PERFORMANCE ANALYSIS OF MOBILE IPv4 WITH AND
WITHOUT ROUTE OPTIMIZATION

)396/¢

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES
OF
CANKAYA UNIVERSTY

BY

SERAP ALTAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE
IN
THE DEPARTMENT OF COMPUTER ENGINEERING

MAY 2003

Approval of the Graduate School of Natural and Applied Sciences.

Y Ca,

Prof. Dr. Yurdahan GULER
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Tourhoigey

Prof. Turhan ALPER
Chairman Of The Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

G

Asst. Prof. Giilstin TORECI
Supervisor

Examining Committee Members

Prof. Dr. Ziya B.GUVENC %ﬁv Kﬁ W?
/U .\

Asst. Prof. Giilsiin TORECI ¥
Dr. Mehmet ALTUNER 2_ALto™
-

ABSTRACT

Performance Analysis of Mobile IPv4 With and Without Route Optimization
Altay, Serap
Ms, Department of Computer Engineering
Supervisor: Asst. Prof. Giilsiin Téreci

May 2003, 92 pages

The support of mobility in the modern communications network is becoming
essential and important with the development of mobile devices. Mobile Internet
Protocol is built on IPv4. Mobile IP has been proposed by IETF (Internet
Engineering Task Force) to support portable IP addresses on Internet. In the basic
Mobile IP protocol, datagrams destined for the mobile node are sent from wired or
wireless hosts. These datagrams have to travel through the home agent when mobile
node is away from home. On the other hand, the datagrams sent from mobile hosts to
wired host can be sent directly. This asymmetric routing, called “Triangle Routing”.
On the other hand, when the destination node is very close to mobile host, this
creates a problem. Solving of the problem “Triangle Routing” is one appealing topic
in mobile IP. IETF proposed extension part of the basic mobile IP, called “Route
Optimization” to address this problem. IPv4 has already been widely deployed.
Moreover, it will most probably dominate the Internet for a long time. Therefore, in
this thesis implemented mobile IPv4 with and without route optimization in

OMNeT++. Simulations have already been done to justify the modification.

Keywords: Mobile IP, mobile communication, route optimization, triangle routing.

1ii

oz
Mobil Internet Protokolii Versiyon 4’de, Yonlendirme Optimizasyonlu ve
Optimizasyonsuz Performans Analizi
Altay, Serap
Yiiksek Lisans, Bilgisayar Miihendisligi Béliimii
Tez Yoneticisi: Y. Dog. Dr. Giilsiin Téreci

Mayis 2003, 92 sayfa

Mobil cihazlarin gelismesiyle birlikte internete telsiz ve mobil erigimin saglanmasi
6nemli ve temel bir ihtiyag olmustur. Mobil Internet Protokolii bu ihtiyagtan dolay1
IETF tarafindan internette hareketliligi desteklemek i¢in IPv4 temel alinarak
gelistirildi. Temel Mobil IP’de, eger mobil cihaz bagl oldugu networkten bagka bir
networke gittiyse, mobil cihaz gonderilen data paketlerini kablolu ve kablosuz olarak
kendi networkiindeki yonlendiricisi yoluyla alir. Diger taraftan mobil cihaz data
paketlerini kablolu cihazlara direk olarak génderir. Bu asimetrik yonlendirme “liggen
yonlendirme” olarak adlandirilir. Bu durum paketlerin tagimasinda problemler
olusturmaktadir. IETF bu problemleri ¢6zmek ig¢in “yonlendirme protokoliinii”
gelistirdi. IPV6 da bu sorunun ¢6ziimi i¢in gelistirilmistir, fakat IPv4 kullanmimi daha
baskin oldugu i¢in, bu tezde IPv4 lizerinde g¢alisilmig ve optimizasyonlu ve
optimizasyonsuz performance analizi igin OMNeT++ programi kullanilmstir.

Simulasyon sonucunda yapilan ¢alismanin dogrulugu gézlemlenmistir.

Anahtar Kelimeler: Mobil IP, mobil iletisim, ydnlendirme optimizasyonu, tiggen

yonlendirme.

iv

To my parents; Magfire and Cevdet

ACKNOWLEDGMENTS

I express sincere appreciation to Asst.Prof. Giilslin T6reci and Orhan Gazi for his
guidance and insight throughout the research. Then I must thank Asst. Prof. Halil
Eyyuboglu and Assoc. Prof. Dr. Yahya Baykal for their encouragements. My
friends Caglar Arpali, Muammer Bal, and Barbaros Preveze is gratefully
acknowledged. To my parents, I offer sincere thanks for their unshakable faith in

me and their willingness to endure with me the vicissitudes of my endeavors.

vi

TABLE OF CONTENTS

ABSTRAC T ...ttt eesessessstesesasaseasesassssesassessesessssessnesesssessasenenes iii

OZ oottt st es e sa et e s et eeese s s e iv

ACKNOWLEDGEMENTSctcitinniintnrrininnsnesenssesersesssssessesssssessssesessssessssessnses vi

TABLE OF CONTENTSccooiirtretniirtnteeneerenerssresesesessesesesesssesessesessessssasesenns vii

TABLES ... ieitetecteesenteetseeesteestsssssssesesessssesasessssesesesessesassessssnsessssssssensssssssens ix

FIGURESotitiiiteretreictneesecterestseesiessesassssessssasessssessesesassessssesssnssessesesssessnsessnsasesenns X
CHAPTERS

CHAPTER 1 ..eviiiiiiiieieereenneseeseesesasnesestessesesssssessssasssstessessasessessesasessorsssensorseses 1

INTRODUCTION.......cooeetruirererierenrenineeisesseressassessesssessessessesassessessessesessesessessessesenss 1

CHAPTER 2oviiriiiiniiieietesteneseesessestesessenssssesessassestarsssessessessssassansensesessessssenserseses 3

MOBILE IPV4 PROTOCOL OVERVIEWcccvietiriiirrinrerieiereeneneneeressssessessessens 3

CHAPTER 3coiiiteeineeeetrteeeresestnieestesessssesessesssasessssessssessssesansesessesesssesessesesssssnne 5

ADVERTISEMENTccoininirmiinrieinteesissseansresesessssessssesassesesessssesessssessssessssssessasons 5

3.1 Agent Advertisement MESSAZE.cceveererecrererreniesreneeressessessereesessersesessersesens 6

3.1.1 Link-Layer FIeldsccccererecirenrerrreerenreinieressereesnsseesessenssessenseseenees 6

B 2TP FIEIAS cooveeeeecieircieteieneet e seretesaesnevesesse e essesseseesessessenesennenea 6

3. 13 ICMP FIEIAS ...cveuiniieneiereereieeerenestesisinsnensesessesnesesassessssesessnsessesensane 7

3.1.4 Mobility Agent Advertisement EXtension............ceceeveveververrereevennenies 7

3.1.5 The Prefix-length EXtensionccceceeveererrverreveenreneerenvereesnerrersessennes 9

3.1.6 The One-byte Padding EXtension............ccccereereereveernenernerernierereennene 10

3.2 Agent Solicitation MESSAZE.cccvvevereererrererestenressenrereeeeeressenresessessesssenns 10

3.3 Agent Discovery by Mobile NOESscccevveeerecreeeeereeereerireeeresereeserenne 12

CHAPTER 4ovviiiieiireicneiestereieteueeetssessesestssesssssnassassssesassesessssessssessssnsessasereasenes 14

REGISTRATIONcooiriiieiiieniireteererstsnntesesessessssnesessassessesasssssesesessssessesesssnsesssnes 14

4.1 Registration REQUESEcccccevevurerenrerenirierinerensesesesseeseeseeeseseenesensesessssenes 16

4.2 RegiStration REPLY.....cccceveeiererrrrrerenerenrerenseernnesansersssesesesessesessesesssesssenes 18

4.3 Registration EXIENSIONccevvereerecierenreerereeerecreseesiesessenesessessosesessosensonens 20

TUNNELINGccciriirirtiteenieteneetereresteresseseesessessenesssssessessssassessassesassesessesssssssassesass 23
5.1 TP in IP Encapsulation........ccccecevervecvererererseerenresnsessesssssesessenssseesessssessensesans 24

5.2 Minimal Encapsulationcoeeeeerireenenrrnreineniesseseoressesssesseessesessesenens 25

5.3 Generic record Encapsulationccccevueeuereeceeresreesiensesessessensessessessensenss 26
CHAPTER 6 ...oviiriiieiieceectrceeceseneeeteesseeesessassesssesasssessessosessasessessessssenssssnns 27
ROUTE OPTIMIZATIONcccuvrteieirereneneentrieestensessesseesessssssessessessessossassassassassons 27
6.1 BInding CaChEscceevvereerrinieeiicreeieseecreeresteerreenesseesseesessrersesssersessesnenes 28

6.2 Managing Smooth Handoffs Between Foreign Agents........c.cevvvrervvevnnnnee 32

6.3 Acquiring Registration Keys For Smooth Handoffscccceeeveerervrennnens 33

6.4 Using Special TUNNEIS.cevvererrereeenererrenennresieseeesesseressessessessesesersesseses 34
CHAPTER 7 ..ttt et estesesteeseessestssesassssasssssssssesassosessssssassasns 35
INTRODUCTION TO OMNETHooviereirenrenenenreeeenensenseseseesesssssssassesesssssarasses 35
7.1 Overview 10 OMNETH.....coiiiiricrnirenrenereerenenenesensestssessesessessessesssnesens 36

7.2 Building Simulation PrOgrams.........c.ceeeeererereereneresreraseerersrnsnereeseesesseses 37
CHARPTER 8ooirerreeetenteeenieeniessesesotessessessesssssesssesssssssssssessessnasssstassessssssssesssnnans 39
PERFORMANS ANALYSIS ...oooioieiitientererieenetrieeenteeeressenessesessessessessesasesasessesas 39
8.1 Mobile IP With And Without Route Optimization..........ccecceeveeveereerrennnns 40

8.2 Implement The Mobile IP With And Without Route Optimization 42
CHAPTER 9 ...cceeteereerecteneeneeretesesseseeeresssssessessessesssassessessassessesnsesesssssssnessssns 45
DESIGN OF THE SIMULATION FOR PERFORMANCE ANALYSIS 45

9.1 Simulation Result For Performance Analysis In Mobile IP With

OMNETH ottt s e re s sresserasaenee 49
CHAPTER 10 .cuiiiiiiriiiinnciiincnninscseeretssenetsassesssstssessesssstoressssessessonsssessssesns 54
CONCLUSION & FUTURE WORKcocvviiiritiriiiiiisiiinrecsneisesissesssssesnsses 54
REFERENCES ...ttt et ssesessestssaesessssssssssensssssssssesensos 55
APENDICE ..ottt irisesisiestsiesesesesssesssssssassssssesesessescsnsasasossseasense 58
SOURCE CODE OF THE APPLICATIONcocectvieiirerecrenertsnenenseeseneesesecsenenne 58

viii

LIST OF TABLES

TABLE

9.1: Simulation results for 200-byte PACKELcccverererrererreerirrierirrererersesessesessesesenes 50

9.2: Simulation results of mobile IPv4 without route optimization
fOr 200-bDyte PACKELcceverrerrieerirerereeireresteeresressesreessesassessessesessensessesesennes 51

9.3: Simulation results of mobile IPv4 without route optimization for
200-DYLE PACKELcvevurrieeierenrererneserneerenersnnsessssessensasessessessesessesssssesassessasassesnesans 52

ix

FIGURES

2.1: Basic principal 0f MIPVAcccocvceernierinienenteenesrerssesessesssiessessesessessesansassesesses 4
3.1: Mobility Agent advertisement EXtENSIONc.eceevererreeseerereereresesssessessesesessesassenns 7
3.2: Prefix length extension fOrmat........cc.eceveerreeveerereirierenesnreeeesesnenrenesesessesnesnesennas 9
3.3: Pad extension fOrmat..........coccceeeneeererenrerersinesreieseenseeesessesaeessesseseesessesserees 10
3.4: Agent SOlICItation MESSAZE. ..c.crvrrerrrrerreiererreraereenreressesneressassesessesserassesssssssassesees 11
4.1: Mobile IP registration OVEIVIEW......ccevceeruerrerrerrersereerseniessensessessassessessassaessasseses 16
4.2: General Mobile IP registration message format..........cccceeevvivienececenecerrneneneas 16
4.3: Registration request packet format.........coeeverveererienrerneenrenenesnenresressesressssessnenees 17
4.4: Registration replay packet formatccoeeeeerienrinrnrnnienecrenrennenneerenressnessesennes 19
4.5: Authentication extension packet formatcceveevereererrerierersersnnersenereesesessenees 21
5.1: General tUNNEINGc.covvireriiririieririteeeereneeneeireeeeenesesesesnesanessesesesesesesessssnes 23
5.2: IP-In-IP encapsulation.........ccceceerueereerierenseeniseesnnerssssesseesessseessesssessessesssssssssansses 24
5.3: Minimal encapsulation..........ccceeveerereereriessererenirsnenenesesssseseessesesssssessesesssssesessans 26
5.4: Generic Routing Encapsulation packet Structurecceeeervererenrecrencniesrareeens 26
6.1: Triangle TOULING.ceverrvrrerrerreererrerireeeereeessressessessesnesssssessessessessassessessessassaonses 27
6.2: Binding update to correspondent N0de..........ccecreruererrerieerienrenieceneneseniesessaennns 29
6.3: Binding update message format..........cccevevcercerirnerecenrinieenninennteeenreseessesseesesnes 30
6.4: Binding acknowledgement message format...........cccecevveererreererreereenercrereesresenens 31
6.5: Binding request message fOrmat.........ccevveverrenenienieereerenserieneesesenessessessasssessans 31

LIST OF FIGURES

6.6:

7.1:

7.2:

8.1:

8.2:

83:

8.4:

9.1:

9.2:

9.3:

Binding Warning MESSAZEceuererrevererrerreresenseseressesssressasseassessessessssassessesnosess 32
Simple and compound MOGUIEScceererrrrrrrrerirererererrereesnererasrerssseessesessesens 36
Figure gives an overview of the process of building and running

SIMUIALION PIOZLAILuveveverererreneriereeeeserreteserseseesseressessesassarsesassersessessssensersssanns 38
Structure of Mobile IP when mobile node in its home networkc.ccue.e... 40
Structure of Mobile IP with and without route optimization..........c.ccccvvervennenen. 41
Overview of mobile IP without route optimizationcceceeeeeereeeereeeereneennnnes 42
Overview of mobile IP with route optimizationoeveeevereerveeverreeeerrereeeennes 43
Simulation result of mobile node in home NEtWOrK.........ccovvvrerrererrereerrervervennes 49
Simulation result of mobile IPv4 without route optimizationcc.eevervenenee. 50
Simulation result of mobile IPv4 with route optimization...........cceceeveeerevenenne. 52

Xi

CHAPTER 1

INTRODUCTION

Due to the increasing use of Personal Digital Assistants (PDAs), portable computers
and cellular phones, there has been an increasing demand for wireless Internet
access. However, some problems need to be solved before mobile access to the
Internet becomes widespread. A first problem is caused by the way Internet Protocol
(IP) routes packets to their destination according to IP addresses. This addresses are
associated with a fixed network location and would not work in a wireless
environment since when the mobile node moves, it will eventually reach a network,
with a new network number and a new IP address [1].

Mobile IP was designed to solve this problem and other problems associated with
mobile networking by allowing the mobile node to use two IP addresses, which are a
fixed home IP address and a temporary care-of IP address that changes at each new
point of attachment. Mobile IP protocol was built on the top of the Internet Protocol
to support the mobility. Mobile IP protocol for IPv4 provides continuous Internet
connectivity to mobile host. There are different mobility protocols. However these
connection technologies protocols are not used for all communication technologies
because of limited application areas.

There are several additional problems that need to be solved to make Mobile IP an
efficient protocol. One of the major problems is the “Triangle Routing”. In the basic

mobile IP protocols datagrams are sent to the mobile host by the home agent when

the mobile node is away from home. Nevertheless datagrams are sent from mobile
host to other wired node directly. This routing called “Triangle Routing”, is generally
far from optimal, especially when the destination node is close to the mobile node.
Internet Engineering Task Force (IETF) to developed route optimization protocol
over come of “Triangle Routing” problem.

Other approaches, like reverse routing are also proposed for this purpose. Actually,
in the next generation of the Internet protocol IPv6, “Routing optimization” is
integrated as a fundamental part of the mobility support [2]. However, IPv4 has
already been widely deployed and will continuously dominate the Internet for a long
time. In this thesis work mobile IP with and without route optimization is implement
and using program OMNeT++. Result of the simulations have already been provable
the modification.

In chapter 2 of the thesis a brief overview to mobility support in IPv4 is given. The
chapters 3,4,5 include details to the introduction of mobile IPv4. The following
chapter is survey on the routing schema in mobile IP protocol, including the “
Triangle Routing” problem and the route optimization extension in mobile IP. The
chapter 7 is brief introduction to OMNeT++. The chapter 8 focuses on the current
implementation architecture of mobile IP in OMNeT++. It is the highlight,
elaborating this implementation of mobile IP with Route Optimization in OMNeT++
from the system architecture modification to the implementation details. After
extending Route Optimization on mobile IP, simulations are carried out for
validation. The simulation scenarios, scripts and results will be presented in the
section 9. Then, the report is finalized with the summary and discussion in chapter

10.

CHAPTER 2

MOBILE IPv4 PROTOCOL OVERVIEW

Mobile IP supports mobility when a mobile node is attached to a different network
from its home network, as shown in Figure 2.1. Mobile IP address of the mobile
node remains the same of the network Mobile IP has two IP adresses, a constant
home address, and a care-of address. Care-of address changes when mobile node
moves to a new foreign network.

Home agent sends all packets to the mobile node’s care-of address via the foreign
agent when the mobile node is away from its home network. When sending to the
mobile node

Home agent constructs a new IP packet, which contains the mobile nodes care-of
address as the destination IP address. The created IP packet, which is routed to the
destination address, encapsulates the original IP packet. This procedure is called
tunneling. As encapsulated the packet reaches to the care-of address, the original IP
packet is decapsulated and delivered to the mobile node. There are two types of care-
of addresses, foreign agent care-of address and collocated care-of address [1].

a. Foreign agent care-of address:

A foreign agent provides a care-of address through its agent advertisement message.
Foreign agent’s IP address is the care-of address and the foreign agent is the endpoint
of the tunnel. Foreign agent receives tunneled packets and decapsulates them. The

decapsulated packets are send to the mobile node. Since the foreign agents are

limited in the number of care-of addresses, this method useful for IPv4 which has
limited addresses space

b. Co-located care-of address:

A co-located care of address is an IP address acquired by the mobile node as either
statically or through the use of Dynamic Host Control Protocol (DHCP). The mobile
node uses the co-located care-of address as end point of the tunnel with the home
agent in the other end. In this case the mobile node decapsulates the tunneled
datagrams itself. While the mobile node sends a packet tunneling is not require. The
mobile node sends an IP packet directly to its destination address without home
agent.

There are same protocols developed by Internet Engineering Task Force (IETF)
about mobile IP these standard protocols are used when a mobile node moves to a

new foreign agent. The protocols contains following areas [1]:

-Advertisement
-Registering
-Tunneling

Global

Internet

FA
I | I
HA rod
MN
| [|
| | Foreign Network
Home Network

Figure 2.1:Basic principal of MIPv4

CHAPTER 3

ADVERTISEMENT

In mobile IP, getting care-of address is based on Router Advertisement protocol of
the standard ICMP (Internet Control Message Protocol), specified in RFC 1256
[Request For Comments 1256]. In mobile IPv4, these router advertisements are
called as agent advertisement. home agents and foreign agents broadcast these
advertisements in a random mode at regularly intervals.

The agent advertisements includes the following functions:

e Detection of agent, type,i.e. home agent or foreign agent or both.

e Keeping available care-of addresses.

¢ Allows the mobile node to determine the network number and know their

status to link to the Internet.

e Foreign Agent provides information about special features, such that alternative

encapsulation techniques, for the mobile node.

e Mobile node listens these advertisements and decides whether it is in its home
network or in a foreign network.

The home agents broadcast agent advertisements periodically. If a mobile node needs
a care-of address and does not want to wait for the periodic advertisement, it can
send out agent solicitation message that is to be responded by a foreign agent or
home agent.

Mobile nodes detect any change in the set of mobility agents, which are available at

the current point of attachment by the help of Internet Service Message Provider
5

(ISMP) router solicitations (agent solicitation). If a mobile node does not receive
agent solicitation from a foreign agent anymore, it understands that it is not within
the range of the foreign agent. In this case, the mobile node begins to search for a
new care of address, or possibly use a care-of address known from advertisements it
is still receiving. If the mobile node does not receive any recently advertised care of
addresses, it may send an agent solicitation or it may choose to wait for another
advertisement.

3.1 Agent Advertisement Message:

An agent advertisement is an ICMP router advertisement that has been extended to
carry a mobility agent advertisement extension. A mobility agent transmits agent
advertisements to advertise its services on a link. The agent advertisement can also
carry other extensions as specified by the ICMP protocol. Agent advertisements
include the following link-layer, IP, and ICMP header fields same as ICMP router
advertisements [2].

3.1.1 Link-layer fields

Destination address: of a unicast agent advertisement that considered being the
same as the source link layer address is must be the source link-layer address of the
solicitation that prompted the advertisement [1].

3.1.2 IP fields

TTL: TTL (Time To Live) of the IP header must be set to 1 for all agent
advertisements. This is to prevent solicitations and advertisements from reaching
mobile nodes or mobility agents not on the same link.

Destination address: ICMP routers discover the IP destination address, which is
required to be either the all systems multicast address (224.0.0.1) or the limited

broadcast address (255.255.255.255).

3.1.3 ICMP fields

- Type: Type must be 9.

- Code: If the advertising agent also acts as a router for IP traffic, the code field must
be 0, when the advertising agent forwards datagrams from the MN (Mobile
Node) to an appropriate router then the code field must be 16.

- Lifetime: The Lifetime field must contain the period of time which advertisement is

to be considered valid in the absence of further advertisements.

- Router address: The router address of any advertisement

- Num address: The number of router addresses advertised in this message.

3.1.4 Mobility Agent Advertisement Extension

The mobility agent advertisement extension format is shown in Figure 3.1. It follows

the ICMP router advertisement fields. It means that an ICMP router advertisement

being send by a mobility agent [1].

0 1 2 3
012345678901234567 89012 3456789012
Type | Length Sequence number

Registration lifetime R|B|H|F|M|G]|V]| Reserved
Zero or more care of addresses

Figure 3.1: Mobility agent advertisement extension

Type: This field must be set to 16.
Length: (6+4*N), N is number of care-off address.
Sequence Number: The count of agent advertisement messages after initialization

of the agent.

Registration Lifetime: Longest lifetime in any registration request; A value of
65,535 indicates infinity. Maximum registration lifetime=
18 hour (65535/3600).
R: Registration request. This means that a MN must register with the foreign agent
(or another foreign agent on this link) and cannot use a co-located IP address.

B: Busy. The foreign agent will not admit registrations from additional mobile node

when this bit is set. The capacity is full.

H: Home Agent. When this bit is set. The agent offers service as a home agent on

the link on which the agent advertisement is sent.

F: Foreign Agent. This agent offers service as a foreign agent.

M: Minimal Encapsulation. The agent uses minimal encapsulation tunneling while

implement receiving tunneled datagrams.

G: Generic Routing Encapsulation. The agent supports tunneling via minimal

encapsulation technique. While Tunnels messages, it uses GRE methods.

V: Van Jacobsen header compression. This agent supports header compression over

this link with any registered mobile node.

Reserved: The rest of the bits are reserved for future use. Send as 0;ignored on

reception.

Care-of address: Foreign agent provides care-of address for the advertisement. An
agent advertisement is required to include at least one care-of
address when the F bit is set The number of care-of addresses
present is determined by the length of the extension.

A home agent must always be prepared to serve its mobile nodes It never refuses the

mobile nodes in its home network. A foreign agent may at times be too busy to serve

additional mobile nodes; even so, it must continue to send agent advertisements, so

8

that any mobile nodes already registered with it will know that they have not moved
out of range of the foreign agent and that the foreign agent has not failed [3]. A
foreign agent may indicate that it is "too busy" to allow new mobile nodes to register
with it, by setting the 'B' bit in its agent advertisements. An agent advertisement
message must not have the 'B' bit set if the 'F' bit is not also set. Either the 'F' bit or
the 'H' bit must be set in any agent advertisement message sent.

When a foreign agent wishes to require registration even from those mobile nodes,
which have acquired a co-located care-of address, it sets the R' bit to one. Because
this bit applies only to foreign agents, an agent must not set the 'R' bit to one unless
the 'F' bit is also set to one.

There are two more extensions in the Mobile IP standard. These extensions are
possible to use in connection with agent advertisement.

3.1.5 The Prefix-Length Extension

The prefix-length extension may follow the mobility agent advertisement extension
[1]. It is used to specify the network prefix that applies to the routers listed in the
ICMP router advertisement portion of the agent advertisement. . Note that the prefix
lengths given don’t apply to care-of addresses listed in the mobility agent

advertisement extension. The prefix lengths extension field structure is shown in

Figure 3.2.
0 1 2 3
01234567 890123456789012345678901
Type Length Prefix length |
Figure 3.2: Prefix length extension format
Type: 19

Length: N, where N is the value (possibly zero) of the number address field in the
ICMP router advertisement portion of the agent advertisement.

Prefix length: Network number of the corresponding router address, which is
number of leading bits listed in the ICMP router advertisement
portion of the message.

The prefix length for each router address is encoded as a separate byte, in the order

that the router addresses are listed in the ICMP router advertisement portion of the

message.

3.1.6 The One-byte Padding Extension

Some TCP/IP implementations insist on having only an even number of bytes in an

ICMP message. One-byte padding extension since its necessary to have. There

should be used only one one-byte padding extension for obvious reasons and this

extension should be the last the last extension in the agent advertisement.

The one byte padding extension is encoded as a single byte in Mobile IP. The one

byte padding extension is shown in Figure 3.3, where type is set to 0 to denote one-

byte padding extension.

01234567
Type

Figure 3.3: Pad extension format.

3.2 Agent Solicitation Message

The format of the agent solicitation is the same as the ICMP router solicitation.
Agent solicitations do, however, always set the TTL (Time To Live) to one (When
an IP host needs a local default router, router solicitation processing starts. It

multicasts or broadcasts a router solicitation message. Any router in the vicinity will

10

respond with a unicast router advertisement sent directly to the soliciting host. After
receiving the advertisement the host then responds just as if the advertisement were
unsolicited.). However the way in which it is used is slightly different. There are

some operational differences. The format of agent solicitation is shown in Figure 3.4.

0 1 2 3
012345678901234567890123456789012
Type | Code | Checksum

Reserved

Figure 3.4: Agent solicitation message

Type: 10 refer to agent solicitation message.
Code:0
Checksum: The 16 bit one’s complement of the one’s complement sum of the ICMP
message, starting with the ICMP type. To compute the checksum field
issetto O [1].
Reserved: Send as 0, ignored on reception. Advertisements only need to be sent
when the site policy requires registration with the agent (R- bit is set) or
as a response to a specific agent solicitation [1].
Mobile IP agent advertisements uses the same procedures, defaults and constants as
specified for ICMP router discovery (advertisement and solicitation) except for the
following [4]:
¢ A mobility agent is required to limit the rate at which it sends agent advertisements
(broadcast or multicast advertisements). A recommended maximal rate of one per
second.
e A foreign agent must accept and respond to solicitations even if the source IP

address in the solicitation does not appear to come from the foreign agent's own

11

subnet.
¢ A mobility agent may be configured to only send advertisements as a respond to
solicitations.
3.3 Agent Discovery by Mobile Nodes
The mobile node should only send solicitations in the absence of agent
advertisements absence of a care-of address determined by other means. The care-of
address can be obtained through some link-layer protocol or a co-located care-of
address can be acquired through DHCP. During solicitation the mobile node has to
obey the same rules as the node sending normal ICMP router discovery solicitations.
The only difference is that the mobile node may solicit more often than once every
three seconds and a mobile node that is not connected to a foreign agent may solicit
more than max_solicitations.
A mobile node limits the rate at which it sends solicitations. After sending three
initial solicitations once a second, must use an exponential back off algorithm to
reduce the rate until a maximum delay has been reached. The mobile node uses the
mobility agent advertisement extension to distinguish between mobility agent
advertisements and normal uses of the ICMP protocol.
While searching for an agent, the mobile node doesn’t increase the rate at which it
sends solicitations unless it has received a positive indication that it has moved to a
new link. After the mobile node should increase the rate at which it sends
solicitations if it begins searching for a new agent to register. The increased
solicitation rate may revert to the maximum rate, but then must be limited in the
manner described above. In all cases, the recommended solicitation intervals are
nominal values. Mobile nodes must randomize their solicitation times around these
nominal values as specified for ICMP router discovery [3].

12

Mobile nodes must process received agent advertisements. A mobile node can
distinguish an agent advertisement message from other uses of the ICMP router
advertisement message by examining the number of advertised addresses and the IP
total length field. When the IP total length indicates that the ICMP message is longer
than needed for the number of advertised addresses, the remaining data is interpreted
as one or more Extensions. The presence of a mobility agent advertisement
extension identifies the advertisement as an agent advertisement.

If there is more than one advertised address, the mobile node picks the first address
for its initial registration attempt. If their registration attempt fails with a status code
indicating rejection by the foreign agent, the mobile node may retry the attempt with
each subsequent advertised address in turn.

When multiple methods of agent discovery are in use, the mobile node should first
attempt registration with agents including mobility agent advertisement extensions in
their advertisements, in preference to those discovered by other means. This
preference maximizes the likelihood that the registration will be recognized, thereby
minimizing the number of registration attempts. A mobile node must ignore reserved
bits in agent advertisements, as opposed to discarding such advertisements. In this
way, new bits can be defined later, without affecting the ability for mobile nodes to

use the advertisements even when the newly defined bits are not understood.

13

CHAPTER 4

REGISTRATION

Registration operation of mobile IP provides for the mobile nodes to communicate
and to send their information to their home agents. Mobile nodes use registration to
request forwarding services when visiting a foreign network, inform their home
agent of their present care-of address. When mobile nodes return to their home
network. Their mobility bindings expire and they deregister.
The purpose of registration is to let the home agent keep track of the mobile nodes
current care-of address to tunnel incoming datagrams, destined for the mobile node.
This kind of registration that redirect traffic bear substantial security risks and
therefore some means of authentication are necessary. When the mobile nodes
register the home agent creates a mobility binding. A mobility binding is an
association of the mobile node's home address with its current care-of address and
the remaining lifetime of that association.
Several other optional capabilities are available through the registration procedure,
which enables a mobile node to do the following [1]:
¢ Discover the address of a home agent if the mobile node is not configured

with this information.
® Choose between alternative tunneling protocols (IP-in-IP, minimal

encapsulation and GRE).

o Use Van Jacobson header compression.

14

e Maintain multiple simultaneously mobility bindings so that a copy of

each datagrams is tunneled to each active care-of address.
e Deregister certain care-of addresses while retaining others.
There are two variations of registration procedure depending on whether the mobile
node tries to register a colocated care-of address or the care-of address of a foreign
agent. In the latter case the mobile node is required to register via that foreign agent.
The mobile node is required to register via a foreign agent if it has received an agent
advertisement with the R bit set. If the mobile node has returned to its home network
it first deregister with its home agent, then sends the registration request addressed
directly to its home agent. Likewise the mobile node naturally sends the registration
request addressed directly to its home agent if a colocated care-of address is used.
While registering via a foreign agent the registration procedure uses the following
four message types, illustrated in Figure 4.1 [4].
The registration steps:
e The mobile node sends a registration request to the prospective foreign

agent to begin the registration process.

¢ The foreign agent processes the registration request and relays it to the

home agent.
The home agent sends a registration reply to the foreign agent to approve or refuse
the request. The foreign agent processes the registration reply and relays it to the
mobile node to inform it of the disposition of its requests.
If the mobile node tries to register using with its home agent, the registration
procedure consists of the mobile node sending the registration request to the home
agent. The home agent then processes the request and sends back a reply mobile

node.

15

1 2
Mobile [—®| Foreign [— Home

Node 4—4-—- Agent <T Agent

1: Mobile node sends a registration request.

2: Foreign agent relays request to home agent.

3: Home agent sends registration reply (accepts or denies).
4: Foreign agent relays status to home agent.

Figure 4.1: Mobile IP registration overview.

Mobile IP registration messages use the User Datagram Protocol (UDP). The
registration message is shown in Figure 4.2. A nonzero UDP checksum should be
included in the header, and must be checked by the recipient. The recipient accepts a
zero UDP checksum. The behavior of the mobile node and the home agent with
respect to their mutual acceptance of packets with zero UDP checksums should be

defined as part of the mobility security association, which exists between them [1].

IP header | UDP header | Mobile IP message header Extension
fields

Figure 4.2: General Mobile IP registration message format

4.1 Registration Request:

A mobile node uses a registration request message to registers with its home agent
once register is finished. Its home agent can create or modify a mobility binding for
that mobile node (e.g., with a new lifetime). The request may be relayed to the home
agent by the foreign agent through which the mobile node is registering, or it may be

sent directly to the home agent for the case in which the mobile node is registering a

16

co-located care-of address. The registration request message consists of the following
fields.

IP fields:

Source Address: Typically the interface address from which the message is sent.
Destination Address: Typically that of the foreign agent or the home agent.

UDP fields:

Source Port variable

Destination Port 434

Mobile IP fields:

The UDP header followed by the mobile IP fields shown in Figure 4.3.

0 1 2 3
01234567 8 9 0 1 2 3456789012345678901
Type |SIB|D|M|G|V]|rsv]| Lifetime
Home Address
Home Agent
Care-of Address
Identification
Extension

Figure 4.3: Registration request packet format.

Type - 1 (registration request).

S (Simultaneous bindings.): By setting this bit, the mobile node requests that the

home agent retains its prior mobility bindings.

B (Broadcast datagrams.): By setting this bit, the mobile node request that broadcast
datagrams will be tunneled to it.

D (Decapsulation.): By setting this, the mobile node indicates the use of a colocated

care-of address.

17

M (Minimal encapsulation.): The mobile node requests the use of minimal
encapsulation by setting this bit.
G: GRE encapsulation.
V: Van Jacobson header compression. By setting this bit the mobile node.
request the use of VJ header compression

rsv :The rest of the bits in this byte is reserved for future use.

Lifetime : The number of seconds before the registration is considered expired. A
value of zero indicates a request for deregistration. A value of
Oxffff indicates infinity.

Home Address: The IP address of the mobile node.

Home Agent: The IP address of the mobile node’s home agent.

Care-of address: The IP address of the tunnel endpoint.

Identification: A 64-bit number generated by the mobile node used to match

registration request with registration replies and for protecting against replay attacks.

Extensions: Everything that follows the fixed part.

4.2 Registration Reply

The registration request is answered by a registration reply by the home agent. The

registration reply packet format is shown in Figure 4.4. The mobile node is

requesting service from a foreign agent, that foreign agent will receive the

registration reply from the home agent and subsequently relay it to the mobile node.

The registration reply message contains the necessary codes to inform the mobile

node about the status of its registration request, along with the lifetime granted by the

home agent, which may be smaller than the original request. Registration lifetime

allowed by the foreign agent. If the lifetime received in the registration reply is

greater than that in the registration request, the lifetime in the request must be used.

18

When the lifetime received in the registration reply is less than that in the registration
request, the lifetime in the reply message must be used. The field in the IP header,

UDP header, and in the registration request message.

IP fields:
Source Address: Typically copied from the destination address of the registration
request to which the agent is replying.
Destination Address: Copied from the source address of the registration request to
which the agent is replying
UDP fields:
Source Port: <variable>
Destination Port: Copied from the source port of the corresponding registration
request.

The Mobile IP fields shown below follow the UDP header:

0 1 2 3
01234567 8901 23456789012345678901
Type Code Lifetime

Home Address
Home Agent
Identification

Extensions....

Figure 4.4: Registration replay packet format.

This reply either grants or denies service to the mobile node by the home agent. The
fields in the reply has the following meaning;:
Type: 3 (Registration reply).

Code: A value indicating the result of the registration request.

19

Lifetime: The duration in seconds for which the registration is valid. Note that this

value may be smaller than the requested lifetime.

Home address: The IP address of the mobile node.

Home agent : The IP address of the home agent.

Identification: A 64 bit number generated by the mobile node used to match
registration request with registration replies and for protecting against
replay attacks.

Extensions: Everything that follows the fixed part.

4.3 Registration Extension:

Each mobile node, foreign agent, and home agent must be able to support a mobility

security association for mobile entities, indexed by their SPI (Security Parameter

Index) and IP address. In the case of the mobile node, this must be its home address.

Registration messages between a mobile node and its home agent must be

authenticated with an authorization-enabling extension, e.g. the Mobile-home

authentication extension. This extension must be the first authentication extension;
other foreign agent-specific extensions may be added to the message after the mobile
node computes the authentication.

Authentication is provided as an extension to the Mobile IP protocol. Three such

registration extensions are defined all of which allows additional security measures

in the registration procedures. The three extensions are:

Mobile-home authentication extension.

Mobile-foreign authentication extension.

Foreign-home authentication extension.

Exactly one Mobile-home authentication extension is required to be present in all

registration requests and replies. The location of the extension marks the end of the

20

data authenticated by the extension. The other two extensions can be used if the
parties share a mobility security association, but are not required. The security
association to be used is pointed to by the Security Parameter Index (SPI).

The default authentication algorithm used is keyed Message Digest 5 (MD5) (Rivest
1992) which is a cryptographic hash function. The algorithm is used in prefix +
suffix mode [3]. This means that the data to be authenticated is preceded and
followed by the shared secret. The MDS5 checksum is computed over the following
stream of bytes:

- The shared secret defined by the security association between the nodes.

- The registration request or registration reply header fields.

- All prior extensions in their entirety.

- The type, length, and SPI included within the extension itself.

- The shared secret again.

The authentication extension follows the TLV (Type - Length - Value) format see
Figure 4.5. The type field can take three different values (32, 33 or 34) depending on
whether it is a Mobile-home, Mobile-foreign or a Foreign-home authentication
extension. The length field is 4 plus the number of bytes in the authenticator, the SPI
identifies the security association and the authenticator is a variable length field

whose the length depends on the authentication algorithm.

0 1 2 3
01234567890123456789012345678901
Type | Length SPIL....

.... SPI (continued) Authenticator...

Figure 4.5: Authentication extension packet format.

Type: 32 Mobile-home authentication extension.
33 Mobile-foreign authentication extension.

21

34 Foreign-home authentication extension.
Length: 4 plus the number of bytes in the authenticator.
SPI: Four bytes; an opaque identifier.
Authenticator: Variable length, depending on the SPI.
This authentication scheme makes it impossible for someone to impersonate another
without knowledge of the shared secret and because the identification field in the
registration request and reply cannot be reused it is not possible to use a replay attack

to redirect the traffic.

22

While mobile node is away from home network mobile IP requires the use of
tunneling to deliver datagrams from the home network to the mobile node. During
the tunneling operation; datagrams are encapsulated in the home agent (entry point of
the tunnel) and sent to the foreign agent. Foreign agent decapsulates packets and
sends them to the mobile node as soon as it receives encapsulated packets. The most

general tunneling case illustrated in Figure 5.1, where the source, encapsulator,

CHAPTERS

TUNNELING

decapsulator, and destination are separate nodes.

Encapsulation

Source

There are several methods of encapsulation. Mobile IP requires each home agent and
foreign agent to support tunneling datagrams using IP-in-IP encapsulation [1].

Minimal encapsulation and GRE encapsulation are alternate encapsulation methods.

Tunneling

Decapsulation

Destination

Figure5.1: General tunneling.

23

[

5.1 IP-in-IP Encapsulation

The most commonly used method of tunneling is IP-in-IP encapsulation, where an IP
packet destined for a mobile node is intercepted by the home agent and encapsulated
within the payload of another IP packet, as shown in Figure 5.2. The encapsulated
packet is then tunneled to the care-of address registered with the mobile node. This
method requires only the foreign agent and home agent to implement IP-in-IP
Encapsulation so that home agent can send packets to care-of address via tunneling.
All routers within the tunnel’s path are obvious to the fact that they are routing

encapsulated packets.

| Original IP Header | Original IP Payload |

Tunnel endpoints

| Original IP Header | | Inner IP Header | Original IP Payload |

Other
Headers

Figure 5.2: IP-in-IP encapsulation.

The figure demonstrates that there may be other header included between the inner
header and the outer header of the encapsulated datagram. The outer header source
address and destination address identify the end points of the tunnel. The inner IP
header source address and destination address identify the original sender and
recipient of the datagram respectively.

The inner IP header is not changed by the encapsulator and remains unchanged

during its delivery to the tunnel exit point. If necessary other protocol headers such

24

as the IP authentication header may be inserted between the outer IP header and the

inner IP header.

5.2 Minimal Encapsulation

It is defined within the basic Mobile IP protocol, and While IP-in-IP encapsulation

protocol adds 20 bytes (the size of an IP header) to each packet tunneled to a mobile

node, minimal encapsulation protocol adds only 8 or 12 bytes to each packet [5].

Instead of totally encapsulating each packet to be tunneled, minimal encapsulation

inserts a minimal forwarding header between the original IP header and payload of

the packet. The original header is modified and the minimal forwarding header is
also filled before the packet is tunneled, as shown in Figure 5.3. Result of original IP

header is modified in encapsulating the datagram as in [6].

- Protocol number 55 for the minimal encapsulation protocol replaces the Protocol

field in the IP header.

- The Destination Address field in the IP header is replaced by the IP address of the

exit point of the tunnel.

- If the encapsulator is not the original source of the datagram, the source address
field in the IP header is replaced by the IP address of the encapsulator.

- The total length field in the IP header is incremented by the size of the minimal
forwarding header added to the datagram. This incremental size is either 12 or 8
octets, depending on whether or not the Original Source Address Present (S) bit is
set in the forwarding header.

- The header checksum field in the TP header is recomputed or updated to account

for the changes in the IP header described here for encapsulation.

25

Original IP Header Original IP Payload

Tunnel Endpoints
Destination
IP Address

Outer IP Header Min(ilmal Encapsulation Original IP Payload
Header

Figure 5.3: Minimal encapsulation.

5.3 Generic Routing Encapsulation

Generic routing encapsulation allows multiple protocols to be used during
encapsulation procedure, whereas IP in IP encapsulation and minimal encapsulation
only support IP [7]. The entire encapsulated packet has the form presented in
Figure5.4. If a situation required *P’ number of protocols for Payload packets, and
’D’ number of protocols for delivery packets, a total number of D x P documents
would be needed to describe how every payload packet with its own protocol would
be encapsulated within every delivery packet, also with its own protocol. However,
with generic routing encapsulation, only D + P documents would be needed to
describe all possible combinations of encapsulation. P’ number of documents would
be needed to describe how to encapsulate each Payload protocol within generic
routing encapsulation, and D’ number of documents would be needed to describe
how to encapsulate generic routing encapsulation within various delivery packets
generic routing encapsulation, at this point, becomes a very attractive solution for

organizations with many protocols running on their networks.

[Delivery Header | GREHeader | PacketPayload |

Figure 5.4: Generic Routing Encapsulation packet structure

26

CHAPTER 6

ROUTE OPTIMIZATION

In the mobile IP protocol, IP packets destined to a mobile node that is outside its

home network are routed through the home agent. However packets from the mobile

node to the correspondent node are routed directly. This is known as triangle routing

[3]. Figure 6.1 illustrates triangle routing.

Home
Agent

Packet from Internet host
Routed indirectly through Home Agent

<

Encapsulatiol

Foreign
Agent

Correspon-
dent node

Packets to Internet Host moved OK

—‘&_

Mobile
Agent

Figure 6.1: Triangle routing.

Triangle routing may be inefficient in many cases. It increases the burden on the

Internet especially in heavy traffic situation or when the number of mobile nodes

roaming in the Internet increases. The second problem is that packets in flight are

lost when a mobile node moves from one foreign network to another foreign

27

network. Therefore, the IETF mobile IP working group proposes the Mobile IP with
Route Optimization protocol. Route Optimization is an extension proposed to the
basic Mobile IP protocol [8]. Here messages from the correspondent node are routed
directly to the mobile node’s care-of address without having to go through the home
agent.

Route Optimization provides four main operations [1]:

1. Updating binding caches,

2. Managing smooth handoffs between foreign agents,

3. Acquiring registration keys for smooth handoffs,

4. Using special tunnels.
6.1 Binding Caches
Route optimization gives a way for any host to maintain a binding cache containing
the care-of address of one or more mobile nodes. When sending an IP datagram to a
mobile node, if the sender has a binding cache entry for the destination mobile node,
it can tunnel the datagram directly to the care of address indicated in the cached
mobility binding. When there is no binding cache entry, sender tunnel the datagram
to the care of address through mobile node’s home agent. This is the only routing
mechanism supported by the base mobile IP protocol. With the route optimization
mobile node’s home agent sends the current mobility binding information of the
mobile node to the sender. After that the sender would be able to send datagrams to
mobile node without the service of the home agent. Each node may maintain a
binding cache to optimize its own communication with mobile nodes. Correspondent
node can create a binding entry for a mobile node only when it has received the
mobile node’s mobility binding.

There are four kinds of binding cache maintenance message in route optimization:

28

* Binding Update message.

* Binding Acknowledgement message.

* Binding Request message.

* Binding Warning message.

When a mobile mode’s home agent intercepts a datagram from correspondent node
and tunnels it to the mobile node, the home agent decides that the correspondent has
no binding cache entry for the destination mobile node. The home agent then will
send a Binding Update message to the correspondent node, informing it of the
mobile node’s current mobility binding, and in particular its care-of address. After
receiving a binding update message from the home agent of the mobile node, it will
tunnel the datagram to the mobile node’s care-of address [8].

The following Figure 6.2 is intended to help to understand how the binding updates
in route optimization. The binding update message contains the care-of address and
the home address of the mobile node and also the lifetime of the binding. It also must
contain a mobile IP authentication extension. An identification number may also be

present to provide a way of matching updates with acknowledgement and to protect

against replay attacks.
CN HA FA MN
Datagram
> Tunneled Datagram

» Datagram

< Binding Update

Tunneled Datagram Datagram
> P

Figure 6.2: Binding update to correspondent node.

29

The format of the binding update message is illustrated in Figure 6.3 [1].

0 1 2 3
01234567 8 9 01 2 3 456789012345678901
Type | A|I[M |G| Reserved | Lifetime

Mobile Node Home Address
Care-of Address
Identification

Figure 6.3: Binding update message format.

The type is 18, the A (acknowledgement) bit is set by the node sending the binding
update message to request that a binding acknowledgement message be returned. The
I (identification present) bit is set by the node sending the binding update message if
the identification field is present in the message. If the M (minimal encapsulation) bit
is set, datagram may be tunneled to the mobile node using the minimal encapsulation
protocol. If the G (Generic Record Encapsulation) bit is set, datagrams may be
tunneled to the mobile node using generic record encapsulation. The reserved sent as
0 (ignored on reception). The number of seconds remaining before the binding cache
entry must be considered expired. A value of all ones indicates infinity. A value of 0
indicates that no binding cache entry for the mobile node should be created and that
any existing binding cache entry for the mobile node should be deleted. The lifetime
is typically equal to the remaining lifetime of the mobile node’s registration. The
mobile node home address is the home address of the mobile node to which the
binding update refers. The care of address is current care-of address of the mobile
node. The binding update message indicates that no binding cache entry if set equal
to the home address of the mobile node. If present, the identification field contains a
64-bit number assigned by the node sending the binding request message, used to

assist in matching requests with replies and to protect against replay attacks [3].

30

The correspondent node or the foreign agent in response to the binding update sends
binding acknowledgement. It contains the mobile node’s home address and a status
code. It also contains an identification number, if there was one in the corresponding

binding update. The format of binding acknowledgement message is illustrated in

Figure 6.4.
0 1 2 3
01234567890123456789012345678901
Type IN| Reserved
Mobile Node Home Address
Identification

Figure 6.4: Binding acknowledgement message format.

The type is 19. If the N (negative acknowledge) bit is set, the acknowledgement is
negative. If the binding update was not accepted but the incoming datagram has the
acknowledge (A) flag set, then the N bit should be set in this binding acknowledge
message. The reserved sent as 0. The mobile node home address copied from the
binding update message being acknowledged. The identification copied from the
binding update message being acknowledged, if present.

Binding request is sent by the correspondent node to the home agent to request a
binding update. It contains the home address of the queried mobile node and possibly

an identification number. The format of the binding request message is illustrated in

Figure 6.5.
0 1 2 3
01234567890123456789012345678901
Type | Reserved
Mobile node home address
Identification

Figure 6.5: Binding request message format.

31

The type is 17. The reserved sent as 0. The mobile node home address is the home
address of the mobile node to which the binding request refers. The identification
field contains a 64-bit sequence number assigned by the node sending the binding
request message, used to assist in matching requests with replies and to protect
against replay attacks [3].

Binding warning message is used to transmit warning that one or more correspondent
nodes need a binding update message. The mobile node can initiate a binding
warning message to its home agent, requesting the home agent to send a binding
update message to its correspondent host whenever it obtains a new care-of address
from a new foreign agent. The binding warning is send to the home agent. The

format of the binding warning is illustrated in Figure 6.6.

0 1 2 3
01234567890123456789012345678901
Type | Reserved
Mobile node home address
Target node address

Figure 6.6: Binding warning message.

The type is 16. The reserved sent as 0. The mobile node home address is the home
address of the mobile node to which the binding warning message refers. The target
node address is the address of the node tunneling the datagram that caused the
binding warning message; the target of the binding update message sent by the home
agent.

6.2 Managing Smooth Handoffs Between Foreign Agents

When mobile node registers with a new foreign agent, the basic mobile IP does not
specify a method to inform the previous foreign agent. Thus the datagram in flight,

which had already tunneled to the old care-of address of the mobile node, are lost.
32

This problem is solved in route optimization by introducing smooth handoffs.
Smooth handoff provides a way to notify the previous foreign agent of the mobile
node’s new mobility binding [9].
If foreign agent supports handoffs, it indicates this in its agent advertisement
message. When the mobile node moves to a new location, it requests the new foreign
agent to inform its previous foreign agent about the new location as part of the
registration procedure. The new foreign agent then constructs a binding update
message and sends it to the previous foreign agent of the mobile node. Thus if the
previous foreign agent receives packets from a correspondent node having an out-of-
date binding, it forwards the packet to the mobile node’s care-of address. It then
sends a binding warning message to the mobile node’s home agent. The home agent
in turn sends a binding update message to the correspondent node. This notification
also allows datagrams sent by correspondent nodes having out-of-date binding cache
entries to be forwarded to the current care-of address.
6.3 Acquiring Registration Keys For Smooth Handoffs
For managing smooth handoffs, mobile nodes need to communicate with the
previous foreign agent. This communication needs to be done securely as any careful
foreign agent should require assurance that it is getting authentic handoff information
and not arranging to forward in-flight datagrams to a bogus destination. For this
purpose a registration key have been proposed in the order of declining preference
[10]:
- If the home agent and the foreign agent share a security association, the home agent
can choose the registration key.
- If the foreign agent has a public key, it can again use the home agent to supply the

registration key.

33

- If the mobile node includes its public key in its registration request, the foreign
agent can choose the new registration key.
- The mobile node and its foreign agent can execute the Diffie-Hellman key
exchange protocol as part of the registration protocol.
This registration key is used to form a security association between the mobile node
and the foreign agent.
6.4 Using Special Tunnels
When a foreign agent receives a tunneled datagram for which it has no visitor list
entry, it concludes that the node sending the tunneled datagram has an out-of-date
binding cache entry for the mobile node. If the foreign agent has a binding cache
entry for the mobile node, it should re-tunnel the datagram to the care-of address
indicated in its binding cache entry. On the other hand, when a foreign agent receives
a datagram for a mobile node for which it has no visitor list or binding cache entry, it
constructs a special tunnel datagram [10]. Encapsulating the datagram and making
the outer destination address equal to the inner destination address construct the
special datagram. This allows the home agent to see the address of the node that
tunneled the datagram and prevent sending it to the same node. This avoids a
possible routing loop that might have occurred if the foreign agent crashed and lost

its state information.

34

CHAPTER 7

INTRODUCTIONS TO OMNeT++

OMNeT++ is an object-oriented modular discrete event simulator. The name itself
stands for Objective Modular Network Tested in C++. OMNeT++ has its distant
roots in OMNeT, a simulator written in Object Pascal by dr. Gyérgy Pongor [11].

The modeling of communication protocols, this simulator can be used for computer
networks and traffic modeling multi-processor and distributed systems,
administrative systems, ... and any other system, can. An OMNeT++ model consists
of hierarchically nested modules. Modules communicate with message passing.
Messages can include arbitrarily complex data structures. Modules can send
messages either directly to their destination or along a predefined path, through gates
and connections [11].

Modules can have parameters which are used for to customize module behavior, to
create flexible model topologies (where parameters can specify the number of
modules, connection structure e.t.c), and for module communication, as shared
variables. The user does not need to learn a new programming language, but must to
have some knowledge of C++ programming to write simple modules. OMNeT++
simulations can feature different user interfaces for different purposes as debugging,
demonstration and batch execution. The models visibility has advantages for user.
For example user can intervene by changing variables/objects in the model. User

interfaces also facilitate demonstration of how a model works. Since it was written in

35

C++, the simulator is basically portable; it should run on most platforms with a C++
compiler. OMNeT++'s advanced user interfaces support X-window, DOS and are
portable to Win3.1/Win95/WinNT. OMNeT++ has been extended to execute the
simulation in parallel. Any kind of synchronization mechanism can be used. One
suitable synchronization mechanism is the statistical synchronization, for which
OMNEeT++ provides explicit support. OMNeT++ is targeted at roughly the same
segment of network simulation as OPNET.

7.1 Overview to OMNeT++

OMNEeT++ provides efficient tools for the user to describe the structure of the actual
system. The OMNeT++ model consists of hierarchically nested modules, which
communicate with messages. OMNeT++ models are often referred to as networks.
The top-level module is the system module. The system module includes
submodules, which can also contain submodules themselves. The model is showed

Figure 7.1 [11].

System module
Simple module

Compounds mM 7\

7 / AN

Figure 7.1: Simple and compound modules.

Modules that contain submodules are termed compound modules, as opposed simple

modules, which are at the lowest level of the module hierarchy. Simple modules

36

contain the algorithms in the model. The user implements the simple modules in
C++, using the OMNeT+ simulation class library [11].

Both simple and compound modules are instance of module types. The user defines
module types; instances of these module types serve as components for more
complex module types while describing the model. Finally, the user creates the
system module as an instance of a previously defined module type; all modules of
the network are instantiated as submodules and sub-submodules of the system
module. Both module types can be connected via links. Links originate from an
output gate on a module and connect to an input gate on either the same or another
module. Gates are the input and output interfaces of modules; messages are sent out
through output gates and arrive through input gates. The sending and arrivals of
messages are considered as discrete events. The receiver module becomes the new
owner of the message. It also possible to send self message which are often useful for
modeling timers.

The structure of a scenario (modules, submodules and links) can be specified in a
description language called NED. However, it is possible to create all of these
components during runtime of a simulation using the OMNeT++ specific methods.
7.2 Building Simulation Programs

As it was already mentioned, an OMNeT++ model physically consists of the NED
language topology description(s), which are files with the .Ned suffix and Simple
modules. These are C++ files, with .cc suffix [11].

Model files are usually placed in the projects/modelname subdirectory of the main
OMNeT++ directory. The NED files are compiled into C++ using the NEDC
compiler, which is part of OMNeT++. The NEDC compiler (source and executable)

is normally located in the nedc subdirectory of the main OMNeT++ directory.

37

Simulation programs are built from the above components. First, the NED files are
compiled into C++ source code using the NEDC compiler. Then all C++ sources are
compiled and linked with the simulation kernel and a user interface to form a
simulation executable. The following Figure 7.2 gives an overview of the process of

building and running simulation programs [11].

Network Impl.of Simulation User
description simple kernel interface
* ned modules library libraries
I *.cc *lib/*.a *1lib/*.a
e.g.: e.g.:
gg?ﬂci:ng sim_std.a envir.a
¢ cmdenv.a
Impl. of
structure
* n.cc
C++ compiling
v v v v
Linking
Simulation program glonﬁguraﬁon
c
¢ omnetpp.ini
Execuation «—
Output files

* vec, *.sna, etc

simulation program.

38

Figure 7.2: Figure gives an overview of the process of building and running

CHAPTER 8

PERFORMANCE ANALYSIS

In this dissertation the route optimization extension of mobile IP over IPv4 is

implemented in OMNeT++. The implementation also includes Binding Update

message of the route optimization messages.

The first experiment modifies and extends the current modules of Mobile IP in

OMNeT++. The usual routing scheme in Mobile IP without optimization to the

routing with optimization in terms of the end-to-end packet delay is compared.

The results show that Mobile IP with the route optimization extension conducts a

better performance than basic Mobile IP with smaller end-to-end packet delay.

The objectives of the experiment are listed as follows:

1.

2.

Understand the mobile IP protocol in IPv4.

Understand the Route Optimization in mobile IP.

Figure out the current mobile IP and mobile IP with route optimization
architecture in OMNeT++.

Implement the mobile IP when mobile node in home network in OMNeT++.
Implement the mobile IP with and without route optimization in OMNeT++
when mobile node in foreign network.

Simulate the mobile IP scenarios with and without route optimization.
Analyses and evaluate the simulation results of mobile IP with and without

route optimization.

39

8.1 Mobile IP With And Without Route Optimization

The first and mandatory step of the experiment is to figure out the current
architecture of mobile IP implementation in OMNeT-++.

The architecture includes typical mobile IP scenario consist of home agent (HA),
Foreign Agent (FA), Mobile Host (MH) and Correspondent Node (CN). In the
OMNeT++ system, Home Agent, Foreign Agent and Correspondent Node are
basically the same kind of node and they use the same agent to handle the packets.
Since the Home Agent and Foreign Agent play the role to interconnect the wired and
wireless nodes, they are implemented as Hybrid nodes of both wired and wireless
nodes. In OMNeT++, each node is a simple module and passes input and output
gates which are linked to each other as a wired or wireless links.

Structure of Mobile IP with mobile node in its home network in OMNeT-+ is shown
Figure 8.1 and structure of Mobile IP with and without Route Optimization in

OMNeT++ is shown Figure 8.2.

Figure 8.1: Structure of Mobile IP when mobile node in home network.

40

If the mobile node is within the domain of its own home agent, i.e., in the home
network, the mobile node communicates with the correspondent node through home
agent in usual routing manner. If the mobile node moves to the domain of a foreign
network, the home agent will encapsulate the entire packet with the mobile node’s
new care of address and directs it to the mobile host. This encapsulation process is
called “tunneling”. When the Foreign Agent receives the encapsulated IP packet, it
decapsulates the IP packet end extracts the original IP packets, and then deliver to the

mobile node using the wireless route agent.

Figure 8.2: Structure of Mobile IP with and without route optimization.

In mobile IP with route optimization, when the mobile node’s home agent intercepts
a datagram from correspondent node and tunnels it to the mobile node, the home

agent decides that the correspondent node has no binding cache entry for the

41

destination mobile host. The home agent then will send a Binding Update (a message
indicating a mobile node’s current mobility binding, and particularly its care of
address) message to the correspondent node. Upon receiving a Binding Update
message from the home agent of the mobile node, Correspondent node will tunnel
the datagram to the mobile node’s care of address directly. Structure of Mobile IP
with Route Optimization in OMNeT++ is shown Figure 8.2.

8.2 Implement The Mobile IP With And Without Route Optimization

This experiment discusses the implementation details of route optimization and
without route optimization of mobile IP using both text descriptions and flowcharts.
The experiment first discusses the main challenges encountered, then the design of
implementation of binding update message. Finally, the implementation details in the
source code level in OMNeT++.

The following Figure 8.3 is a vivid overview of the basic concept of the mobile IP
without route optimization, and Figure 8.4 is a vivid overview of the basic concept of

the mobile IP with route optimization.

MN FA CN HA

send message
to mobile node
Decapsulated *
and send message
to MN <glcapsulated

/ and tunneled
packet to MN
\
ack. message I

Figure 8 3: Overview of mobile IP without route optimization.

42

MN FA CN HA

send message
to mobile node

—»

send to binding

encapsulated and update message

/ tunneled packet
decapsulated

and send message /
to MN send the second
/ message directly to MN

ack.message >

Figure 8.4 : Overview of mobile IP with route optimization.

These states are implement-using OMNeT++. Overview analyzes the source code of
the current mobile IP implementation in OMNeT++. The implementation was
completely done in C++ using OMNeT ++ simulation library and its NEDC
language. The NEDC language defines the topology of the network to be tested. The
C++ classes define the module behaviors. Due to the nature of the NEDC language,
there is no necessity for a complicated concept. The NEDC definition has been split
in to two definition files, the first one holding the basic module and connections
types. The C++ files hold the corresponding classes. As customary, the
implementation and the headers are separately stored in the corresponding cc- and h-
files. These corresponding classes are mobile node, home agent, correspondent
node and server. Each class has virtual functions, activity () and finish (). OMNeT++
starts these two functions automatically for each module. The first activity () is

started after the creation of each module and the second finish (), before its
43

destruction. OMNeT++ destructs each module automatically when its activity ()

function returns.

44

CHAPTER 9

DESIGN OF THE SIMULATION FOR PERFORMANCE

ANALYSIS

This simulation verifies the correctness the modification of mobile IP with and
without route optimization and when mobile node in its home network. The goal of
the simulation is performance analysis of mobile IP comparing end-to-end delay for
three different scenarios. The experiment assumed that each scenario has only one
mobile node, one home agent, one foreign agent and one wired node (server).
Architecture of the simulation shown in Figure 8.2. In simulation it is assumed that
the correspondent node, the home agent and the foreign agent are connected by wired
links, and the mobile node attached to the foreign agent through wireless link. The
wired and wireless networks are simulated using 10Mbps duplex links and 1.2 Mbps
duplex links respectively [9], [12], [13], [14], [15]. The scenario assumed no loss of
signaling or data packets are simulated. Data is voice in simulation [16]. Pulse code
modulation is used for packetization process with 8 Kbps transmission speeds. In
simulation it is assumed that shortest packet arrival time for pulse code modulation
(PCM) format is 20ms [9], and message type is a UDP packet. In the UDP case, the
source sends one 200-byte packet every 20 millisecond. In the simulation these
parameters are used. The delay value which is calculated according to the other valid

parameters for Voice transmission through the Packet network, using 1 switch, 2

45

routers and 10 Mbps Line speed, is taken from the simulation program written by
Barbaros Preveze *, in his Msc thesis work.
In the first simulation the situation of the mobile node in home network is
considered. This state is shown in Figure 8.1 as the correspondent node sends packets
to mobile node; the received packet by mobile node is sent to the mobile node’s
home address directly. In this state end-to-end packet delay depends on time between
the correspondent node-home agent and home agent-mobile node. In this scenario
there are 800 numbers of packets, which are sent to the mobile node. The end-to-end
delay (T) is defined in equation 9.1 [17].
Toer= (Tonpack) + (Tengeri) + (Ten,quin) + (Ten->ha) + (Tha,proc) + (Tha>mn) + (Tiie) +
(Trun,dec) CRY
“ Tenpac < is the packetization delay ,the work assumed PCM packet format is 20ms
for 200 byte packet. “Tenseri is serialization delay. The speed of line for calculation
of the serialization delay in wired network among each nodes is taken as 10 Mbps.
“Tenquin~ 1S queuing delay that is taken from calculation of voice transmission delay.
“Ten>ha 1S the time for a packet to travel from correspondent node to home agent, the
length of each wired cable between the nodes 400m. Delay is calculated from the
cable length [in meter]. In glass, light travels at approximately 200m/microseconds
[18]. 2us accuracy is used in calculations. The “Tnaproc” is the processing time
(intercepting) at in the home agent. It includes switching delay and serialization
delay. The speed of line for calculation of the serialization delay in wireless parts of
the network is 1.2 Mbps. And the Ty,.>mn is the time for a packet to travel from home
agent and mobile node. The distance between the mobile node and the home agent is

changing random between the 100m and 500m. “Tj;” is jitter delay that is taken from

* Barbaros Preveze, VoIP End-to-End Simulation, Msc Thesis (in progress) Cankaya University, May 2003.

46

calculation of voice transmission delay. “Tymgec” is decoding delay that is taken from
calculation of voice transmission delay. The simulation result is shown in Figure 9.1.
In the second scenario the case in which mobile node is in foreign network is
considered and the performance analysis is done without route optimization. This
architecture is shown in Figure 8.2. When corresponding node sends the packets to
the mobile node each packet is sent to the mobile node though the home agent. In
this case end-to-end packet delay depends on time between the correspondent node
and the home agent, home agent-foreign agent and foreign agent-mobile node. The
end-to-end delay is defined in equation 9.2.

Teewout = (Tenpack) T (Tengseri) T (Tenguin) + (Ten>ha) + (Thaproce) + (Tha->fa) T(Ttaproc) +
(Ta>mn) + (Tie) + (Trum,gec) (9.2)
“Thaproce . includes encapsulated time, switching delay and serialization delay. The
encapsulated time is 270us [12]. “Tpa>a” is the time for a packet to travel from
correspondent node to home agent, the length of each wired cable between the nodes
400m. Delay is calculated from the cable length [in meter]. In glass, light travels at
approximately 200m/microseconds. 2us accuracy is used in calculations. “Tg,proc”
time includes decapsulated time, switching delay and serialization delay.
Decapsulation delay is 160us [12]. “T>mn is the time for a packet to travel from
home agent and mobile node. The distance between the mobile node and the home
agent is changing random between the 100m and 500m. The simulation result is
shown in Figure 9.2.

In the third scenario mobile IP with route optimization is considered. In this scenario
the binding update messages are used for route optimization. In this simulation, the
first packet send to the mobile node same as protocol of mobile IP without route

optimization. Other packet end-to-end delays depend on time between correspondent

47

node-foreign agent and foreign agent-mobile node the end-to-end delay is defined in

equation 9.3.

Tee™ (Tenpack) T (Tengseri) + (Ten,quin) + (Tens>ta) + (Traproc) + (Ttasmn) + (Tiie) + (Trm,dec)
(9.3)

The simulation result is shown in Figure 9.3.

In mobile IP with route optimization, end-to-end packet delay (Teewoutn) is calculated

according to equation (9.4) for n packets. And also in mobile IP with route

optimization, end-to-end packet delay (Teewroutn) is calculated according to equation

(9.5) for n packets.
Tee,wout,n =n* (Tee,wout) (9 4)
Tee,wrout,n = Tee,wout + (Il-l) - (Tee) (95)

If end-to-end packet delay in mobile IP without route optimization is compared with
the end-to-end packet delay in mobile IP with route optimization there are some extra
delay in mobile IP without rout optimization. This delay (Textdetayn) is calculated
according to equation (9.6) for n packets. And also the delay (Textdelay) is calculated
according to equation (9.7) for one packet.

Text,detayn = (Tee,woutn) — (Tee,moutn)

Textdetayn =0 * (Teewout) — (Teewout + (0-1) * (Tee)

Textdelayn = (@-1) * (Teewout) — (0-1) * (Tee)

Text,detayn = (0-1) * ((Tee,wout) — (Tee)

Textaclayn = (M-1) * (Ten->ha) + (Thaproce) T (Tha>a) - (Ten>a))

and (Ten>ha) = (Ten->fa)

Textdelayn = (0-1) * ((Thaproce) + (Tha->ta)) (9.6)

Text,delay = ((1’1-1) / 1’1) * ((Tha,proce) + (Tha->fa)) (97)

48

9.1 Simulation Result For Performance Analysis In Mobile IP With Omnet++

The simulation result of the first scenario is shown in Figure 9.1. Horizontal is the
number of packet axis, vertical is the end-to-end packet delay, and the curve is
packet end-to-end delay of when mobile node is in home network. Also in Table 9.1
average end-to-end packet delay, standard deviation, and total end-to-end simulation
delay for 200 byte packet sizes and different number of messages while mobile node

in home network is shown.

Figure 9.1: Simulation result of mobile node in home network.

From the above figure, it is seen that the minimum end-to-end delay of simulation.

49

Table 9.1; Simulation results of Mobile IPv4 when mobile node in home network for

200-byte packet.
Number
of messages 800 2000 8000
Average end-to-
end delay (sn) 0.300819 0.300812 0.300819
Standard
deviation (sn) 5.7126*10°° 3.62826*10°° 1.851118*10°
Total end-to-end
delay (sn) 240.65524 601.63796 2406.5506

The simulation result of second scenario is as Figure 9.2, horizontal is the number of
message, vertical is end-to-end packet delay, and curve is shown end-to-end delay
for mobile IPv4 without rote optimization. Table 9.2 is shown of simulation results;
average end-to-end delay, standard deviation and total end-to-end delay for mobile

IPv4 without route optimization.

Figure 9.2:Simulation result of mobile IPv4 without route optimization.

50

Table 9.2: Simulation results of mobile IPv4 without route optimization for 200-byte

packet
Number of
messages 800 2000 8000
Average end-to-
end delay (sn) 0.321687 0.321671 0.321663
Standard
deviation (sn) 0.0007491 0.000473772 0.000236886
Total end-to-end
delay (sn) 257.34984 643.357 2573.3074

From the above figures, it is clear that minimum end-to-end delay of packets when
mobile node in home network is quite smaller than that of packets sent using mobile
IPv4 without route optimization, as the mobile node moves to foreign network.

The simulation result of the third scenario is as Figure 9.3. Horizontal is the number
of messages, vertical is the end-to-end packet delay, and the curve is the end-to-end
packet delay when route optimization is used. Also, in Table 9.3 simulation results of
average end-to-end delay, standard deviation, and total end-to-end-delay for mobile

IPv4 with route optimization is shown.

51

Figure 9.3: Simulation result of mobile IPv4 with route optimization.

Table 9.3: Simulation results of mobile IPv4 with route optimization for 200-byte

packet.
Number of
messages 800 2000 8000
Average end-to-
end delay (sn) 0.301227 0.301163 0.301131
Standard
deviation (sn) 0.00224199 0.00148572 0.000753375
Total end-to-end
delay (sn) 240.98284 602.3268 2409.0464

From the above figures, minimum end-to-end delay of packets with route
optimization is approximately equal that of the packets when mobile node in home
network and quite smaller than that of the packets sent without route optimization.
Comparing the average delay curves, they justify thesis goal that the end-to-end
packet delay decrease drastically when mobile IPv4 with Route Optimization is

enabled.

52

The thesis has proved by comparing the end-to-end packet delay curves and
minimum delay, The Route Optimization successfully eliminates the effect of
“Triangle routing” and improves the network efficiency by lowering down the end-

to-end packet delay.

53

CHAPTER 10

CONCLUSION & FUTURE WORK

After the literature survey of the mobile IPv4 protocol and Route Optimization in
mobile IPv4, thesis modifies and extends the mobile IPv4 in OMNeT++ to enable the
Route Optimization. Simulations have been done and justified by thesis extension.
All initial project goals have been fulfilled. Although this implementation is only part
of the whole Route Optimization scheme, it is effective and sufficient to demonstrate
the significant of Route Optimization in mobile IPv4. Through the simulations, the

results are already self-explained.

The future work could be done all four-route optimization messages in OMNeT++
and compare them with other route optimization proposes, such as reverse routing.
[19]. And also the buffering effect in route optimization is another search topic that is

under investigation.

54

REFERENCES

[1] Charles E.Perkins, Mobile IP Design Principles And Practices, Addision
Wesley Longman, 2" Printing, January 1998, Page 27-169.

[2] http://www.mobilenetwork.dk/maindoc/node49.html
[3] http://www.zvon.org/tmRFC/RFC3344/Output/chapter2.html#sub2.

[4] Andrew T. Campbell,” E6951 Wireless and Mobile Networking Mobile IP”,
University of Columbia, http://www.comet.columbia.edu\~campbell, 2000.

[5] David A. Maltz, David B. Johnson, The CMU Monarch Project IETF Mobile
Ipv4 Implementation User’s Guide,Computer Science Department Carnegie
Mellon Universty 500 Forbes Avenue Pittsburg, PA 15213-3891,
www.monarch.cs.rice.edu/ftp/monarch/mobileip/users-guide.ps, June 27,1997.

[6] C.Perkins, Request For Comments 2004, Minimal Encapsulation Within IP,
standart track, http://www.faqgs.org/rfcs/rfc2004.html, Oct.1996.

[71 Eric Ha, Ryan Retting, Rachel Chang. Mobile IP, Winter X564,
http://www.csc.calpoly.edu/~husmith/CSC564-Winter02/Mobile_IP_paper.pdf,
February 2002.

[8] C.Perkins and D. Johnson, Internet Draft-Rote Optimization in mobile IP,
http://www.ietf.org/internet-drafts/draft-ietf-mobileip-optim-09.txt.March
work in progress, November 1997.

[9] Babak Ayani, Smooth handoff in Mobile IP, University of California in
Berkeley, Department of Microelectronics and Information Technology at
KTH, master thesis, May 2002,
http://www.imit.kth.se/courses/html/exjobb/Projects/Karlsson,

[10] Debalina Grosh, ACM Crossroads student magazine, Mobile IP,
www.acm.org/crossroads/espanol/xrds72/-8, Winter 2000.

[11] Andras Varga, OMNeT-++ Discrete Event Simulation System, Version
2.1,Technical University of Budapest Faculty of Electrical Engineering and
Informatics Department of Telecommunications, User Manual, May 24 2001.

55

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Charles E. Perkins, Kuang-Yeh Wang, Optimized Smooth Handoffs in Mobile
IP, Sun Microsystems, Inc.901 San Antonia Rd.Palo Alto, CA 94303, U.S.A.,
http://citeseer.nj.nec.com/perkins99optimized.html, 1999.

Andreas Festag, Performance Evaluation of Mobile IP w/ and w/o Hierarchical
Foreign Agents: Goals, Metrics, Parameters and Tested Setup, TU Berlin,TKN,
http://www.tkn.ee.tu-berlin.de/research/SeQoMo/seqomo_docu/D-MM-3.pdf,
19.02.2001.

Cheng Lin Tan, Stephen Pink, Kin Mun Lye, A Fast Handoff Scheme for
Wireless Networks, Computer Science &Electrical Engineering Lulea
University of Technology, Centre for Wireless Communication National
University of Singapore, http://citeseer.nj.nec.com/310996.html, 1999.

J. Conover, Wireless LANs work their magic, Network Computing,
http:/www.networkcomputing.com/1113/1113£2.html, July 10, 2000.

Cheng Lin Tan, Stephen Pink, Kin Mun Lye, A Fast Handoff Scheme for
Wireless Networks, Seattle, Washington, http://citeseer.nj.nec.com/310996,
20 August 1999.

Jon-Olov Vatn, Improving Mobile IP handover performance, Laboratory of
Telecomunication Systems Department of Teleinformatics Royal Institute of
Technology Electum 204, 164 40 Kista,Sweden.
http://www.citeseer.nj.nec.com/cachedpage/482475/1, 1999.

http://www.wildpackets.com/compendium/EN/EN-Propa.html.

P.Zhou and O. Yang, Reverse Routing: An Alternative to Mobile IP and
ROMIP Protocols, Proceedings of 1999 IEEE Canadian Conference on
Electrical and Computer Engineering, Volume 1, pp.150-155.
http://www.sfu.ca/~Icheuw/study/885Presentation.pdf, 4 August 1996.

Ericsson,“MobileIP”,
http://www.symbol.com/products/wireless/wireless_alliances_ericson.html,
3 July 1999,

C.Perkins, Request For Comment 3344: IP Mobility Support for IPv4,
http://rfc.sunsite.dk/rfc/rfc3344.html, August 2002.

C.Y.Chen, Mobility With The Internet and IP Networks, University Of
Birmingham, Msc project Dissertation,
http://web.bham.ac.uk/chency/work/Mobile IP.pdf, 23 August 1999.

A Hess,G.Schafer,”Performance Evaluation of AAA/Mobile IPAuthentication”,
Telecommunication Networks Group, Technische University at Berlin,
Germany, http://www-tkn.ee.tu-berlin.de/publications/papers/pgts2002.pdf,
September 2002.

56

[24] Peng Sun, Sam Y. Sung, Enhancement of Binding Update for Mobile IP,
Deparment of Computer Science National University of Singapore,
http://www.comp.nus.edu.sg/~ssung/publications1017.pdf, 2002.

[25] J.Solomon, Motorola, Request For Comment 2005, Applicability Statement For
IP Mobility Support, http://rfc.sunsite.dk/rfc/rfc2005.html, October 1996.

[26] G.Montenegro,Editor Sun Microsystems, Request For Comment 2344, Reverse
Tunneling For Mobile IP, http://rfc.sunsite.dk/rfc/rfc2344 . html, May 1998,

[27] Rajib Ghosh,George Varghese, Fault-Tolerant Mobile IP, Department of
Computer Science Campus Box 1045 Washington University One Brookings
Drive St. Louis, MO 63130-4899, http://citeseer.nj.nec.com/correct/513163,
April 29, 1998.

[28] Maoyu Wang, Implementation and Performance Evaluation of Route
Optimization in Mobile IP, School of computer Science Carleton University,
Ottawa, Ontario, Master Thesis,
http://www .sce.carleton.ca/wmc/chameleon/mc/MaoyuThesis.pdf, Nov 1,2001,

[29] Dan Forsberg, Communication availability with Mobile IP in Wireless LANS,
Helsinki University of Technology, Master Thesis,
http://www.cs.hut.fi/Research/Dynamics/publications.html, March 2000.

[30] C.Perkins, Request For Comment 2003:IP Encapsulation Within IP,
http://rfe.sunsite.dk/rfc/rfc2003.html, October,1996,

[31] S. Hanks NetSmith, Ltd, T. Li, D. Farinacci, P. Traina, cisco systems, RFC
1701, Generic Record Encapsulation, http://www.fags.org/rfes/rfc/701.html,
October 1994.

[32] ODTU-BIDB: Network Association,
http:/www.bidb.odtu.edu.tr/index.php?go=ng&sub=802_11_b, 2003

57

APPENDICE

SOURCE CODE OF THE APPLICATION

//MOBILE IPv4 with Route Optimization
/[Correspondent node cpp.

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include<coutvect.h>
#include"genpak.h"
#include "genl.h"
intk;

long double simtime;
long seed;

class CorresNode: public cSimpleModule
{

public:
Module Class Members(CorresNode,cSimpleModule,16384%6)

virtual void activity();
virtual void finish();

}5
Define_Module (CorresNode);

void CorresNode::activity()

58

{

int num_messages = par("num_messages");
cPar& ia_time = par("ia_time");
cPar& msg_length = par("msg_length");

data* serap=new data();
serap->A.gt="h";

for (int i=0; i<num_messages; i++)
{

char msgname[32];
sprintf(msgname, "job-%d", i);

ev << "Generating " << msgname << end];
cMessage *msg=new cMessage(msgname);
msg->setContextPointer((void *)serap);
msg->setLength((long) msg length);
msg->setTimestamp(simtime);
if (serap->A.gt=="")
{
send(msg,"out");
cMessage *msgr = receive();
serap={(data*)msgr->contextPointer();
wait((double) ia_time);

}

else

{

wait((double) ia_time);
serap->A.gt='f';
msg->setContextPointer((void *)serap);

send(msg,"out");

59

}
void CorresNode::finish()
{
ev << "¥¥% Module: " << fullPath() << "***" << endl;
ev << "Stack allocated: " << stackSize() <<" bytes";

ev << " (includes " << ev.extraStackForEnvir() << " bytes for environment)" <<
endl;
ev << "Stack actually used: " << stackUsage() <<" bytes" << endl;

}

//Server cpp

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "genpak.h"

class Serverwro: public cSimpleModule
{
Module Class Members(Serverwro,cSimpleModule,16384*5)

virtual void activity();
virtual void finish();

b
Define_Module(Serverwro);

void Serverwro::activity()

{

int coun, deccount;
coun=0;
deccount=0;
int k;

double bits_per sec= par("bits_per_sec");
cPar& ia_time = par("ia_time");

data* serl=new data();
for(; ;)

{

60

cMessage *msgl = receive();
ser1=(data*)msgl->contextPointer();
k= msgl->length();
if(serl->A.gt="h' && k==1600)
{
send(msgl,"outh");
wait((double) ia_time);
}
else if (serl->A.gt="f && k>>1600)
{
send(msgl,"outf");
wait((double) ia_time);
}

else if (serl->A.gt="s' && k=064)

{

wait((double) ia_time);

serl->A.gt='c";
msgl->setContextPointer((void *)serl);
send(msgl,"outc");

}
}
}
void Serverwro::finish()

{

ev << "*¥* Module: " << fullPath() << "***" << endl;

ev <<endl;
}
//Home agent cpp

61

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "genpak.h"

class HomeAgent: public cSimpleModule
Module Class Members(HomeAgent,cSimpleModule,16384*4)

virtual void activity();
virtual void finish();

¥
Define_Module(HomeAgent);

void HomeAgent::activity()
{

int coun, deccount;
coun=0;
deccount=0;
double bits_per sec= par("bits_per sec");

cPar& ia_time = par("ia_time");
data* serl=new data();

for(;;)

{

cMessage *msgl = receive();

ser1=(data*)msg1->contextPointer();
long k= msg1->length();

if(serl->A.gt="h")
{

serl->A.gt="f';

msg1->setContextPointer((void *)serl);
msgl->setLength(k-+64);

wait(2.7); //encapsulation time
send(msgl,"out");

wait((double) ia_time);

62

char msgname[64];
sprintf{ msgname, "binding_update");
ev << "Generating " << msgname << end];
cMessage *msg=new cMessage(msgname);
serl->A.gt='s";
msg->setContextPointer((void *)serl);
msg->setLength(64);
wait((double) ia_time);
send(msg,"out") }

else

{

send(msgl,"outf");

wait(0.1);
}
wait((double) ia_time);
}
}
void HomeAgent ::finish()
{

ev << "¥¥* Module: " << fullPath() << "***" << end];
ev << end];

}

/[Foreign Agent CPP
#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "genpak.h"

class HomeAgent: public cSimpleModule

Module Class Members(HomeAgent,cSimpleModule,16384*4)

63

virtual void activity();
virtual void finish();

b
Define_Module(HomeAgent);

void HomeAgent::activity()

{

int coun, deccount;
coun=0;
deccount=0;

double bits_per _sec= par("bits_per_sec");

cPar& ia_time = par("ia_time");
data* serl=new data();

for(;;)

{
cMessage *msgl = receive();
ser1=(data*)msg1->contextPointer();
long k= msg1->length();

if(serl->A.gt=="n")

serl->A. gt="{';

msgl->setContextPointer((void *)serl);
msgl->setLength(k+64);

wait(2.7); //encapsulation time
send(msgl,"out");

wait((double) ia_time);
char msgname[64];
sprintf(msgname, "binding_update");

ev << "Generating " << msgname << end];

cMessage *msg=new cMessage(msgname);
serl->A.gt='s';

64

msg->setContextPointer((void *)serl);
msg->setLength(64);

wait((double) ia_time),

send(msg,"out");

}
else
{
send(msgl,"outf");
wait(0.1);
}
wait((double) ia_time);
}

}

void HomeAgent ::finish()

{

ev << "*¥* Module: " << fullPath() << "***" << endl;
ev << endl;

}

//Mobile node cpp

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include<coutvect.h>
#include"genpak.h"
#include "sink1.h"

int s;
long double 1;
long double delay[802];
long double t[802];

FILE* fp;
FILE* fs;

Define Module(MobileNode);

void MobileNode::activity()
{

65

gstats.setName("queuing time stats");
cOutVector gtime("queueing time vector");

long double t_delay=0;
long double m=0;

long double delay1=0;
delay[1]=0.00000000000;

t[0]=0;
s=1;

if{ (fp = fopen("c:\\Omnet-++\fifowro\\imdata.txt", "wb+")) == NULL)
printf("The file 'data’ was not opened\n");

fseek(fp,0,0);
if((fs = fopen("c:\Omnet+H\fifowro\\sdata.txt", "wb+" }) == NULL)
printf("The file 'data’ was not opened\n");

fseek(fs,0,0);
for (;;)
{
cMessage *msgr = receive();
msgr->setTimestamp();
long double I=msgr->timestamp();

t[s]=1;
fprintf(fs,"%f",1);
fprintf(fs,"%c",\n');

delay[s]=t[s]-t[s-1];

ev<<"simtime="<<simtime<<endl;
ev<<"t[i]="<<t[s]<<end];
ev<<"delay[i]="<<delay[s]<<end],
fprintf(fp," %" ,delay]s]);
fprintf(fp,"%c",'\n');
ev<<"i="<<s<<endl;

ev << "Received " << msgr->name() << ", queueing time: " <<1 << "sec" <<
endl;
qtime.record(delay[s]/10000);
gstats.collect(delay[s]/10000);
s=s+1;

66

ev<<" about to close file 1 ";

}
fclose(fp);
fclose(fs);
}
void MobileNode::finish()
{

ev << "¥** Module: " << fullPath() << "***" << endl;

ev << "Total jobs processed: " << gstats.samples() << end];

ev << "Avg queueing time: " << gstats.mean() << end],

ev << "Max queueing time: " << gstats.max() << endl;

ev << "Standard deviation: " << gstats.stddev() <<endl;

ev << endl,

ev << "Stack allocated: " <<stackSize() <<" bytes";

ev << " (includes " << ev.extraStackForEnvir() << " bytes for environment)" <<
endl;

ev << "Stack actually used: " << stackUsage() << " bytes" << endl;

}
///OMNEeT initial file,

[General]
network = fifowro

random-seed = 1
sim-time-limit = 100000000s
cpu-time-limit= 1800000s
Ini-warnings = no

[Cmdenv]
runs-to-execute = 1,2
#express-mode = yes
module-messages = yes
event-banners = yes

[Tkenv]

default-run=1
use-mainwindow = yes
print-banners = yes
slowexec-delay = 300ms

[Parameters]
fifowro.gen.num_messages = 5000

[Run 1]

fifowro.gen.ia_time = exponential(1)
fifowro.gen.msg_length = intuniform(5, 10)

67

fifowro.fifo.bits_per sec = 10
output-vector-file = fifowro-rl.vec

[Run 2]

fifowronet.gen.ia_time = exponential(0.7)
fifowronet.gen.msg_length = intuniform(5, 10)
fifowronet.fifo.bits_per sec =10
output-vector-file = fifowro-r2.vec

//MOBILE IP WITHOUT ROUTE OPTIMIZATION
//Correspondent node cpp

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include<coutvect.h>
#include"genpak.h"
#include "genl.h"

nt k;
long double simtime;
long seed;

class CorresNode: public cSimpleModule
{

public:
Module Class Members(CorresNode,cSimpleModule,163842%4)

virtual void activity();
virtual void finish();

I8
Define_Module (CorresNode);

void CorresNode::activity()
{

int num_messages = par(""num_messages");
cPar& ia_time = par("ia_time");
cPar& msg_length = par("msg_length");

68

data* serap=new data();
serap->A.gt="h';
for (int i=0; i<((long) msg_length /1600)*num_messages; i++)
{
char msgname[32];
sprintf(msgname, "job-%d", 1);
ev << "Generating " << msgname << end];
cMessage *msg = new cMessage(msgname);
msg->setLength(1600);
wait(600);
msg->setTimestamp(simtime);
msg->setContextPointer((void *)serap);

send(msg,"out");

wait((double) ia_time);

3
void CorresNode::finish()
{
ev << "*** Module: " << fullPath() << "***" << end];
ev << "Stack allocated: " <<stackSize() <<" bytes";

ev << " (includes " << ev.extraStackForEnvir() << " bytes for environment)" <<
endl;
ev << "Stack actually used: " << stackUsage() <<" bytes" << endl;

}

/[Server cpp

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "genpak.h"

class Server: public cSimpleModule

{
Module Class Members(Server,cSimpleModule,16384%4)

69

virtual void activity();
virtual void finish();

35
Define Module(Server);
void Server::activity()
{
int couna=0;
int deccounta=0;
int coun, deccount;
coun=0;
deccount=0;
intk;
double bits per sec=par("bits_per sec");

cPar& ia_time = par("ia_time");
data* serl=new data();

for(;;)
{
cMessage *msgl = receive();
if (msgl->hasBitError()==true) //(crc2==crcl)
deccounta=deccounta+l;
else
couna=counatl1;

ev<<"false mesage's number is"<<deccounta<<endl;
ev<<"true mesage's number is"<<couna;

wait((double) ia_time);
ser1=(data*)msgl->contextPointer();
k= msg1->length();
if(serl->A.gt="h' && k==1600)

{
send(msgl,"outh");

70

}

else if (k >> 1600)

{

send(msgl,"outf");
}

}
}
void Server ::finish()

{

ev << "k** Module: " << fullPath() << "***" << endl;
ev << endl;

}

/[Foreign Agent cpp

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include"genpak.h"
#include "fifo2.h"

void FF1Abstract Fifo::activity()
{

msgServiced = NULL;
endServiceMsg = new cMessage("end-service");
queue.setName("queue");
data* ser2=new data();
for(;;)
{
cMessage *msg = receive();

long k=msg->length();

71

wait(1.6); //encapsulation time
msg->setLength(1600);

ev<<msg->length()<<endl;

if (msg==endServiceMsg)

{

endService(msgServiced);

if (queue.empty())
{
msgServiced = NULL;
¥

else

{
msgServiced = (cMessage *) queue.pop();
simtime_t serviceTime = startService(msgServiced);
scheduleAt(simTime()+serviceTime, endServiceMsg);

}

else if ('msgServiced)

{
arrival(msg);
msgServiced = msg;
simtime_t serviceTime = startService(msgServiced);
scheduleAt(simTime()+serviceTime, endServiceMsg);

}

else

{
arrival(msg);
queue.insert(msg);
}
}
}

72

void FF1Abstract_Fifo::finish()

{

ev << "¥** Module: " << fullPath() << "***" << endl;
ev << endl;

}

Define Module(FF1Packet Fifo);

simtime_t FF1Packet_Fifo::startService(cMessage *msg)

{

ev << "Starting service of " << msg->name() << endl;
return par("service _time");

}

void FF1Packet Fifo::endService(cMessage *msg)
{

ev << "Completed service of " << msg->name() << end];
send(msg, "out");

}
I

Define Module(ForegAgent);

simtime_t ForegAgent::startService(cMessage *msg)

{
ev << "Starting service of " << msg->name() << endl;
return msg->length() / (double)par("bits_per_sec");

}

void ForegAgent::endService(cMessage *msg)

{
ev << "Completed service of " << msg->name() << endl;
send(msg, "out");

}
// Mobile Node

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include<coutvect.h>

73

#include"genpak.h"

#include "sink1.h"

ints;

int coun=0;
int deccount=0;

long double I;

long double delay[8002];

long double t[8002];

FILE* fp;

FILE* fs;

Define Module(MobNode);

void MobNode::activity()

{

gstats.setName("'queuing time stats");
cOutVector gtime("queueing time vector");

long double t_delay=0;
long double m=0;

long double delay1=0;
delay[0]=0.00000000000;

t[0]=0;
s=1;

if((fp = fopen("c:\Omnet++\fifoworo\\pdata.txt", "wb+")) == NULL)
printf("The file 'data’ was not opened\n");

fseek(fp,0,0);

if((fs = fopen("c:\\Omnet++H\fifoworo\\sdata.txt", "wb+")) = NULL)
printf("The file 'data’ was not opened\n");

fseek(fs,0,0);
for(;;)
{

74

cMessage *msg = receive();
msg->setTimestamp();

if (msg->hasBitError()==true)
deccount=deccount+1;

else

coun=coun-+1;
ev<<"false mesage's number is"<<deccount<<end];
ev<<"true mesage's number is"<<coun<<endl;

long double d=msg->timestamp();

t[s]=d;
fprintf(fs,"%f",d);
fprintf(fs,"%c","n");

delay[s]=t[s]-t[s-1];
ev<<"d="<<d<<endl;
ev<<"delays="<<delay(s];

fprintf(fp,"%f",delay[s]);

fprintf(fp,"%c",'\n');

ev << "Received " << msg->name() << ", queueing time: " << d << "sec" <<
endl;

qtime.record(delay[s]/10000);

gstats.collect(delay[s]/10000);

delete msg;

s=s+1;

}
fclose(fp);

fclose(fs);
}

void MobNode::finish()

{

ev << "**x Module: " << fullPath() << "*¥*" << endl;
ev << "Total jobs processed: " << gstats.samples() << endl;

ev << "Avg queueing time: " << gstats.mean() << endl;

75

ev << "Max queueing time: " << gstats.max() << endl;

ev << "Standard deviation: " << gstats.stddev() << endl;

ev << endl;

ev << "Stack allocated: " <<stackSize() <<" bytes";

ev << " (includes " << ev.extraStackForEnvir() << " bytes for environment)" <<
:€(i<l;< "Stack actually used: " << stackUsage() << " bytes" << endl;

#ifndef FIFO_H

#define _ FIFO_H

#include <omnetpp.h>

// FF1AbstractFifo : abstract base class for single-server queues

class FF1AbstractFifo : public cSimpleModule

public:
Module Class Members(FF1AbstractFifo,cSimpleModule,16384);
cMessage *msgServiced;
cMessage *endServiceMsg;
cQueue queue;
virtual void activity();
virtual void finish();
// hook functions to (re)define behaviour
virtual void arrival(cMessage *msg) {}
virtual simtime _t startService(cMessage *msg) = 0;

virtual void endService(cMessage *msg) = 0;

};

// FF1PacketFifo : single-server queue with given service time
class FF1PacketFifo : public FF1AbstractFifo

{
public:

Module Class Members(FF1PacketFifo,FF1AbstractFifo,16384);

virtual simtime_t startService(cMessage *msg);

76

virtual void endService(cMessage *msg);

3

// FF1BitFifo : single-server queue with service time based on message length
class HomeAgent : public FF1 AbstractFifo

{
public:

Module Class_Members(HomeAgent,FF1AbstractFifo,16384);
virtual simtime_t startService(cMessage *msg);

virtual void endService(cMessage *msg);

b
{Hendif

class ForegAgent : public FF1AbstractFifo

{
public:

Module Class_Members(ForegAgent,FF1AbstractFifo,16384);

virtual simtime _t startService(cMessage *msg);
virtual void endService(cMessage *msg);

35
#endif

#ifndef _ FIFO_H
#define FIFO_H
#include <omnetpp.h>

// FF1AbstractFifo : abstract base class for single-server queues
class FF1Abstract_Fifo : public cSimpleModule
{
public:
Module Class Members(FF1Abstract_Fifo,cSimpleModule,16384);

cMessage *msgServiced,;
cMessage *endServiceMsg;
cQueue queuc;

virtual void activity();
virtual void finish();

// hook functions to (re)define behaviour
virtual void arrival(cMessage *msg) {}

virtual simtime_t startService(cMessage *msg) = 0;

71

virtual void endService(cMessage *msg) = 0;
3
/l FF1PacketFifo : single-server queue with given service time
class FF1Packet Fifo : public FF1Abstract Fifo
{
public:
Module Class Members(FF1Packet Fifo,FF1Abstract Fifo,16384);
virtual simtime _t startService(cMessage *msg);
virtual void endService(cMessage *msg);
35
class ForegAgent : public FF1Abstract Fifo
{
public:
Module Class Members(ForegAgent,FF1Abstract Fifo,16384);

virtual simtime _t startService(cMessage *msg);
virtual void endService(cMessage *msg);

35
#endif
#ifndef _FIFO_H
#define _ FIFO H
#include <omnetpp.h>
// FF1AbstractFifo : abstract base class \for single-server queues
class FF1Abstract Fifo : public cSimpleModule
{
public:
Module Class Members(FF1Abstract_Fifo,cSimpleModule,16384);
cMessage *msgServiced;
cMessage *endServiceMsg;
cQueue queue;

virtual void activity();

78

virtual void finish();

// hook functions to (re)define behaviour

virtual void arrival(cMessage *msg) {}

virtual simtime _t startService(cMessage *msg) = 0;

virtual void endService(cMessage *msg) = 0;
3

// FF1PacketFifo : single-server queue with given service time
class FF1Packet Fifo : public FF1Abstract_Fifo
{
public:
Module Class Members(FF1Packet Fifo,FF1Abstract Fifo,16384);

virtual simtime t startService(cMessage *msg);
virtual void endService(cMessage *msg);

b

class ForegAgent : public FF1Abstract_Fifo

{
public:
Module Class Members(ForegAgent,FF1Abstract_Fifo,16384);

virtual simtime_t startService(cMessage *msg);
virtual void endService(cMessage *msg);

}s
#endif

struct mplip
{

char gt;
int ip;

},

class data

{
public:
struct mplip A;
long ds;
char cr;
int dz;
data()

{
ds=12;

79

dz=44,

or="d3};
#ifndef global_h
#define global_h

extern int crcl;
int Crcl6 (char *ptr,int count);

extern long double d1;

extern long double d2;

extern long double totaldelay[20];
extern int p_size;

extern int k;

extern long double simtime;
extern long double d3;

extern long double t[8002];
extern long double delay[8002];
extern fp;

#endif

#ifndef SINK_H
#define_ SINK_H

#include <omnetpp.h>

class MobNode : public cSimpleModule

{
Module Class Members(MobNode,cSimpleModule,16384)

cStdDev gstats; // needs to be accessed from finish() too

virtual void activity();
virtual void finish();

b
#endif

//MOBILE NODE IN HOMNETWORK
//Correspondent Host

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include<coutvect.h>
#include"genpak.h"
#include "genl1.h"

80

int k;
long double simtime;

long seed;

class CorresNode: public cSimpleModule
{

public:
Module Class Members(CorresNode,cSimpleModule,163842%*5)

virtual void activity();
virtual void finish();
3
Define_ Module (CorresNode);

void CorresNode::activity()
{

int num_messages = par("num_messages");

cPar& ia_time = par("ia_time");

cPar& msg_length = par("msg_length");
data* serap=new data();

serap->A.gt="h";

for (int i=0; i<((long) msg_length /1600)*num_messages; i++)

wait(200);

char msgname[32];
sprintf(msgname, "job-%d", i);

ev << "Generating " << msgname << endl;
cMessage *msg = new cMessage(msgname);
msg->setLength(1600);

msg->setTimestamp(simtime);

msg->setContextPointer((void *)serap);

81

send(msg,"out");

wait((double) ia_time);

}
}
void CorresNode::finish()
{
ev << "¥¥* Module: " << fullPath() << "***" << endl;
ev << "Stack allocated: " << stackSize() <<" bytes";

ev << " (includes " << ev.extraStackForEnvir() << " bytes for environment)" <<
endl;
ev << "Stack actually used: " << stackUsage() << " bytes" << endl;

}

//Server cpp

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "genpak.h"

class Server: public cSimpleModule

{
Module_Class Members(Server,cSimpleModule,16384*4)

virtual void activity();
virtual void finish();

35
Define Module(Server);

void Server::activity()
{
int couna=0;
int deccounta=0;
int coun, deccount;
coun=0;
deccount=0;
int k;
double bits_per_sec=par("bits_per_sec");

cPar& ia_time = par("ia_time");
data* serl=new data();

82

for(;;)
{
cMessage *msgl = receive();
wait((double) ia_time);
if (msg1->hasBitError()==true)
deccounta=deccounta+l;
else
couna=couna+l;
ev<<"false mesage's number is"<<deccounta<<end];
ev<<"true mesage's number is"<<couna;
send(msgl,"outh");
}

void Server ::finish()

{

ev << "k** Module: " << fullPath() << "***" << end];
ev << endl;

}
//Home Agent cpp

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include"genpak.h"
#include "fifol.h"

void FF1AbstractFifo::activity()
{

msgServiced = NULL;

83

endServiceMsg = new cMessage("end-service");
queue.setName("queue");

cPar& ia_time = par("ia_time");
data* ser=new data();
for(;;)
{

cMessage *msgl = receive();
long k= msg1->length();
ev<<msgl->length()<<end];

if (msgl==endServiceMsg)
{

endService(msgServiced);
if (queue.empty())

msgServiced = NULL;
}

else

{

msgServiced = (cMessage *) queue.pop();
simtime_t serviceTime = startService(msgServiced);
scheduleAt(simTime()+serviceTime, endServiceMsg);

}

else if (ImsgServiced)
{
arrival(msgl);
msgServiced = msgl;
simtime_t serviceTime = startService(msgServiced);
ev<<"servicetime"<<serviceTime<<end];
scheduleAt(simTime()+serviceTime, endServiceMsg);

}

else
arrival(msgl);

queue.insert(msgl);

}

84

void FF1AbstractFifo::finish()

{

ev << "¥*% Module: " << fullPath() << "***" << endl;
ev << endl,

}
Define Module(FF1PacketFifo);

simtime_t FF1PacketFifo::startService(cMessage *msgl)
{
ev << "Starting service of " << msgl->name() << endl;
return par("service_time");

}

void FF1PacketFifo::endService(cMessage *msgl)
{

ev << "Completed service of " << msgl->name() << endl;
send(msgl, "out");

}
Define Module(HomeAgent);

simtime t HomeAgent::startService(cMessage *msgl)

{
ev << "Starting service of " << msgl->name() << endl;
return msgl->length() / (double)par("bits_per_sec");

}

void HomeAgent::endService(cMessage *msgl)

{
ev << "Completed service of " << msgl->name() << endl;
send(msgl, "out");

}

// Mobile Node

#include <omnetpp.h>
#include"global.h"
#include<string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include<coutvect.h>

85

#include"genpak.h"

#include "sink1.h"

int s;

int coun=0;
int deccount=0;

long double 1;

long double delay[8002];

long double t[8002];

FILE* fp;

FILE* fs;

Define_Module(MobNode);

void MobNode::activity()

{

gstats.setName("queuing time stats");
cOutVector gtime("queueing time vector");

long double t delay=0;
long double m=0;

long double delayl1=0;
delay[0]=0.00000000000;

t[0]=0;
s=1;

if (fp = fopen("c:\\Omnet++\mobhome\\pdata.txt", "wb+")) = NULL)
printf("The file 'data’ was not opened\n");

fseek(fp,0,0);

if((fs = fopen("c:\\Omnet++\\mobhome\\sdata.txt", "wb+")) = NULL)
printf("The file 'data’ was not opened\n");

fseek(fs,0,0);

for(;;)

86

cMessage *msg = receive();
msg->setTimestamp();

if (msg->hasBitError()==true) //(crc2==crcl)
deccount=deccount+1;
else

coun=coun+1;
ev<<"false mesage's number is"<<deccount<<endl;
ev<<"true mesage's number is"<<coun<<endl;

long double d=msg->timestamp();

t[s]=d;
fprintf(fs,"%f",d);
fprintf(fs,"%c",\n');

delay[s]=t[s]-t[s-1];
ev<<"d="<<d<<endl,
ev<<"delays="<<delay[s];

fprintf(fp," %", delay[s]);

fprintf(fp,"%c",\n");

ev << "Received " << msg->name() << ", queueing time: " << d << "sec" <<
end];

gtime.record(delay[s]/10000);

gstats.collect(delay[s]/10000);

delete msg;

s=s+1;

}

fclose(fp);
fclose(fs);

}
void MobNode::finish()

{

ev << "¥¥* Module: " << fullPath() << "***" << end];
ev << "Total jobs processed: " << gstats.samples() << endl;

ev << "Avg queueing time: " << gstats.mean() << end];

87

ev << "Max queueing time: " << gstats.max() << endl,
ev << "Standard deviation: " << gstats.stddev() << endl;

ev << end];

ev << "Stack allocated: = " << stackSize() << " bytes";

ev << " (includes " << ev.extraStackForEnvir() << " bytes for environment)" <<
endl;

ev << "Stack actually used: " << stackUsage() << " bytes" << endl;

[General]
network = mobhome

random-seed = 1
sim-time-limit = 1000000000s
cpu-time-limit= 18000000s
ini-warnings = no

[Cmdenv]
runs-to-execute = 1,2
#express-mode = yes
module-messages = yes
event-banners = yes

[Tkenv]

default-run=1
use-mainwindow = yes
print-banners = yes
slowexec-delay = 300ms

[Parameters]
mobhome.gen.num_messages = 5000

[Run 1]

mobhome.gen.ia_time = exponential(1)
mobhome.gen.msg_length = intuniform(5, 10)
mobhome.fifo.bits_per sec =10
output-vector-file = fifol-rl.vec

[Run 2]

fifonetl.gen.ia_time = exponential(0.7)
fifonetl.gen.msg length = intuniform(5, 10)
fifonetl.fifo.bits per_sec =10
output-vector-file = fifol-r2.vec

// Ned files:

module Module //When mobilen node in home network.,

88

submodules:
CorresNode: CorresNode;
display: "i=pc;p=135,41;b=40,28";
HomeAgent: HomeAgent;
display: "i=router;p=78,221;b=24,34";
ForegAgent: ForegAgent;
display: "i=router;p=364,168;b=40,28";
MobNode: MobNode;
display: "i=laptop;p=170,278;b=40,28";
server: Server;
display: "i=router;p=220,127;b=40,28";
connections:

serverouth --> delay 2us error 0.0999 --> HomeAgentin display
"m=a,0,54,92,35";
CorresNode.out --> delay 2us error 0.999999 datarate 1000000 --> server.in
display "m=a,93,46,60,-3"; //
server.outf -—> delay 2us error 0.1 datarate 1000000 --> ForegAgent.in display
"m=a,100,82,40,-6"; //
HomeAgent.out --> Wireless --> MobNode.in display "m=2a,92,59,45,0";
display: "p=10,10;b=396,304";
endmodule
//CorresNode
/
//generator message (jobs,packetsetc)
simple CorresNode //
parameters:
num_messages : numeric,
ia_time : numeric,
msg_length : numeric;
gates:
out: out;
endsimple
simple HomeAgent //
parameters:
bits_per_sec : numeric,
ia_time : numeric;
gates:
in: in;
out: out;
endsimple
simple ForegAgent //
parameters:
bits per_sec : numeric;

89

gates:
in: in;
endsimple
simple MobNode
gates:
in: in;
endsimple
channel Wireless //
delay normal(0.01,0.003);
error normal(0.003,0.001);
datarate 1000000;
endchannel

network mobhome : Module
endnetwork
// FF1PacketFifo
/
// single server queue, same service rate for each packet
simple FF1PacketFifo //
parameters:
service_time : numeric;
gates:
in: in;
out: out;
endsimple
//[FF1Packet_Fifo
simple FF1Packet Fifo //
parameters:
service_time : numeric;
gates:
in: in;
out: out;
endsimple
simple Server //
parameters:
bits_per_sec : numeric,
ia_time : numeric;
gates:
in: in;
out: outf;
out: outh;
endsimple

module Module// When mobile node in Foreign Network.
submodules:
CorresNode: CorresNode;
display: "i=pc;p=135,41;b=40,28";
HomeAgent: HomeAgent;
display: "i=router;p=78,221;b=24,34";

90

ForegAgent: ForegAgent;
display: "i=router;p=348,168;b=32,32";
MobNode: MobNode;
display: "i=laptop;p=370,254;b=32,29";
server: Server;
display: "i=router;p=220,127;b=40,28";
connections:
ForegAgent.out --> Wireless --> MobNode.in display "m=s,40,107,65,0"; //
server.outh --> delay 1lus error 0.0999 --> HomeAgent.in display
"m=a,0,54,92,35";
server.in <-- delay lus error normal(0.99999 ,0.01) datarate 1000000 <--
HomeAgent.out; //
CorresNode.out --> delay lus error 0.999999 datarate 1000000 --> server.inl
display "m=a,93,46,60,-3"; //
server.outf --> delay lus error 0.1 datarate 1000000 --> ForegAgent.in display
"m=a,100,82,40,-6"; //
display: "p=2,10;b=412,296";
endmodule
/[CorresNode
/
//generator message (jobs,packetsetc)
simple CorresNode //
parameters:
num_messages : numeric,
ia_time : numeric,
msg_length : numeric;
gates:
out: out;
endsimple
simple HomeAgent //
parameters:
bits_per_sec : numeric,
ia_time : numeric;
gates:
in: in;
out: out;
endsimple
simple ForegAgent //
parameters:
bits_per_sec : numeric;
gates:
in: in;
out: out;
endsimple
simple MobNode
gates:
in: in;
endsimple
channel Wireless //

91

delay normal(0.01, 0.003);

error normal(0.001,0.003);

datarate 1000000;
endchannel

network fifoworo : Module
endnetwork

// FF1PacketFifo

/!

// single server queue, same service rate for each packet

simple FF1PacketFifo //
parameters:
service_time : numeric;
gates:
in: in;
out: out;
endsimple
/[FF1Packet Fifo
simple FF1Packet Fifo //
parameters:
service time : numeric;
gates:
in: in;
out: out;
endsimple
simple Server
parameters:
bits_per_sec : numeric,
ia time : numeric;
gates:
in: in;
out: outf;
out: outh;
in: inl;
endsimple

92

