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Abstract: In this paper, we introduce a new contraction, namely, almost � contraction with respect to
�∈ζ , in the setting of complete metric spaces. We proved that such contraction possesses a fixed point

and the given theorem covers several existing results in the literature. We consider an example to illustrate
our result.
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1 Introduction and preliminaries

Let � �= ∪ { }00 , where � represents the set of positive integers. As usual � indicates the set of all real
numbers. Furthermore, we set � =[ ∞)

+: 0,0 .

Definition 1.1. (See [1]). A simulation function is a mapping �[ ∞) × [ ∞) →ζ : 0, 0, satisfying the
following conditions:

( )ζ1 ( ) < −ζ t s s t, for all >t s, 0;
( )ζ2 if { } { }t s,n n are sequences in ( ∞)0, such that = >→∞ →∞t slim lim 0n n n n , then

( ) <

→∞

ζ t slim sup , 0.
n

n n (1)

Observe first that ( )ζ1 implies

( ) < >ζ t t t, 0 for all 0. (2)

Indeed, this simulation function is obtained by the abstraction of the Banach contraction mapping principle.
We underline that in [1], there was an additional axiom ( ) =ζ 0, 0 0. Since it is a superfluous condition, we
omit it. Throughout the paper, the letter � denotes the family of all functions �[ ∞) × [ ∞) →ζ : 0, 0, . A
function ( ) ≔ −ζ t s ks t, , where ∈ [ )k 0, 1 for all ∈ [ ∞)s t, 0, , is an instantaneous example of a simulation
function. For further and more interesting examples, we refer e.g. [1–6] and related references therein. In
particular, in [7,8] the simulation functions work for establishing also common fixed points and coincidence
points, both in a metric space and in a partial metric space.

We say that a self-mapping f, defined on a metric space ( )X d, , is a �-contraction with respect to �∈ζ [1], if

( ( ) ( )) ≥ ∈ζ d fx fy d x y x y X, , , 0 for all , . (3)
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The following is the main result of [1]:

Theorem 1.1. Every �-contraction on a complete metric space has a unique fixed point.

It is clear that the immediate example ( ) ≔ −ζ t s ks t, is obtained by abstraction of the Banach contraction
mapping principle. In other words, with this function ( ) ≔ −ζ t s ks t, , Theorem 1.1 yields the Banach contraction
mapping principle.

Lemma 1.1. [9] Let ( )X d, be a metric space and let { }pn be a sequence in X such that ( )+d p p,n n1 is non-
increasing and that

( ) =

→∞

+d p plim , 0.
n

n n1

If { }p n2 is not a Cauchy sequence then there exist a >δ 0 and two strictly increasing sequences { }mk and { }nk
of positive integers such that the following sequences tend to δ when → ∞k :

( ) ( ) ( ) ( ) ( )
+ − − + + +

d p p d p p d p p d p p d p p, , , , , , , , , .m n m n m n m n m n2 2 2 2 2 2 2 2 2 2k k k k k k k k k k1 1 1 1 1 1

One of the interesting notions, α-admissibility was introduced by Samet-Vetro-Vetro [10], see also [11].
This study, which attracts the attention of many researchers, has been developed and generalized in many
respects. In particular, [12,13], the author depicts applications of fixed point methodologies to the solution
of a first-order periodic differential problem, converting such a problem into an integral equation.
Moreover, in [14], the authors prove an existence theorem producing a periodic solution of some non-
linear integral equations, using the Krasnoselskii-Schaefer-type method and technical assumptions.

Definition 1.2. Let f be a self-mapping on a non-empty set X, and × → [ ∞)α X X: 0, be mapping. We say
that f is extended-α-admissible if, for all ∈x y X, , we have

�( ) ≥ ( ) ≥ ∈
+α x fx α fx f x p, 1 implies , 1, for all .p1 (4)

In some sources, f is called α-admissible if we let =p 1 in (4). On the other hand, if f is extended-
α-admissible, then we can conclude that

�( ) ≥ ∈ >α f x f x m n m n, 1 for all , with .n m (5)

Indeed, it is a straightforward conclusion. First, we, recursively, get that ( ) ≥
−α f x f x, 1n n1 and then we

observe ( ) ≥
+α f x f x, 1n n p by applying the extended-α-admissibility of f, where we let = + >m n p n.

2 Main results

Definition 2.1. Let f be a self-mapping, defined on a metric space ( )X d, , and × → [ ∞)α X X: 0, be a
function. Here, →f X X: is called an almost-�-contraction with respect to �∈ζ if there exists �∈ζ , and

∈β G, and ≥L 0 such that for all ∈x y X,

( ) ≥ ⇒ ( ( ) ( )) ≥α x y ζ d fx fy K x y, 1 , , , 0, (6)

where

( ) ≔ ( ( )) ( ) + ( )K x y β E x y E x y LN x y, , , , ,

with

( ) = ( ) + | ( ) − ( )|E x y d x y d x fx d y fy, , , ,

and

( ) = { ( ) ( ) ( ) ( )}N x y d x fx d y fy d x fy d y fx, min , , , , , , , .
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Now we prove our main result.

Theorem 2.1. Suppose that a self-mapping f, defined on a complete metric space ( )X d, , forms an almost-
�-contraction. Furthermore, we suppose, for all ∈x y X, , that
(i) f is an extended-α-admissible pair
(ii) there exists ∈x X0 such that ( ) ≥α x fx, 10 0
(iii) either

(iiia) f is continuous,
or
(iiib) if { }xn is a sequence in X such that ( ) ≥+α x x, 1n n 1 for all n and as → ∞n , then there exists a

subsequence { ( )}x kn of xn such that ( ( ) ) ≥α x k x, 1n for all k.
Then, f has a fixed point.

Proof. On account of (ii), there is a point ∈x X0 such that ( ) ≥α x fx, 10 0 . By starting this initial point, we
shall build a sequence �{ } ∈xn n 0 in X by =+x fxn n1 for all ≥n 0. Throughout the proof, without loss of
generality, we shall assume that

≠ ∈+x x n Nfor all .n n1

Indeed, in the opposite case, where = +x xn n 10 0 for some ∈n N0 , we conclude that x0 is the desired fixed
point, i.e., = =+x fx xn n n10 0 0. This implies a trivial solution that is not interesting and that is why we
exclude this case.

On the other hand, by taking both (i) and (ii) into account, we observe that

( ) = ( ) ≥ ⇒ ( ) = ( ) ≥α x fx α x x α fx fx α x x, , 1 , , 1,0 0 0 1 0 1 1 2

continuing in this way we get

( ) ≥ ∈+α x x n N, 1 for all .n n 1 0

Furthermore, by regarding (5), we derive that

( ) ≥ ∈ >α x x n m N m n, 1 for all , with .n m 0

As a first step, we want to conclude that { ( )}+d x x,n n 1 is non-increasing. Suppose, in contrast, that
( ) < ( )+ + +d x x d x x, ,n n n n1 1 2 . Since ( ) ≥+α x x, 1n n 1 , we find that

≤ ( ( ) ( )) = ( ( ) ( )) < ( ) − ( )+ + + + + + + +ζ d fx fx K x x ζ d x x K x x K x x d x x0 , , , , , , , , ,n n n n n n n n n n n n1 1 1 2 1 1 1 2 (7)

which implies that

( ) ≤ ( ) = ( ( )) ( ) + ( )+ + + + + +d x x K x x β E x x E x x LN x x, , , , , ,n n n n n n n n n n1 2 1 1 1 1

where

( ) = { ( ) ( ) ( ) ( )}

= { ( ) ( ) ( ) ( )}

=

+ + + + +

+ + + + + +

N x x d x fx d x fx d x fx d x fx
d x x d x x d x x d x x

, min , , , , , , ,
min , , , , , , ,
0

n n n n n n n n n n

n n n n n n n n

1 1 1 1 1

1 1 2 2 1 1

and

( ) = ( ) + ( ) − ( )

= ( ) + ( ) − ( )

= ( )

+ + + +

+ + + +

+ +

E x x d x x d x fx d x fx
d x x d x x d x x
d x x

, , , ,
, , ,

, .

n n n n n n n n

n n n n n n

n n

1 1 1 1

1 1 1 2

1 2

Hence, inequality (7) turns into

( ) ≤ ( ( )) ( ) = ( ( )) ( ) < ( )+ + + + + + + + + +d x x β E x x E x x β d x x d x x d x x, , , , , , ,n n n n n n n n n n n n1 2 1 1 1 2 1 2 1 2 (8)

a contradiction. Consequently, we deduce that ( ) < ( )+ + +d x x d x x, ,n n n n1 2 1 , for each n. Since the sequence
{ ( )}+d x x,n n 1 is non-increasing.
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As a next step, ( ) =→∞ +d x xlim , 0n n n 1 . Indeed, since { ( )}+d x x,n n 1 is non-increasing and bounded below,
we conclude that it converges to some non-negative real numbers, say r,

( ) =

→∞

+d x x rlim , .
n

n n 1

It is evident that

( ) =

→∞

+E x x rlim , .
n

n n 1

We assert that =r 0. Suppose, in contrast, that ≠r 0. Then, from Eq. (8) and ( )ζ2 , and taking limit as → ∞n .
Therefore,

( ( )) = ⇒ ( ) =

→∞

+

→∞

+β E x x E x xlim , 1 lim , 0.
n

n n
n

n n1 1

Attendantly, =r 0 and also

= ( ) =

→∞

+r d x xlim , 0.
n

n n 1 (9)

In what follows, we claim that sequence { }xn is a Cauchy sequence. Assume that { }xn is not a Cauchy
sequence, then there exists >ε 0 and sequences { }xnk , { }xmk ; > >n m kk k such that

( ) ≥d x x ε, ,m nk k (10)

( ) <−d x x ε, .m n 1k k (11)

Now take = −x xm 1k and = −y xn 1k in (6), we have

( ) ≥− −α x x k, 1 for allm n1 1k k

implies

( ( ) ( )) ( ) ( )≤ < −− − − − − − − −ζ d fx fx K x x K x x d fx fx0 , , , , , ,m n m n m n m n1 1 1 1 1 1 1 1k k k k k k k k (12)

where

( ) { ( ) ( ) ( ) ( )}=− − − − − −N x x d x x d x x d x x d x x, min , , , , , , ,m n m m n n m n n m1 1 1 1 1 1k k k k k k k k k k

and

( ) ( ) ( ) ( )= + −− − − − − −E x x d x x d x x d x x, , , , .m n m n m m n n1 1 1 1 1 1k k k k k k k k

Due to Lemma 1.1, we have

( ) ( ) ( ) ( )= = = =

→∞ →∞

− −

→∞

−

→∞

−d x x d x x d x x d x x εlim , lim , lim , lim , .
k

m n
k

m n
k

m n
k

m n1 1 1 1k k k k k k k k (13)

Since

( ) ( ) ( ) ( )= + −− − − − − −E x x d x x d x x d x x, , , ,m n m n m m n n1 1 1 1 1 1k k k k k k k k

using (13) and (9), we have

( ) =

→∞

− −E x x εlim , .
k

m n1 1k k

Let = ( )t d x x,n m nk k k and = ( )− −s K x x,n m n1 1k k k we have = =→∞ →∞s t εlim limk n k nk k and letting → ∞k in (12)

( ( ) ( )) ( ( ) ( )) ( )≤ = =

→∞

− −

→∞

− −

→∞

ζ d x x K x x ζ d x x K x x ζ t s0 lim sup , , , lim sup , , , lim sup , .
k

m n m n
k

m n m n
k

n n1 1 1 1k k k k k k k k k k (14)

Then, by (13), (14) and keeping ( )ζ2 in mind, we have

( ) [ ]≤ < − → [ − ] =

→∞ →∞

ζ t s s t ε ε0 lim sup , lim sup 0,
k

n n
k

n nk k k k
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a contradiction. As a result, our claim is correct and { }xn is a Cauchy sequence.
Since ( )X d, is a complete metric space, the sequence converges to some point ∈u X as → ∞n

( ) = ( ) =

→∞ →∞

+d x u d x ulim , lim , 0.
n

n
n

n 1 (15)

Now we shall show that =fu u.
Suppose we have (iiia). Since f is continuous, we derive the desired results obviously, that is,

= = ( ) = =

→∞ →∞ →∞

+fu f x f x x ulim lim lim .
n

n
n

n
n

n 1










Suppose we have (iiib). We shall use the method of reductio ad absurdum. Suppose, in contrast, that ≠fu u,
that is, ( ) >d u fu, 0. By (iiib), there exists a subsequence { }xnk of { }xn such that ( ) ≥α x u, 1nk for all k.
It implies that

( ( ) ( )) ( ) ( )≤ < −− − − −ζ d fx fu K x u K x u d fx fu0 , , , , , ,n n n n1 1 1 1k k k k (16)

where

( ) { ( ) ( ) ( )}

( )

= ( )

= { ( ) ( )} =

− − −

→∞

−

N x u d x x d u fu d u x d fu x
N x u d u fu d u fu

, min , , , , , , , ,
lim , min 0, , , 0, , 0,

n n n n n

k
n

1 1 1

1

k k k k k

k

and

( ) ( ) ( )

( )

= + − ( )

= + | − ( )| = ( )

− − −

→∞

−

E x u d x u d x x d u fu
E x u d u fu d u fu
, , , , ,

lim , 0 0 , , .
n n n n

k
n

1 1 1

1

k k k k

k

By letting → ∞k in (16), together with the observation above, we have

( ( ) ( )) ( ) ( )

( ( )) ( ) ( )

≤ < −

< − < ( ) − ( ) =

→∞

− −

→∞

− −

→∞

− − −

ζ d fx fu K x u K x u d fx fu

β E x u E x u d fx fu d u fu d u fu

0 lim sup , , , lim sup , ,

lim sup , , , , , 0
k

n n
k

n n

k
n n n

1 1 1 1

1 1 1

k k k k

k k k

is a contradiction. Hence, u is a fixed point of f. □

Theorem 2.2. In addition to the axioms of Theorem 2.1, we assume that
(iv) for all ∈ ( )p q S X, f we have ( ) ≥α p q, 1,
where ( ) ⊂S X Xf is the set of all fixed points of f. Then, f has a unique fixed point.

Proof. We shall use the method of reductio ad absurdum to reach our goal. Suppose that there are two
distinct fixed points of f, that is, namely, ∈ ( )p q S X, f with = ≠ =fp p q fq. On account of the additional
assumption (iv), we have ( ) ≥α p q, 1, which implies

≤ ( ( ) ( )) < ( ) − ( )ζ d fp fq K p q K p q d fp fq0 , , , , , , (17)

where

( ) ≔ ( ( )) ( ) + ( )K p q β E p q E p q LN p q, , , , ,

with

( ) = ( ) + | ( ) − ( )| = ( )E p q d p q d p fp d q fq d p q, , , , ,

and

( ) = { ( ) ( ) ( ) ( )} =N p q d p fp d q fq d p fq d q fp, min , , , , , , , 0.

Hence, expression (17) turns into
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≤ ( ( ) ( )) < ( ) − ( ) =ζ d fp fq K p q K p q d fp fq0 , , , , , 0, (18)

a contradiction. This completes the proof. □

Example 2.1. Let = [ ]X 0, 1 be endowed with metric ( ) = | − |d x y x y, for all ∈x y X, . Let ( ) = −ζ t s s t, and

considering [ ∞) → [ )β: 0, 0, 1 , ( ) =
+

β t t
1

1 for all ≥t 0 and ≥L 0. Let →f X X: be defined by =fx x
2 for all

∈ [ ]x 0, 1 and × → [ ∞)α X X: 0, be defined by

( ) =
∈ [ ]α x y x y, 1 if , 0, 1 ,

0 otherwise.




Since ( ) =α x y, 1, ∈ [ ]x y, 0, 1 implies

( ( ) ( )) = ( ) − ( ) = ( ( )) ( ) + ( ) − | − |

=

( )

+ ( )

+ ( ) − − ≤

( )

+ ( )

+ ( ) − | − |

=

| − |

+ | − |

+ ( ) − − ≥

ζ d fx fy K x y K x y d fx fy β E x y E x y LN x y x y

E x y
E x y

LN x y x y
d x y

d x y
LN x y x y

x y

x y
LN x y x y

, , , , , , , , 1
2

,
1 ,

, 1
2

,

1 ,
, 1

2

1
, 1

2
0.

3
2

3
2

3
2

3
2

Therefore, f is almost-�-contraction with respect to �∈ζ . Hence, all the assumptions of Theorem 2.2 are
satisfied, and hence f has a unique fixed point.

3 Immediate consequences

The first conclusion of our main results is the following.

Theorem 3.1. Let f be a self-mapping, defined on a complete metric space ( )X d, , and × → [ ∞)α X X: 0, be
a function. Suppose that there exists �∈ζ , and ∈β G, and ≥L 0 such that for all ∈x y X,

( ) ≥ ⇒ ( ( ) ( ( )) ( ) + ( )) ≥α x y ζ d fx fy β d x y d x y LN x y, 1 , , , , , 0, (19)

where

( ) = { ( ) ( ) ( ) ( )}N x y d x fx d y fy d x fy d y fx, min , , , , , , , .

Furthermore, we suppose, for all ∈x y X, , that
(i) f is an extended-α-admissible pair;
(ii) there exists ∈x X0 such that ( ) ≥α x fx, 1;0 0
(iii) either

(iiia) f is continuous,

or
(iiib) if { }xn is a sequence in X such that ( ) ≥+α x x, 1n n 1 for all n and as → ∞n , then there exists a

subsequence { ( )}x kn of xn such that ( ( ) ) ≥α x k x, 1n for all k;
(iv) for all ∈ ( )p q S X, f we have ( ) ≥α p q, 1,
where ( ) ⊂S X Xf is the set of all fixed points of f. Then, f has a fixed point.

We skip the proof since it is the analog of the proof of Theorem 2.2 (and hence Theorem 2.1).
In the next theorem, we omit the auxiliary function × → [ ∞)α X X: 0, to get a result in the standard

metric spaces.
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Theorem 3.2. Let f be a self-mapping, defined on a complete metric space ( )X d, . Suppose that there exists
�∈ζ , and ∈β G, and ≥L 0 such that for all ∈x y X,

( ( ) ( )) ≥ζ d fx fy K x y, , , 0, (20)

where ( )K x y, , ( )E x y, and ( )N x y, are defined as in Theorem 2.1. Then, f has a unique fixed point.

Proof. It is sufficient to set ( ) =α x y, 1 for all ∈x y X, , in Theorem 2.2 (and hence Theorem 2.1). □

The trend of searching a fixed point on the partially ordered set was initiated by Turinici [15] in 1986.
We shall collect some basic notions here. Let f be a self-mapping on a partially ordered set ( ≼ )X, . A
mapping f is called non-decreasing with respect to ≼ if

∈ ≼ ⇒ ≼x y X x y fx fy, , .

Analogously, a sequence { } ⊂x Xn is called non-decreasing with respect to≼ if ≼ +x xn n 1 for all n. In addition,
suppose that d is a metric on X. The tripled ( ≼ )X d, , is regular if for every non-decreasing sequence { } ⊂x Xn
with → ∈x x Xn as → ∞n , there exists a subsequence { }( )xn k of { }xn such that ≼( )x xn k for all k.

Theorem 3.3. Let f be a self-mapping, defined on a complete metric space ( )X d, endowed with a partial
order ≼ on X. Suppose that there exists �∈ζ , and ∈β G, and ≥L 0 such that for all ∈x y X, with ≼x y

( ( ) ( )) ≥ζ d fx fy K x y, , , 0,

where ( )K x y, , ( )E x y, and ( )N x y, are defined as in Theorem 2.1. Suppose also that the following conditions hold:
(i) there exists ∈x X0 such that ≼x fx0 0;
(ii) f is continuous or ( ≼ )X d, , is regular.
Then, f has a fixed point. Moreover, if for all ∈x y X, there exists ∈z X such that ≼x z and ≼y z , we have
uniqueness of the fixed point.

Proof. It is sufficient to define the mapping × → [ ∞)α X X: 0, by

( ) =
≼ ≽α x y x y x y, 1 if or ,

0 otherwise.




Clearly, f is an almost-�-contraction with respect to �∈ζ . From condition (i), we have ( ) ≥α x fx, 10 0 .
Moreover, for all ∈x y X, , from the monotone property of f, we have

( ) ≥ ⇔ ≼ ⇒ ≼ ⇔ ( ) ≥α x fx x fx fx f x α fx f x, 1 , 1.0 0 0 0 0
2

0 0
2

0

The rest is satisfied in a straightway. □

LetΨ be the collection of all auxiliary functions and [ ∞) → [ ∞)ϕ: 0, 0, be continuous functions with
( ) =ϕ t 0 if, and only if, =t 0.

Theorem 3.4. Let f be a self-mapping, defined on a complete metric space ( )X d, , and × → [ ∞)α X X: 0, be
a function. Suppose that there exists ∈ϕ ϕ Φ,1 2 with ( ) < ≤ ( )ϕ t t ϕ t1 2 for all >t 0, and ∈β G, and ≥L 0
such that for all ∈x y X,

( ) ≥ ⇒ ( ( )) ≤ ( ( ))α x y ϕ d fx fy ϕ K x y, 1 , , ,2 1 (21)

where ( )K x y, , ( )E x y, and ( )N x y, are defined as in Theorem 2.1. Furthermore, we suppose, for all
∈x y X, , that

(i) f is an extended-α-admissible pair;
(ii) there exists ∈x X0 such that ( ) ≥α x fx, 1;0 0
(iii) either

(iiia) f is continuous,
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or
(iiib) if { }xn is a sequence in X such that ( ) ≥+α x x, 1n n 1 for all n and as → ∞n , then there exists a

subsequence { ( )}x kn of xn such that ( ( ) ) ≥α x k x, 1n for all k;
(iv) for all ∈ ( )p q S X, f we have ( ) ≥α p q, 1,
where ( ) ⊂S X Xf is the set of all fixed points of f. Then, f has a fixed point.

Proof. Let ( ) = ( ) − ( )ζ t s ϕ s ϕ t, 1 2 for all ≥t s, 0, where ( ) < ≤ ( )ϕ t t ϕ t1 2 for all >t 0. It is clear that �∈ζ ,
see, e.g. [1,2]. Thus, the desired results follow from Theorem 2.2. □

Theorem 3.5. Let f be a self-mapping, defined on a complete metric space ( )X d, , and × → [ ∞)α X X: 0, be
a function. Suppose that there exists ϕΦ, and ∈β G, and ≥L 0 such that for all ∈x y X,

( ) ≥ ⇒ ( ) ≤ ( ) − ( ( ))α x y d fx fy K x y ϕ K x y, 1 , , , , (22)

where ( )K x y, , ( )E x y, and ( )N x y, are defined as in Theorem 2.1. Furthermore, we suppose, for all
∈x y X, , that

(i) f is an extended-α-admissible pair;
(ii) there exists ∈x X0 such that ( ) ≥α x fx, 1;0 0
(iii) either

(iiia) f is continuous,
or
(iiib) if { }xn is a sequence in X such that ( ) ≥+α x x, 1n n 1 for all n and as → ∞n , then there exists a

subsequence { ( )}x kn of xn such that ( ( ) ) ≥α x k x, 1n for all k;
(iv) for all ∈ ( )p q S X, f we have ( ) ≥α p q, 1,
where ( ) ⊂S X Xf is the set of all fixed points of f. Then, f has a fixed point.

Proof. Let ( ) = − ( ) −ζ t s s ϕ s t, for all ≥t s, 0. It is clear that �∈ζ , see, e.g. [1–3]. Thus, the desired
results follow from Theorem 2.2. □

Theorem 3.6. Let f be a self-mapping, defined on a complete metric space ( )X d, , and × → [ ∞)α X X: 0, be
a function. Suppose that there exists ∈ϕ ϕ Φ,1 2 with ( ) < ≤ ( )ϕ t t ϕ t1 2 for all >t 0, and ∈β G, and ≥L 0
such that for all ∈x y X,

∫( ) ≥ ⇒ ( ) ≤ ( )

( )

α x y d fx fy μ u u, 1 , d ,
K x y

0

,

(23)

where ( ) ( )K x y E x y, , , and ( )N x y, are defined as in Theorem 2.1. Furthermore, we suppose, for all ∈x y X, , that
(i) f is an extended-α-admissible pair;
(ii) there exists ∈x X0 such that ( ) ≥α x fx, 1;0 0
(iii) either

(iiia) f is continuous,
or
(iiib) if { }xn is a sequence in X such that ( ) ≥+α x x, 1n n 1 for all n and as → ∞n , then there exists a

subsequence { ( )}x kn of xn such that ( ( ) ) ≥α x k x, 1n for all k;
(iv) for all ∈ ( )p q S X, f we have ( ) ≥α p q, 1,
where ( ) ⊂S X Xf is the set of all fixed points of f. Then, f has a fixed point.

Proof. Let ∫( ) = − ( ) ≥ζ t s s μ u u t s, d for all , 0
t

0
.

It is clear that �∈ζ , see, e.g. [3,1,2]. Thus, the desired results follow from Theorem 2.2. □
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Theorem 3.7. Let f be a self-mapping, defined on a complete metric space ( )X d, , and × → [ ∞)α X X: 0, be
a function, and ∈β G, and ≥L 0. Suppose that there exist [ ∞) → [ ∞)φ: 0, 0, which is upper semi-
continuous and such that ( ) <φ t t for all >t 0 and ( ) =φ 0 0. Assume, for all ∈x y X, , that

( ) ≥ ⇒ ( ) ≤ ( ( ))α x y d fx fy φ K x y, 1 , , , (24)

where ( )K x y, , ( )E x y, and ( )N x y, are defined as in Theorem 2.1. Furthermore, we suppose, for all
∈x y X, , that

(i) f is an extended-α-admissible pair;
(ii) there exists ∈x X0 such that ( ) ≥α x fx, 1;0 0
(iii) either

(iiia) f is continuous
or
(iiib) if { }xn is a sequence in X such that ( ) ≥+α x x, 1n n 1 for all n and as → ∞n , then there exists a

subsequence { ( )}x kn of xn such that ( ( ) ) ≥α x k x, 1n for all k;
(iv) for all ∈ ( )p q S X, f we have ( ) ≥α p q, 1,
where ( ) ⊂S X Xf is the set of all fixed points of f. Then, f has a fixed point.

Proof. Let ( ) = ( ) −ζ t s φ s t, for all ≥t s, 0. It is clear that �∈ζ , see, e.g. [1–3]. Thus, the desired results
follow from Theorem 2.2. □

Theorem 3.8. Let { }
=

Ai i 1
2 be non-empty closed subsets of a complete metric space ( )X d, and →T Y Y: be a

given mapping, where = ∪Y A A1 2 with

( ) ⊆ ( ) ⊆T A A T A Aand .1 2 2 1 (25)

Suppose that there exists �∈ζ , and ∈β G, and ≥L 0 such that for all ( ) ∈ ×x y A A, 1 2

( ( ) ( )) ≥ζ d fx fy K x y, , , 0, (26)

where ( )K x y, , ( )E x y, and ( )N x y, are defined as in Theorem 2.1. Then, T has a unique fixed point that
belongs to ∩A A1 2.

Proof. ( )Y d, is a complete metric space since both A1 and A2 are closed subsets of the complete metric
space ( )X d, . We construct the mapping × → [ ∞)α Y Y: 0, by

( ) =
( ) ∈ ( × ) ∪ ( × )α x y x y A A A A, 1 if , ,

0 otherwise.
1 2 2 1




From (26) and the definition of α, we can write

( ( ) ( )) ≥ζ d fx fy K x y, , , 0,

for all ∈x y Y, . Thus, T is an almost �-contraction.
Let ( ) ∈ ×x y Y Y, such that ( ) ≥α x y, 1. If ( ) ∈ ×x y A A, 1 2, from (25), ( ) ∈ ×Tx Ty A A, 2 1, which yields

( ) ≥α Tx Ty, 1. If ( ) ∈ ×x y A A, 2 1, (25), ( ) ∈ ×Tx Ty A A, 1 2, which yields ( ) ≥α Tx Ty, 1. Consequently, in all
cases, we find ( ) ≥α Tx Ty, 1. It yields T is α-admissible.

On account of (25), for any ∈a A1, we have ( ) ∈ ×a Ta A A, 1 2, which implies that ( ) ≥α a Ta, 1.
Now, let { }xn be a sequence in X such that ( ) ≥+α x x, 1n n 1 for all n and → ∈x x Xn as → ∞n . This

implies from the definition of α that

( ) ∈ ( × ) ∪ ( × )+x x A A A A n, , for all .n n 1 1 2 2 1

It is clear that ( × ) ∪ ( × )A A A A1 2 2 1 is a closed set, and hence we find

( ) ∈ ( × ) ∪ ( × )x x A A A A, ,1 2 2 1

which implies that ∈ ∩x A A1 2. Attendantly, the definition of α implies that ( ) ≥α x x, 1n for all n.
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Finally, let ∈ ( )x y T, Fix . Taking (25) into account, we find ∈ ∩x y A A, 1 2. So, for any ∈z Y , we have
( ) ≥α x z, 1 and ( ) ≥α y z, 1. Thus, the criteria (iv) is provided.

Since all axioms of Theorem 2.1 are fulfilled, we conclude that T has a unique fixed point in ∩A A1 2 (25). □

4 Conclusion

It is a well-known fact that the auxiliary function α is a good tool to combine three different theorems, in
three distinct constructions: the structure of the standard metric space, the structure of a metric space
endowed with a partial metric space and the structure of cyclic mappings via closed subsets of a metric
space. Indeed, Theorems 3.2, 3.3 and 3.8 are concrete examples for these constructions derived from
Theorem 2.1, respectively. For more details, see e.g. [11]. In particular, we may use these approaches to
Theorems 3.1, 3.4, 3.5, 3.6 and 3.7 to get different variants in the aforementioned three structures. We avoid
to put all these consequences regarding the length of the paper and the verbatim of the proofs. Moreover,
by using the interesting more simulation functions (see, e.g. [1–4,8]), more consequences of Theorems 2.1
and 3.1 can be derived. As a result, our main results combine and cover several existing results in the
literature. Since these results are easily predictable from the content and since the main ideas are already
mentioned, we avoid to be put all possible consequences.

Acknowledgments: The authors thank anonymous referees for their remarkable comments, suggestion and
ideas that help to improve this paper.
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