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Dual similarity solutions of MHD 
stagnation point flow of Casson 
fluid with effect of thermal 
radiation and viscous dissipation: 
stability analysis
Liaquat Ali Lund1,2, Zurni Omar1, Ilyas Khan3*, Dumitru Baleanu4,5,6 & 
Kottakkaran Sooppy Nisar7

In this paper, the rate of heat transfer of the steady MHD stagnation point flow of Casson fluid on the 
shrinking/stretching surface has been investigated with the effect of thermal radiation and viscous 
dissipation. The governing partial differential equations are first transformed into the ordinary 
(similarity) differential equations. The obtained system of equations is converted from boundary value 
problems (BVPs) to initial value problems (IVPs) with the help of the shooting method which then 
solved by the RK method with help of maple software. Furthermore, the three-stage Labatto III-A 
method is applied to perform stability analysis with the help of a bvp4c solver in MATLAB. Current 
outcomes contradict numerically with published results and found inastounding agreements. The 
results reveal that there exist dual solutions in both shrinking and stretching surfaces. Furthermore, 
the temperature increases when thermal radiation, Eckert number, and magnetic number are 
increased. Signs of the smallest eigenvalue reveal that only the first solution is stable and can be 
realizable physically.

Two significant classes of fluids have gotten a lot of consideration from researchers and mathematicians in 
the previous few years, specifically Newtonian and non-Newtonian fluids. A fluid in which the rate of change 
of deformation is directly proportionate to viscous stresses is known as Newtonian fluid. On contrary, a fluid 
wherein properties of the fluid are not the same as Newtonian fluid is known as non-Newtonian fluid. The 
important property of non-Newtonian fluid is viscosity. In many industrial problems, the comportment of non-
Newtonian fluids is more important as compared to Newtonian fluids1,2. Some applications of non-Newtonian 
fluids can be seen in polymer engineering, manufacturing of foods, petroleum drilling, certain separation pro-
cesses, and papers3,4. It is very hard to convey all properties of numerous non-Newtonian fluids in a single 
momentum equation due to non-linearity among the rate of strain and stress of the fluids. In this regard, many 
non-Newtonian models have been proposed based on variation of physical characteristics5–9. Among these mod-
els, Casson fluid model which can be defined as “a shear-thinning fluid in which zero viscosity at an infinite rate 
of shear and an infinite viscosity at zero rates of shear”10 is the most popular one. Ullah et al.11 inspected Casson 
fluid over a non-linear stretching cylinder and found that the shear stress is directly proportional to suction/blow-
ing and porosity parameter. Dual solutions have been obtained by Yahaya et al.12 in Casson fluid with the effect 
of homogeneous-heterogeneous reactions. Moreover, the analysis of the stability was carried out to determine 
which solution is stable. They found that only the first solution is stable and can be easily utilized in different 
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applications. Khan and Husain13 explored Casson liquid on the circle disk where the system of governing ordinary 
differential equations was solved by utilizing homotopy method. Meanwhile, Hamid et al.14 considered Casson 
liquid encased in the cavity. Further, double solutions were found by Hamid et al.15 within the sight of thermal 
radiation. Stability analysis was additionally performed by utilizing of BVP4C in the MATLAB programming. 
Some ongoing improvements on Casson fluid can be found in these articles16–20.

The study of boundary layer Casson fluid flow on stretching and shrinking surfaces was widely investigated 
for single solution cases. Stretching surface has many applications in many manufacturing such as the extrusion 
of the molten polymers due to the slit die in productions of plastic sheets, paper productions, wires as well as 
in the fibers coating process of the food stuff. The qualities of final products in such processes depend heavily 
upon the cooling rate in the process of the heat exchange. Therefore, a MHD parameter is an important element 
to be considered so that the rate of the cooling can be controlled in order to obtain the desired quality products. 
Crane21 proposed a method for solving incompressible steady-state 2-D viscous fluid on which later extended 
to many diverse aspects. Some of its recent important directions over-stretching flows can be seen in these 
articles22–26. Vajravelu27 and Cortell28 considered viscous fluid on a non-linear stretching sheet. In this paper, we 
also considered a stretching surface with the shrinking surface due to its extensive utilizations in different fields.

From the previous couple of years, multiple similarity solutions of fluid flow problems have been considered 
on the stretching and shrinking sheets in the presence and absence of bouncy effect by numerous scholars29–32. 
These multiple solutions exist due to several physical parameters impacts such as suction parameter, mixed 
convection parameter and so forth. Furthermore, the past researches demonstrated the probabilities of the occur-
rence of multiple similarity solutions of fluid flow over a shrinking sheet are more than over a stretching surface31. 
The possibilities of non-uniqueness solution of fluid flow on a stretching surface are probable when the flow is 
stagnation point flow or opposing flow. Similarly, multiple solutions for Newtonian fluids can be gotten easily 
as compared to non-Newtonian fluids. It is stated in the previously published literature that non-uniqueness of 
the solutions occurs because of the existence of non-linearity in the fluid equations29,30. However, the models 
of non-Newtonian fluids contain many non-linear terms and thus leads to non-existence of multiple solutions.

The boundary layer flows of fluid and their similarity solutions are gotten much attention due to their vast 
applications in many industrial fields32. In real situations, multiple solutions cannot be visualized in the bound-
ary layer problems and difficult to be detected. Hence, many researchers fail to notice multiple solutions33,34. 
Multiple solutions of MHD fluid flow problems have been examined theoretically as well as numerically by 
numerous researchers. Dero et al.35 obtained triple solutions during the investigation of micropolar fluid with 
thermal radiation effect. Further, Dero et al.36 inspected the unsteady flow of nanofluid on the shrinking sheet and 
found double solutions in deaccelerated case. It seems that Ridha and Curie37 are the pioneers who found dual 
solutions in the opposing flow. The motivation behind this study is to consider multiple similarity solutions of 
the MHD stagnation point flow of Casson fluid on a permeable exponentially stretching and shrinking surfaces 
unanimously with viscous dissipation and thermal radiation effect.

Mathematical formulation
There has been studied as steady incompressible 2-D stagnation point flow of Casson electrically leading fluid 
on an exponentially shrinking and stretching surfaces with the impact of thick viscous dissipations and thermal 
radiation. There has additionally been supposed that rheological equation of the state for the isotropic and the 
incompressible progression of the Casson fluid which are reported as (allude10):

where the plastic dynamic viscosity of the non-Newtonian fluid is meant by µB , π signifies the result of deforma-
tion rate segment, that is, , π = eijeij is (i, j)th deformation rate part and πc is critical value of the π which depends 
on the non-Newtonian model, and Py indicates the yield stress of the fluid. Moreover, a system of cartesian 
coordinate is taken into account, where the x-axis is supposed alongside the shrinking/Stretching surface and 
the y-axis is normal to it. Further, uw = aex/l is the shrinking and stretching velocity of surface. The uniform 
magnetic field is applied to the normal of the fluid flow B=B0ex/2l where B0 is the constant magnetic strength 
(Fig. 1). The field of induced magnetic is disregarded as a result of the small estimation of the magnetic Reynolds 
number. With the above assumptions, we get following equations

along the following boundary conditions
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where Tw = T∞ + T0e
x
2� is the temperature of wall, vw = −

√

ϑUw
2l ex/2lS where S is the suction/injunction 

parameter, and ue = bex/l is the stagnation point.
Following similarity variables are used to get the similarity solutions

and ψ is the stream function and can be written in velocity component as follows,

By employing Eqs. (6) and (7) in Eqs. (2)–(5), we obtained

along boundary conditions
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Figure 1.   Physical model and coordinate system.
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Stability analysis
In this study, we found dual solutions of Eqs. (8)–(9) along with the boundary conditions (10) for both surfaces. 
Thus, it is needed to do the stability analysis to detect a stable solution which can be physically reliable after the 
time passes. According to Hamid et al.15, the upper branch solutions always show stability and physically reli-
ability. On the other hand, the second solutions are unstable and consequently physically unreliable. The same 
remarks were reported by many researchers [refer to38–42].

In order to accomplish the solutions’ temporal stability, the unsteady form of Eqs. (3)–(4) must be consid-
ered by proposing the new dimensionless time variable τ where τ is related to solutions of Eqs. (8)–(9). Equa-
tions (3)–(4) can be expressed for the unsteady state flow as follows

The new dimensionless time-dependent variable τ = a
2l e

x/l .t  is presented. Therefore, Eq. (6) can be written 
as follows:

By substituting Eq. (15) in Eqs. (13)–(14), we get

With corresponding boundary conditions

According to Lund et al.43, Ismail et al.44, and Naganthran et al.45, the stability of the dual solutions is tested 
by perturbing the steady solution by using following functions

where corresponding small relatives of  f0(η) and θ0(η) are F0(η) and G0(η) and unknow eigenvalue is γ. It is 
worth to mention that perturbated function has been considered in the form of exponential as compared to 
power function as these functions increase and decrease more rapidly as compared to the power functions. By 
putting Eq. (19) into Eqs. (16–17), we get linearized eigenvalue problem as follows:

Subject to boundary conditions

System of linearized eigenvalue problem Eqs. (20)–(21) along boundary conditions (22) is solved and obtained 
the infinite set of eigenvalues (γ1 < γ2 < γ3 < · · · ).

The solution is said to be stable flow if and only if the sign of the γ1 is positive which shows the initial decay, 
as time passes. On the other hand, if the sign of the γ1 is negative, at that point the flow solution shows the initial 
growth of development and the solution is said to be an unstable solution, as time passes.

Result and discussion
In this segment of the article, we discuss about the effect of numerous physical rising parameters on temperature, 
velocity, rate of heat transfer, and coefficient of skin friction profiles. In order to validate the results of our numeri-
cal technique, the numerical results of −
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for different values of the Casson parameter β and magnetic parameter M as given in Table 1. The results are in 
the excellent agreement which indicate that our method is reliable. Table 2 was constructed for the values of 
smallest eigenvalue γ1 for various values of the velocity ratio parameter.

Figure 2 exhibits the profile of velocity for numerous estimations of the stagnation point A in both shrinking 
and stretching surfaces. It is worth to note that A < 1(A > 1) demonstrates that surface velocity is more(less) 
than the free stream velocity, while A = 1 implies that the surface and free stream velocities are equivalent. The 
velocity profile decreases (rises) when the values of A are expanded in the first solution on the shrinking (stretch-
ing) surface. On the other hand, increasing and decreasing behaviors are seen in the second solution on both 

Table 1.   Values of −
(

1+ 1
β

)

f ′′(0) for different values of β and M where A = 0,M = M2, � = 1, and S = 0.

β M

Hussain et al.46

Present results−

(

1+
1

β

)

f ′′(0)

0.7 0.5 2.146677 2.146676800

1.2 0.5 1.865142 1.865142292

1.2 0.0 1.735577 1.735580976

1.2 0.4 1.819679 1.819679224

1.2 0.7 1.980908 1.980908405

Table 2.   The values of the smallest eigenvalue γ1 for different values of S and � where β = 1.5, 
M = 0.25,A = 0.1,Pr = 1,Ec = 0.1.

S �

γ1

1st solution 2nd solution

3 0.5 1.27921  − 1.5514

3  − 0.5 0.85147  − 0. 9,058

2.5 0.5 1.0572  − 1.2417

2.5  − 0.5 0.80362  − 0.8725

2.25 0.5 0.92832  − 1.0562

2.25  − 0.5 0.6825 -0.8386

Figure 2.   Velocity profile for different values of A. 
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surfaces. Velocity profile for various estimations of the Casson parameter β on the shrinking/stretching surface 
is illustrated in Fig. 3. The velocity boundary layer thickness declines at the higher values of β in the first solution 
over both surfaces due to the resistance created by β in the fluid flow. In addition, it is worth to mention that 
when β → ∞ , the fluid flow behaves like a simple viscous fluid. In other words, it becomes Newtonian fluid. In 
the second solution, the fluid velocity is expanded initially and gradually decreased in both surfaces. The impact 
of Hartmann number M on the profile of velocity is delineated in Fig. 4. Hydro boundary layer becomes thinner 
and the velocity of the fluid is also deaccelerated in both solutions for the maximum intensity of the magnetic 
parameter. Physically, this is caused by the expansion of Lorentz force which creates the resistance in the fluid 
flow inside the boundary. Therefore, the velocity of fluid declines.

Figure 5 reveals the relationship between temperature profile and Casson parameter. It has been detected 
that singularity exists in the temperature distribution in the second solution for the case of stretching surface. 
Moreover, it is noticed that when Casson parameter is increased then thermal boundary layer and temperature 

Figure 3.   Velocity profile for different values of β. 

Figure 4.   Velocity profile for different values of M. 
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of fluid decrease in both solutions and surfaces. Physically, this reduction is caused by lower values of β which is 
associated to increment (declination) in the yield (shear) stress. The behavior of temperature profile for higher 
values of M is illustrated in Fig. 6. It is noticed that singularity exists in the range 0 < M ≤ 0.25 for the case of 
shrinking surface. This singularity assures us the instability of the second solution and explained in detail in the 
stability analysis section. It has been found that the fluid’s temperature and thickness of thermal boundary layer 
rise when magnetic effect enhances for stable and unstable solutions on both surfaces. Physically, it happens due 
to the fact that higher values of magnetic parameter create a strong force of Lorentz which is an agent to produce 
more heat from the surface to the fluid. The effect of temperature profile for the thermal radiation was plotted 
in Fig. 7. The temperature of fluid enhances in both solutions and surfaces for the higher values of Rd . Figure 8 
exposes the temperature profile for the various values of Ec . It is also found that the temperature and thickness 
of thermal boundary layer increase in both solutions and surfaces as well when viscous dissipation impact is 

Figure 5.   Temperature profile for different values of β. 

Figure 6.   Temperature profile for different values of M. 
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increased in the form of the Eckert number. It is worth mentioning that Ec << 1 indicates the balanced between 
convection and conduction in the energy equation. Practically, the increments in the temperature profiles can be 
explained as “the reduction of the boundary layer enthalpy difference for advanced values of Eckert number” 47. 
Figure 9 displays the nature of temperature profile for the increasing values of the Prandtl number Pr. It is noticed 
that thinner thermal boundary is for the larger values of the Prandtl number in both solutions and surfaces. 
In addition, there exists singularity in the unstable solution for the stretching case. Moreover, this reduction in 
temperature and thickness of the thermal boundary layer is affected by the lower thermal diffusivity since the 
relationship between the Pr with thermal diffusivity is reciprocal to each other. Henceforth, the temperature of 
fluid decreases for the higher values of the Prandtl number.

Figure 10 displays the correlation between the skin friction coefficients with λ and S . It is analyzed that the 
reduction in the suction lowers the skin friction in both solutions which infers that the contact of surface with 
molecules of fluid is decreasing for the lower effect of the suction. Moreover, an interesting behavior is observed 

Figure 7.   Temperature profile for different values of Rd. 

Figure 8.   Temperature profile for different values of Ec. 
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in the first solution where the skin friction rises for the lower values of the suction over the stretching surface. 
It is also noticed that dual solutions exist on both surfaces. Further, there are the ranges of the dual solutions 
( � ≥ �ci ) and no-solution ( � < �ci ) which depend upon the values of �ci where i = 1, 2, 3 . The same behavior 
is also noticed in Fig. 11. It is worth mentioning that stagnation point A has direct relationship with the skin 
friction coefficient. Figure 12 demonstrates the impact of higher values of β on f ′′(0) . It is examined that f ′′(0) 
is lower for the higher values of the non-Newtonian parameter in the first solution. This decreasing behavior 
of f ′′(0) is due to the inverse relation of shear stress and the yield stress in the fluid equations. On contrary, the 
reverse behavior is noted for the higher values of β in the second solution. Further, increments in the suction 
produce more (less) drag force in the first (second) solution. It is also found that no solution exists when S < Sci 
while dual solution obtained when for i = 1, 2, 3 . Figure 13 describes the behavior of heat transfer rate for dif-
ferent values of velocity ratio parameter � . There are multiple singularities occur in the unstable solution which 
demonstrate the instability of the flow for the second solution. Moreover, the rate of heat transfer enhances for 
the high effect of the suction in the first solution. Finally, the temperature gradient was plotted in Fig. 14. The 
rate of heat transfer is advanced for the more noteworthy estimations of mass suction in the first solution. Then 
again, the turnaround pattern is perceived for the second solution.

Figure 9.   Temperature profile for different values of Pr. 

Figure 10.   Coefficient of skin friction for different values of S. 
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Figure 11.   Coefficient of skin friction for different values of A. 

Figure 12.   Coefficient of skin friction for different values of β. 

Figure 13.   Rate of heat transfer for different values of S. 
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Conclusion
The rate of heat transfer of the steady MHD stagnation point flow of Casson fluid on the shrinking/stretching 
surface in the existence of thermal radiation and viscous dissipation has been examined. By using similarity 
transformation, the self-similar nonlinear ODEs have been gotten and then solved by using the shooting method 
in MAPLE software. Double solutions occur for the different ranges of the velocity ratio parameter and mass 
suction parameter. Stability analysis is done for the solutions by using BVP4C solver in the MATLAB software 
and the results suggest that only the first solution is the stable. It is found that the velocity and its boundary layer 
thickness decrease for the greater A in the first solution on the shrinking surface. The thickness of the thermal 
boundary enhances for the advanced values of the Eckert number and thermal radiation parameter while oppo-
site behavior of temperature profile is noticed for the higher values of the Prandtl number in both solutions. The 
coefficient of skin friction is reduced by the velocity ratio parameter for both solutions. The coefficient of skin 
friction decreases for the wall mass transfer parameter in the second solution. In the first solution, however, the 
behavior of the skin friction contradicts with the second solution.
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