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Abstract: In this article, exact solutions of some Laplace-
type fractional boundary value problems (FBVPs) are inves-
tigated via natural decomposition method. The fractional
derivatives are described within Caputo operator. The nat-
ural decomposition technique is applied for the first time to
boundary value problems (BVPs) and found to be an excel-
lent tool to solve the suggested problems. The graphical
representation of the exact and derived results is presented
to show the reliability of the suggested technique. The present
study is mainly concerned with the approximate analytical
solutions of some FBVPs. Moreover, the solution graphs have
shown that the actual and approximate solutions are very
closed to each other. The comparison of the proposed and
variational iteration methods is done for integer-order pro-
blems. The comparison, support strong relationship between
the results of the suggested techniques. The overall analysis
and the results obtained have confirmed the effectiveness and
the simple procedure of natural decomposition technique for
obtaining the solution of BVPs.
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1 Introduction

In the last few centuries, fractional partial differential
equations (FPDEs) have been effectively used to model
several structures and processes that can be used to
develop their mathematical models. These processes are
still underway, but some new correlations and insights
between the various branches of mathematical reasoning
have been already emerged within the structure of var-
ious models in the field of fractional calculus (FC) [1-4].
The study connected with the concept of FPDEs and their
implementations is very broad. For the study of FPDEs,
the books cited in refs [5,6] and [7] are suggested for
readers and for implementation we refer the book given
in ref. [8], which is entirely devoted to the various appli-
cations of FCs in physics, astrophysics, chemistry, etc.
The book [8] describes the application of FPDEs in nuclear
physics, classical mechanics, quantum mechanics, hadron
spectroscopy, group theory and quantum field theory. For
other important FC models and recent literature, the books
in refs [9-12] are recommended for further study. In imple-
mentations, relevant processes, such as acoustic waves or
anomalous convection in complex schemes, mainly run
within certain bound domains in space are corresponding
to the initial and boundary value problem (BVP) equations
of the FPDEs that designed the procedure under evalua-
tion [20-25]. Meanwhile, the numerical and analytical
investigations are considered to be the hard topic for the
solutions of FPDEs given in refs [13-19,26].

The BVPs of FPDEs play a vital and effective role in
many recent processes of applied sciences. The BVPs
arise in a wide range of issues, such as convection and
heat transfer, the simulation of chemical processes and
optimal control solution. The numerical and analytical
techniques that are used for the solution of BVPs are of
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significant importance in different research areas of engi-
neering and technology. For FPDEs, refs [27,28] and
references therein consist of several methods that pre-
sented the approximate solution of BVPs of FPDEs.
However, no universal method for handling all kinds of
non-linear BVPs is available. The Adomian decomposi-
tion method (ADM) [29-32] has been recently imple-
mented to analyze BVPs. ADM provides the solution in
the form of infinite series having a quick rate of conver-
gence toward the actual solution. Jang [33] has developed
an extended ADM (EADM) to address the solution of BVPs.
The key point of EADM is to develop a canonical form that
contains all boundary conditions (BCs). Mohsen and El-
Gamel [34] have investigated the efficiency of Galerkin and
collocation techniques using sinc basis methods to solve
BVPs of linear and non-linear second order. In ref. [35], the
sinc-collocation approach is applied for the solution of a
series of problems with second-order BVPs. Dehghan et al.
[36] have applied the Adomian—-Pade method for the solu-
tion to solve Volterra functional systems of equations.

In 2014, Rawashdeh and Maitama have developed a
new technique which is known as natural decomposition
method (NDM), which is a mixture of natural transforma-
tion (NT) and ADM. The suggested technique achieves
the series form solution with infinite terms having quick
convergence toward the actual solution of the problems;
for example, Prakasha et al. have provided the proof of
two basic results of fractional NT by using the duality of
Laplace and natural transforms [37]. Many researchers
investigated the solutions of various FPDEs recently, for
example, Harry Dym equation [38], system Burger pro-
blems [37], hyperbolic equation [39], wave and hate
equations [40] and diffusion equations [41].

In this article, the NDM is implemented to solve Laplace
BVPs of FPDEs. The Caputo operator is implemented to
express fractional derivatives in each problem. The NDM
solutions are determined for three particular examples of
fractional BVPs (FBVPs) of the Laplace equations. The
results are displayed through graphs and table. The higher
efficiency and accuracy of NDM is observed with the help
of graphs and table (Table 1). The NDM solution for BVPs
has shown the desired rate of convergence, and thus the
present technique can be selected to solve other FBVPs.

2 Preliminary concept

2.1 Definition

Riemann-Liouville (R-L) definition of fractional-integral
operator [5-7]:
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I'f(x) = %y) j x - wpg@)dw if y> 0,
0

=f(x) if y=0.

2.2 Definition

The Caputo operator of order y form e N, x > 0, f e Cy,
t>-1[5-7]:

0~ 210 _ o] 20

_9fx)

=y if m-1<y<m,meN,

2.3 Definition

The NT of f(t) is given as [37,38]
1 T st
N'IAO] = RS, = j eTf(Odts s, u > 0.
0

2.4 Definition

The NT inverse of f(t) is given by [37,38]

p+ico
1
-1 — —
N7R(s, w)] = f(t) = .

p-ico

esi[R(s, u)ds.

2.5 Definition

The NT of the nth-derivative of f(t) is expressed as [37,38]

N[f"(©)]=Rn(s, u)

SN -l on—(k+1) )
= —R(s, u) - 0), n=1.
un IZ;) un—k f

3 Basic idea of NDM

Here, the general solution of FPDE is analyzed by using
NDM [37,38].
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Table 1: NDM and variational iteration method (VIM) solutions of example 1 at various fractional orders and y = 0.8
X |Exact — NDM| |Exact — NDM| |Exact - VIM| |Exact — NDM|
y=15 y=18 y=2 y=2
0.1 9.4756734 x 1079 2.2341275 x 10797 1.00 x 10710 1.00 x 10710
0.2 2.4281834 x 10704 6.5405157x 10797 3.00x 10710 3.00x 10710
0.3 4.1427333x 10704 1.1973487x 10796 1.00x 10710 1.00x 10710
0.4 6.0107726x 10794 1.8174793x 10706 1.00x 10710 1.00x 10710
0.5 8.0017319x 10794 2.4965681x 10796 1.00x 10710 1.00x 10710
0.6 1.0106683x 10793 3.2257308x 10796 1.10x 10799 1.10x 10799
0.7 1.2328432x 10793 4.0014626x 10796 6.00x 10799 6.00x 10799
0.8 1.4677104x 10793 4.8238379x 10706 2.11x 10798 2.11x 1078
0.9 1.7167937x 10793 5.6955055x 10706 6.90x 10708 6.90x 10708
1.0 1.9820106x 10793 6.6210933x 10796 1.99x 10797 1.99x 10797
DVp(x, t) + Lop(x, t) + Np(x, t) = f(x, t), ) 1l di o
x,t>0, m-1<y<m, Aj:FWNZ(Nd)") , j=0,1,2- (7
' j=0 1=0

where y describes the fractional-order Caputo-type deri-

vative, m € N and L and N are, respectively, the linear Using equations (5) and (6) in equation (4), we get

and nonlinear terms and f(x, t) is the source term.
The initial known solution is

N{Z x, t)} R L)
j=0

S

¢d(x, 0) = k(x), )] (8)
. . . w © s
whe're k(x) 1§ the constant or function of x only. Using the -= N L Z bi(x, ) + z Al
NT in equation (1), we get s j=0 j=0
N[DY(x, t)] + N*[Lop(x, t) + Np(x, t)] = N*[f(x, t)],(3) Using the NT,
and applying NT property of derivative, we get k(x) u
Nlolx, O] = == + —N'[f(x, )],
S s ©)

sv 5)’*1
SN0, D] - *—(x, 0)
u u

N, (x, )] = —l‘—iN*[L%(x, £) + Aol,
= N[f(x, D] - NL(x, ) + N(x, )],

. , Using the generalization, we can write
u
N, t)]= ;(ﬁ(x, 0) + ;N*[f(x, t)]

W N+[¢j+1(x, ] = —Z—:N‘f[hpj(x, t)+ 4], j=1. (10)
- ;N*[qu(x, t) + No(x, t)].

The inverse NT of equations (9) and (10) implies that
Now ¢(x, 0) = k(x),

4
Bolx, ) = k(x) + N,l[u_w fex, m},
Ngp(x, t)] = @ + Z—:N*[f(x’ 0] ° s an

(4) . v W _ }

— u—:NJr[L(p(X, t) + N¢(X, t)]. ¢]+1(X’ t) N |:syN [L¢](X, t) + Al] .
S
The ADM solution for ¢(x, t) is
P00 = 2, B0 ) 4 Numerical implementation
]:

and the Adomian polynomial is Example 1. The BVP of fractional order in ref. [42] is

2 2
(6) ﬁ+%=0,0<x,y<71,1<y§2, (12)

Np(x, t) = ) 4,
j=0 oy dy?



DE GRUYTER

with BCs

¢(x,0) =0, ¢(x, m) =0,

¢(0,y) = siny, ¢(m,y)= coshmsiny. 1B3)

Taking the NT of equation (12),
sY sv1 sy-2 %P
2 N*[p(x,y)] - =—A - =—B = -N*| — |,
Ve n] - =2 o L)yz
where A = ¢(0, y) and B = ¢'(r, y). Using inverse NT, we
have
1 1 w | 0%
x,y) =N1=-A+ =B- —N|—||
¢( Y) |:S SZ sv |: ayz :|:|
Applying the ADM, we have

Py(x,y) = A + Bx. (14)

Using the BC in equation (14), we get A = siny and
. coshm-1
B = smy( - )

$o(x,y) = sin J/{l + (%]X}

g w 62(]5} X
¢i+1(X, y) =-N 1|:§N+{a—y2 , Jj=0,1,..

forj=0

Llw | 0%,
$y(x,y)= -N IL—YN {—ayZOH
1l u coshm—-1) w
=N 1|:51n Y{Syﬂ +[ T )sy+2}:|’ (15)

(6, y) = siny xY . [coshn - 1) X+
L I(y+1) n Iy+2]|

The subsequent terms are as follows:

_ 71_u_y az¢1 -
¢,(x,y)= -N syN*{—ayz
_sin et (cosh - 1) x/*2
Ty +2) 7 Ty +3]
_ 71—u_y aZ¢2 -
¢;(x,y)= -N syN*{—ayz

— sin X2 (coshn - 1} x3 10
N1y 3) n JTy+4)
W " aZ¢3
¢,(x,y)= -N I[EN {a—yz}}

. xV+3 (cosh - 1) xy+4
=siny + »
Iy + 4) b1 I'(y +5)
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The NDM approximation is as follows:

DX, y) = Po(x, y) + P06, ¥) + P,(x,y)
+ G506 y) + P x,y) +--

_ y
¢(x, y) =sin y{l + (COShn 1])( + X

b4 I'y+1

. (coshn - 1) X+ . X+
b IF'y+2) T(y+2

N (cosh - 1) x¥+2 . xV+2
b1 Ty+3) T(y+3)
(cosh - 1) xV+3 xV+3
+ +
b4 T'y+4) Ty+4)

(cosh - 1) pans

+ +ee
T I'(y +5)

The exact result of equation (12) aty =2

¢(x,y) = coshx siny.

Example 2. The BVP of fractional order in ref. [42] is

dp %

a—yY+W:0’ O0<x, y<m 1<y<2, (17)
with BCs

¢y(x, 0) =0, ¢y(x, 1) = 2 cos(2x)sinh(2m), 18)

¢,0,y) =0, ¢ (m,y)=0.
Taking the NT of equation (17),

w ox2

where A = gby(x, 0) and B = ¢,(m, y). Using inverse NT,
we have

41 1 w . | 0%p
¢(X, y) =N 1|:§A + —2B - —N {ﬁ}}.

S sY

y y-1 y-2 2
S Npo,y)] - A - 2B = —N{a "’}
u u

Applying the ADM, we have

¢o(x,y) = A + By. (19)

Using the BC in equation (19), we get A = constant and
B = 2 cos(2x)sinh(2m)

¢o(x,¥) = C + 2 cos(2x)sinh(2m)y,

g uw 62(],')] X
¢j+1(x9 J’) =-N 1l:§N+{¥ N ] = 0, 1, 2,

forj=0:
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_ N W) 9o oy = N1 La s Lp_ Wy
$x,y)= -N LYN { % P, y) At sY %’
=N 1{8 s1nh(2n)cos(2x)7 2} (20) Using the ADM, we have
I(y +2) s'*
y+l ¢0(X7 y) = A + Bx. (24)
$10x:y) = 8 sinh(2m)cos(2x) I'(y + 2)° Using the BC in equation (24), we get A = 0 and B = cos y
The subsequent terms are as follows: $o(x, y) = x cosy,
2
| W aZ¢1 _N-1 u ¢ . _
¢,06y)= -N 1{5 { e a0, y) = =N N il 0,1,2,..
2y+1 .
=32 smh(2n)cos(2x)— forj=0
TQy +2)
w 92 (21) o W %y | | 4 cos yw
5%, y) = _N_{Sy { 6X22}:| h(x,y) = -N SVN —ayz =N 2 |
(25)
+1
i il B, ) = cosy—>"
=128 sinh(2mr)cos(2x) —, 11X Y cosy .
(2m)cos( )F(2y+4) Iy +2)

The subsequent terms are as follows:

The NDM solution for example 2 is as follows:

d,(x,y) = N‘l_uy .| Oy | = cos X
DX, y) = Py, y) + P, y) + (X, ¥) + P3(x, y) + - XY= s 2| y ry+2’°
¢(x,y) = C + 2 cos(2x)sinh(2m)y » 6,06, y) = —N1 u_:’ {aazq)z} _ syr ;3y+14 -
+ 8 sinh(27r)cos(2x) y :s y? @y +4)
[y +2) uy az¢3 x4+l
) yr+l ¢,(x,y) = -N1| =N = COS y——,
+ 32 sinh(2m)cos(2x) —— sy ay? I'(2y + 6)
I'2y +2) . -
. y3y+1 :
+ 128 sinh(2)cos(2x) TQy + 4) o Example 3 has the following NDM solution
The exact result of equation (12) at y = 2 D, y) =X, ) + di(x, y) + Py(x, y)
¢(x,y) = cos(2x)cosh(2y). *P06) + )+
Xy+1 X2y+1
Example 3. The BVP of fractional order in ref. [42] is P(x, y)=cosy|x + Iy +2) + Ty +2)
Y 2
ﬂqL%:O, O<x, y<m 1l<y<2, (22 + X + i + o
axY oy 'y +4) TQy+6)
with BCs The exact result of equation (22) at y = 2
¢(x, 0) = sinh x, ¢(x, ) = —sinh x, 23) ¢(x,y) = sinh x cos y.
¢(0,y) =0, ¢(m,y) = sinhm cosy.
Taking the NT of equation (22),
-1 N 2 az . .
N*[gp(x, y)] - —A S NV a 5 Results and graph discussion
w dy?

where A = ¢(0, y) and B = ¢(71, y). Using inverse NT, we The actual and NDM solutions of example 1 are plotted in
have Figures 1 and 2, respectively, at y = 2, and the closed
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x10*

x10
1.5

0 o

Figure 1: The exact solution of example 1 aty = 2.

x10*
1.5,

0 o

Figure 5: NDM solution graph of example 1 aty = 1.4.
Figure 2: NDM solution graph of example 1 aty = 2.

10

0 o 0 o

Figure 3: NDM solution graph of example 1 at y = 1.8. Figure 6: The exact solution of example 2 aty = 2.
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0

Figure 7: NDM solution graph of example 2 aty = 2. Figure 10: NDM solution graph of example 2 aty = 1.4.

Figure 8: NDM solution graph of example 2 aty = 1.8. Figure 11: The exact solution of example 3 aty = 2.

0 0 0

Figure 9: NDM solution graph of example 2 aty = 1.6. Figure 12: NDM solution graph of example 3 aty = 2.
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Figure 13: NDM solution graph of example 3 aty = 1.8.

N

0 o

Figure 14: NDM solution graph of example 3 aty = 1.6.

contact of the actual and NDM solutions is analyzed.
The graphs in Figures 3-5 represent the NDM solutions
at y =18, 1.6 and 1.4 of example 1, respectively. The
fractional results are very accurate and found to be con-
vergent to an integer order solution of each problem.
In Figures 6 and 7, the plots expressed the NDM and
actual solutions of example 2 at y = 2, respectively. The
closed relation of NDM and actual solutions is estab-
lished in Figures 1-5. In Figures 8-10, the graphs are
drawn to verify the results at y = 1.8, 1.6 and 1.4 of
example 2, respectively. The convergence of fractional
to integer-order solutions is investigated. In Figures 11
and 12, the graphs represent the actual and NDM solu-
tions, respectively, at y = 2 of example 3. A closed resem-
blance is found between NDM and actual solutions.

Exact solutions of the Laplace FBVPs via NDM =— 1185

0 o

Figure 15: NDM solution graph of example 3 at y = 1.4.

In Figures 13-15, the solutions at y = 1.8, 1.6 and 1.4
are determined, respectively. It is analyzed that for var-
ious values of y, the solutions have the sufficient conver-
gence to the solution of the problem at integer order of
example 3.

6 Conclusions

In this article, the natural decomposition technique is
extended to solve FBVPs of the Laplace equations. The
NDM solutions are compared with the exact and varia-
tional iteration method solutions. The comparison has
also been done by using various solution graphs of
different problems. It is confirmed that the proposed tech-
nique is in closed agreement with the actual and varia-
tional iteration solutions. Table is constructed to verify
the accuracy of the suggested technique. It is confirmed
from the table that the present method has the sufficient
degree of accuracy. The convergence of the fractional-
order solutions toward integer-order solution is observed.
Furthermore, the present method is simple and straight
forward and therefore can be modified for the solutions of
BVPs of FPDEs.
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