSOAS approach of on sufficient large multiple

execution through performance measures on

median, mean, standard deviation, Nash–Sutcliffe

efficiency (NSE), semi-interquartile range (S.IR),

and Theil’s inequality coefficient (TIC) further

certify the worth.

The remaining portions of the present investigation

are described as: Sect. 2 shows the proposed structure

and optimization schemes. Section 3 represents the

performance indices. Section 4 indicates the details of

the numerical outcomes. The conclusions along with

future research studies are shown in Sect. 5.

2 Proposed methodology

In this section, the differential operators of GNN are

designed along with the necessary description for

solving the NTO-EFM. The mathematical modeling,

the objective function and its learning process are

provided here for proposed solver GANN-PSOAS.

2.1 Gudermannian Function based Mathematical

Modeling

The capability of GNN systems is presented for

consistent, reliable and trustworthy results for the

optimization of the proposed problem. UðXÞ repre-

sents the continuous mapping results, and its deriva-

tives are written as:

ÛðXÞ ¼
Xk

i¼ 1

biZðwiX þ ciÞ;

ÛðnÞ ¼
Xk

i¼1

biZ
ðnÞðwiX þ ciÞ;

ð3Þ

where k and Z represent the number of neurons and

activation function, whereas b, w and c are the

unknown weight vectors ‘W’ given as: W ¼ ½b;w; c�,
for b ¼ ½b1; b2; b3; :::; bm�,w ¼ ½w1;w2;w3; :::;wm�
and c ¼ ½c1; c2; c3; :::; cm�.

The Gudermannian-based NN is given as:

UðXÞ ¼ 2 tan�1 eX � 1

4
p

� �

: ð4Þ

Using the Gudermannian-based activation function

provided in Eq. (3), the continuous mapping of

differential operators takes the form as

ÛðXÞ ¼
Xm

i¼1

2bi tan�1 eðwiXþciÞ � 1

4
p

� �

;

Û0ðXÞ ¼
Xm

i¼1

2biwi
eðwiXþciÞ

1þ eðwiXþciÞð Þ2

 !

;

Û00ðXÞ ¼
Xm

i¼1

2biw
2
i

eðwiXþciÞ

1þ eðwiXþciÞð Þ2
� 2eðwiXþciÞ3

1þ eðwiXþciÞð Þ2
� �2

0

B
@

1

C
A:

ð5Þ

To solve the NTO-EFM, an objective function

using the sense of mean squared error becomes as:
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nFIT ¼ nFIT�1 þ nFIT�2; ð6Þ

where nFIT is an error function associated with NTO-

EFM, nFIT�1 and nFIT�2 denote the fitness functions of

the model differential form and boundary conditions,

written as

nFIT�1 ¼
1

N

XN

k¼1

d3Ûk

dX3
k

þ 2!
Xk

d2Ẑk

dX2
k

þ !ð!� 1Þ
X2
k

dÛk

dXk
þ gkhðÛkÞ

� �2

;

ð7Þ

nFIT�2 ¼
1

2
ðÛ0 � aÞ2 þ dÛ0

dXk

� �2

þ d2Û0

dX2
k

� �2
 !

;

ð8Þ

where hN ¼ 1; Ûk ¼ ÛðXkÞ; gk ¼ f ðUkÞ; and

Xk ¼ kh.

2.2 Optimization of the network

The optimization of the parameters is performed for

the solution of NTO-EFM by incorporating the

strength of hybrid-computing infrastructure based on

swarm intelligence global technique PSO along with

local AS approach.

PSO is an effective search scheme used as an

alternate optimization procedure of genetic algo-

rithms. PSO ascertained by Eberhart and Kennedy at

the end of the nineteenth century [42–44] and

applied as an easy technique with less memory

requirements. In the system of search space, a single

candidate outcome of decision variables for the

optimization is called a particle and the set of these

particles form a swarm. For the adaptation of

optimization variables, PSO works through the

optimization process based on the local and global

positions PX�1
LB and PX�1

GB in the swarm. It metaheuris-

tic technique and capable of searching very large

spaces of candidate solutions. Particle swarm opti-

mization does not require too many assumptions in

optimization. The mathematical notations of the

position and velocity are given as:

XX
i ¼ VX�1

i þ XX�1
i ; ð9Þ

VX
i ¼ rVX�1

i þ f1ðPX�1
LB � XX�1

i Þc1 þ f2ðPX�1
GB

� XX�1
i Þc2;

ð10Þ

where r is the inertia weight vector lie between [0, 1],

X is the flight index, f1 and f2 are the social/global and
cognitive/local constants of the accelerations, whereas

c1 and c2 are the vectors lie between 0 and 1. Recently,

a wide-ranging review on hypothetical and experi-

mental studies on PSO has been discussed by the

research community in various dimensions, i.e.,

geotechnical modeling [45], optimize the performance

of induction generator [46], traveling salesman prob-

lem [47], nonlinear electric circuits [48], mobile robot

in a complex dynamic environment [49], physical

model systems [50], combinatorial optimization prob-

lems [51] and permanent magnets optimization of

synchronous motor [52].

The quick performance of PSO is the rapid

convergence due to the hybridization with a suit-

able local search approach by taking the best values of

PSO as a primary weight. Therefore, an appropriate

local search active-set (AS) approach is applied for

fast refinements of the results obtained by the PSO

algorithm. Recently, AS approach is used in the

scalable elastic net subspace clustering [53], nonlinear

fluid mechanic models [54], multistage nonlinear

nonconvex problems [55], symmetric eigenvalue

complementarity problem [55] and embedded model

predictive control [56].

The hybrid of PSOAS algorithm trains the GNNs as

well as vital parameter setting for PSOAS scheme pro-

vided in Algorithm 1. The parameter setting is a

crucial and critical step in the optimization process of

the algorithms, i.e., PSO and AS, a slight variation of

the parameter setting of these algorithm results in

premature convergence, so all these parameters are

adjusted with extensive care, after exhaustive exper-

imentation, experience and knowledge of both opti-

mization procedures and problem under consideration

etc.
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3 Performance matrices

The performance processes of two different measures

of the system (1) based on TIC and NSE are presented.

The global presentations of G.TIC and NSE are used to

examine the proposed methodology for solving the

NTO-EFM. Themathematical representations of these

indices are provided as follows:

NSE = 1�

Pn

i¼1

Ui � Ûi

� �2

Pn

i¼1

Ui � Ui

� �2
; Ui ¼

1

n

Xn

i¼1

Ui;

8
>><

>>:

ENSE = 1� NSE:

ð11Þ

TIC =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i¼1

Ui � Ûi

� �2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i¼1

U2
i

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i¼1

Û2
i

s ! ; ð12Þ

S.IR =
0:5� Q3 � Q1ð Þ;
Q3 ¼ 3rd quartile,Q1 ¼ 1st quartile:

	

ð13Þ

4 Simulation and results

In this section, the detail results are presented for the

numerical outcomes to solve three problems of the

NTO-EFM using the GANN-PSOAS approach.

Problem 1: Consider the NTO-EFM-based example

is shown as:
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d3U

dX3
þ 2

T

d2U

dX2
� 9

8
ð8þ X6ÞU�5 ¼ 0;

Uð0Þ ¼ 1;
dUð0Þ
dX

¼ d2Uð0Þ
dX2

¼ 0:

8
>><

>>:

ð14Þ

The exact result of the above equation is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X3

p
,

and the error function becomes as:

nFIT ¼ 1

N

XN

m¼1

8Xm
d3Û

dX3
m

þ 16
d2Û

dX2
m

� 9XmðX6
m þ 8ÞÛ�5

� �2

þ 1

3
Û0 � 1
� �2þ dÛ0

dX0

� �2

þ d2Û0

dX2
0

� �2
 !

:

ð15Þ

Problem 2: Consider the NTO-EFM including

multi-singularities is shown as:

d3U

dX3
þ 4

X

d2U

dX2
þ 2

X2

dU

dX
� 9ð4þ 10X3 þ 3X6ÞU ¼ 0;

Uð0Þ ¼ 1;
dUð0Þ
dX

¼ d2Uð0Þ
dX2

¼ 0:

8
>><

>>:

ð16Þ

The exact result of the above equation is eX
3

along

with the fitness/error function provided below:

nFIT ¼ 1

N

XN

m¼1

X2
m

d3Û

dX3
m

þ 4Xm
d2Û

dX2
m

þ 2
dÛ

dXm

�

�9X2
mð4þ 10X3

m þ 3X6
mÞÛ

�2

þ 1

3
Û0 � 1
� �2þ dÛ0

dX0

� �2

þ d2Û0

dX2
0

� �2
 !

:

ð17Þ

Problem 3: Consider the NTO-EFM including

multi-singularities at the origin is shown as:

d3U

dX3
þ 8

X

d2U

dX2
þ 12

X2

dU

dX
þ 1 ¼ 0;

Uð0Þ ¼ 1;
dUð0Þ
dX

¼ d2Uð0Þ
dX2

¼ 0:

8
>><

>>:

ð18Þ

The exact result of the above equation is

� 1
90
X3 � 1

� �
, and the error function becomes as:

nFIT ¼ 1

N

XN

m¼1

X2
m

d3Û

dX3
m

þ 8Tm
d2Û

dX2
m

þ 12
dÛ

dXm
þ X2

m

� �2

þ 1

3
Û0 � 1
� �2þ dÛ0

dX0

� �2

þ d2Û0

dX2
0

� �2
 !

:

ð19Þ

Problem 4: Consider the NTO-EFM including

multi-singularities at the origin is shown as:

d3U

dX3
þ 4

X

d2U

dX2
þ 2

X2

dU

dX
þ XU2 ¼ 0;

Uð0Þ ¼ 1;
dUð0Þ
dX

¼ d2Uð0Þ
dX2

¼ 0:

8
>><

>>:

ð20Þ

The exact result of the above equation is 1þ X10,

while the error-based fitness is expressed as:

nFIT ¼ 1

N

XN

m¼1

X2
m

d3Û

dX3
m

þ 4Tm
d2Û

dX2
m

þ 2
dÛ

dXm
þ X2

mÛ
2

� �2

þ 1

3
Û0 � 1
� �2þ dÛ0

dX0

� �2

þ d2Û0

dX2
0

� �2
 !

:

ð21Þ

Optimization of the NTO-EFM-based examples 1–

4 is accomplished by manipulating the PSOAS

approach using the Gudemannian function as an

objective function for fifty independent executions to

find the parameters of the system. A set of best weights

are provided to authenticate the projected numerical

values of the model given in Eq. (1) for 10 neurons.

Themathematical notations of the projected numerical

outcomes are written as:
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The best set of weights and result comparison based

on the reference exact/proposed outcomes for all the

problems of the NTO-EFM are illustrated in Fig. 1. It

can be seen that the proposed results from the GANN-

PSOAS approach and reference/exact solutions

matched over one another for all four problems of

the NTO-EFM. This matching of the numerical results

indicates the perfection, correctness and excellence of

the projected GANN-PSOAS approach. Figure 2

shows the absolute error (AE) values and performance

investigations through GANN-PSOAS approach for

three problems of the NTO-EFM and similar trend is

observed for problem 4. Figure 2(a) depicts the AE

values that have been found for higher decimal places

of accuracy, i.e., 10–5 to 10–6, 10–4 to 10–5 and 10–6 to

10–7 for problems 1, 2 and 3 of the NTO-EFM.

Figure 2(b) indicates the performance studies based

on nFIT , ENSE and TIC for the problems 1–3 of the

Û1ðXÞ ¼ � 0:07 2 tan�1 eð�3:004X�5:985Þ � 1

2
p

� �

þ 5:4845 2 tan�1 eð2:8075Xþ6:7644Þ � 1

2
p

� �

� 3:1639 2 tan�1 eð�1:739X�1:653Þ � 1

2
p

� �

þ 1:5746 2 tan�1 eð�3:257X�5:6424Þ � 1

2
p

� �

þ 3:7517 2 tan�1 eð�1:131X�6:608Þ � 1

2
p

� �

þ 12:588 2 tan�1 eð0:0977Xþ0:4688Þ � 1

2
p

� �

� 4:776 2 tan�1 eð�0:5593Xþ2:6131Þ � 1

2
p

� �

� 0:3478 2 tan�1 eð1:7898X�0:6415Þ � 1

2
p

� �

þ 2:527 2 tan�1 eð2:1674Xþ0:7886Þ � 1

2
p

� �

þ 5:2395 2 tan�1 eð�1:903X�0:8656Þ � 1

2
p

� �

;

ð22Þ

Û2ðXÞ ¼0:9743 2 tan�1 eð8:0030Xþ4:4796Þ � 1

2
p

� �

� 1:4746 2 tan�1 eð13:073Xþ6:5331Þ � 1

2
p

� �

� 1:4746 2 tan�1 eð�2:2933Xþ2:8480Þ � 1

2
p

� �

þ 3:4100 2 tan�1 eð7:3623Xþ8:2833Þ � 1

2
p

� �

� 1:8858 2 tan�1 eð�6:916Xþ9:6506Þ � 1

2
p

� �

þ 0:8247 2 tan�1 eð�7:266Xþ9:1292Þ � 1

2
p

� �

� 6:0506 2 tan�1 eð�6:646Xþ9:2707Þ � 1

2
p

� �

� 4:8015 2 tan�1 eð0:8626X�10:835Þ � 1

2
p

� �

þ 0:7639 2 tan�1 eð�0:706Xþ0:0:890Þ � 1

2
p

� �

� 1:4884 2 tan�1 eð0:5684X�2:049Þ � 1

2
p

� �

;

ð23Þ

Û3ðXÞ ¼16:885 2 tan�1 eð19:959Xþ19:998Þ � 1

2
p

� �

þ 14:570 2 tan�1 eð�18:37X�19:916Þ � 1

2
p

� �

� 15:547 2 tan�1 eð14:147Xþ13:0948Þ � 1

2
p

� �

þ 19:619 2 tan�1 eð0:0012Xþ1:7629Þ � 1

2
p

� �

þ 15:139 2 tan�1 eð2:7368X�8:9748Þ � 1

2
p

� �

þ 14:8743 2 tan�1 eð1:1241X�10:309Þ � 1

2
p

� �

� 5:4440 2 tan�1 eð�19:996X�19:963Þ � 1

2
p

� �

� 11:486 2 tan�1 eð�19:996Xþ19:956Þ � 1

2
p

� �

þ 19:990 2 tan�1 eð�2:4909Xþ8:6705Þ � 1

2
p

� �

þ 14:558 2 tan�1 eð11:4909Xþ19:9451Þ � 1

2
p

� �

:

ð24Þ
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NTO-EFM. One may clearly observed that the nFIT
closely lie 10–7 to 10–8, 10–6 to 10–7 and 10–8 to 10–9,

for examples 1, 2 and 3 of the NTO-EFM, respec-

tively. The ENSE values lie in the domain from 10–9 to

10–10 for problems 1 and 3, while for problem 2, ENSE

lie 10–8 to 10–9. TICmetric, for examples, 1 and 2 lie in

the interval 10–8 to 10–9, while for problem 3 in the

interval between 10–9 and 10–10.

The performance operators plots/illustrations based

on fitness, ENSE and TIC have been drawn together

with the boxplots and histogram values for all the

problems of the NTO-EFM are given in Figs. 3, 4, 5.

The values of the fitness for Problems 1 and 2 lie in

10–2 to 10–6, whereas for problem 3, mostly fitness lies

in 10–06 to 10–08. The ENSE for problems 1 and 3 lie in

range of 10–3 to 10–7, while for third problem, the

ENSE lie in 10–7 to 10–10. The TIC values for

problems 1 and 2 lie in 10–4 to 10–8, while for problem

3 lie in 10–8 to 10–10. In view of these statistical results,

one can accomplish that the near to optimal levels of

ENSE and TIC have been attained.

The statistical assessments studies have been

described using the GANN-PSOAS approach to solve

all the problems of the NTO-EFM for 50 independent

executions using the measure of central tendency and

variation including the minimum (Min), mean, median

(Med), semi-interquartile range (S.IR) and standard

deviation (SD). The obtained statistical outcomes have

been provided in Table 1. These statistical perfor-

mances for all the problems of the NTO-EFM are

calculated and presented, which describe the accu-

racy/precision of the proposed GANN-PSOAS

approach. The convergence investigations of GANN-

PSOAS approach are further showed on the global

performance measures based on G.FIT, G. ENSE and

G-TIC for 50 independent executions are given in

Table 2. The mean/average levels of the G.FIT,

G.ENSE as well as of G.TIC lie in 10-5 to 10-8, 10-8

to 10-9, 10-7 to 10-8, respectively, while the S.IR of

G.FIT, G.ENSE as well as G.TIC lie in 10-4 to 10-7,

10-7 to 10-9 and 10-5 to 10-8, respectively, for

problems 1 to 3. The close optimal values of these

global level presentations supplementary authenticate

the precision of the projected GANN-PSOAS solver.

The computational bourdon of the proposed

GANN-PSOAS scheme is perceived via completed

generations, parameter adaptation’s execution time

and executed counts of the function under the proce-

dure to get the decision variables of the GANNs.

Complexity examinations for each problem of the

NTO-EFM mathematical models are evaluated, and

the results based on numerical data are provided in

Table 3. One may notice that the average generations,

execution of time as well as function counts are

1962.8067 and 76,713.32, for all three problems of the

NTO-EFM, respectively, of the proposed GANN-

PSOAS scheme. These complexity index can be used

in future for necessary comparison studies with state-

of-the-art computing procedures based on exploitation

of artificial intelligence methodologies. Beside the

accurate and efficient solutions obtained from GANN-

PSOAS, other advantages include ease of the concept

with smooth implementation, provision of continuous

solutions, reliable, stable, extendable and applicable to

different nonlinear systems.

b Fig. 1 Set of weights and proposed/true solutions for all the

problems of the NTO-EFM model

Fig. 2 AE values and performance measures based on GANN-

PSOAS approach for all the problems of the NTO-EFM
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Fig. 3 Statistical studies for the GANN-PSOAS scheme through Fitness using the histogram/boxplots for all the problems of the NTO-

EFM
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Fig. 4 Statistical studies for the GANN-PSOAS scheme through ENSE using the histogram/boxplots for all the problems of the NTO-

EFM
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Fig. 5 Statistical studies for the GANN-PSOAS scheme through TIC using the histogram/boxplots for all the problems of the NTO-

EFM
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5 Conclusions

A new design of neuroswarming heuristics is pre-

sented to solve the third-order nonlinear singular

Emden–Fowler model by introducing Gudermannian

activation function for the formulation of Guderman-

nian artificial neural networks which is used for the

modeling of the equation by the construction of the

objective function. The fitness/merit function of the

nonlinear singular system is optimized with optimiza-

tion ability of global search with particle swarm

optimization combined with quick/rapid local search

strength of active-set approach. The designed intelli-

gent solver GANN-PSOAS is effectively imple-

mented to solve three variants of NTO-EFMs by

exploiting in 10 neurons in hidden layer structure of

the networks. The convergence, precision and accu-

racy of the stochastic numerical solver are estimated

by accomplishing the overlapping results with the

true/exact solutions having an acceptable level of

accuracy for solving the NTO-EFMs. Moreover,

statistical amplifications based on 50 executions/runs

have been performed to solve the NTO-EFM on the

basis of mean, standard deviation, semi-interquartile

range and median scales which evidently authenticate

the trustworthiness, accurateness, exactness and

robustness of the proposed Gudermannian activation

function based neural network models trained with

hybrid of particle swarm optimization with active set

scheme. The proposed methodology GANN-PSOSA

is stochastic in nature, therefore have limitation better

performance cannot be given guarantee/assurance that

algorithm converges in each independent trial. Addi-

tionally, a slight change in parameters settings of the

optimization algorithms also results in premature

convergence.

In the future, the designed GANN-PSOAS

scheme can be applied to investigate the dynamics

of nonlinear fluidic systems, bioinformatics models,

computer virus propagation models, nonlinear circuit

theory problem, systems in energy and power sector.
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