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Abstract. In this article, we investigate the existence results, with multi-point and integral
boundary conditions, for Caputo-Hadamard fractional differential equations (CHFDEs) and
inclusions. To get the desired results, which are clearly illustrated by examples, we use standard
fixed point theorems for single-valued and multi-valued maps.

1. Introduction
As of late years, fractional-order differential equations(FDEs) have expanded attention from
both the conceptual and the applied perspectives. There are numerous applications in several
fields, such as chemical mechanics, signal processing, aerodynamics, fluid flow, electrical systems,
etc. Instead of integer-order differential and integral operators, differential fractional-order
operators are non-local and have the means to examine the inherited properties of a few materials
and procedures. The monographs [15, 16, 20, 22] typically applied to the theory of fractional
derivatives and integrals and applications of FDEs. See [4, 5, 10, 19, 23–29, 31] for more points
of interest and templates, and the references therein. In either case, it has shown that the
bulk of the work on the subject is concerned with the FDE of Riemann-Liouville or Caputo
form. Other than these fractional derivatives, another type of fractional derivatives defined in
the literature is the fractional derivative known to Hadamard in 1892 [13], varying from the
aforementioned derivatives in the sense that the integral kernel in the Hadamard derivative
description contains an arbitrary exponent’s logarithmic function. A point-by-point overview
of the integral and Hadamard derivatives found in [1–3, 6, 7, 11, 14, 18, 21, 30, 32, 34, 35]. Ahmad
et.al [38] recently examined sequential fractional-order neutral functional differential equations
with the Caputo-Hadamard fractional derivative (CHFD). Similarly, with three-point boundary
conditions, Boutiara et.al [36] studied the Caputo-Hadamard fractional boundary value problem
(BVP). Recently, Tariboon et.al [37] investigated the existence of solutions of CHFDEs for
separated BVPs. In this paper, we investigate a new BVP of CHFDEs and inclusions:

CHD%z(τ) = h(τ, z(τ)), τ ∈ E := [1, T ], (1)
CHD%z(τ) ∈ H(τ, z(τ)), τ ∈ E := [1, T ], (2)
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z(1) = 0, z′(1) = 0, z(T ) = ξHIςz(υ) + ζ

m−2∑
i=1

νiz(ϑi), (3)

where CHD% is the CHFDs of order 2 < ς ≤ 3, 1 < ϑ < T , HIς is the Hadamard fractional
integral of order 1 < ς < 2, and h: E × R → R is a given continuous function, H : E → S(R) is
a multi-valued map, S(R) is the family of all nonempty subsets of R and ξ, ζ are positive real
constants. The article is carried out as follows. In Section 2, We’ll present valuable preliminaries
and lemmas. Section 3 deals with the existence and uniqueness result for problem (1) and (3)
established through fixed point theorems Krasnoselskii and Banach. In Section 4, we discuss the
solutions of existence for the problem (2) and (3) using the alternative of Leray-Schauder and
fixed-point theorem due to Covitz. We address two examples to explain our main results.

2. Preliminaries
We start with some fundamental definitions, semigroup properties, and lemmas with results
[15,20].

Definition 2.1. Let 0 ≤ b ≤ c ≤ ∞ be finite or infinite interval of the half-axis R+. The HFIs
of order % ∈ C are defined by

(I%b+h)(τ) =
1

Γ(%)

∫ τ

b

(
log

τ

θ

)%−1
h(θ)

dθ

θ
, b < τ < c, and

(I%c−h)(τ) =
1

Γ(%)

∫ c

τ

(
log

θ

τ

)%−1
h(θ)

dθ

θ
, b < τ < c.

Definition 2.2. The left and right-sided Hadamard fractional derivatives of order % ∈ C with
R(%) ≥ 0 on (b, c) and b < τ < c are defined by

(D%b+h)(τ) =
(
τ
d

dτ

)n 1

Γ(n− %)

∫ τ

b

(
log

τ

θ

)n−%−1
h(θ)

dθ

θ
, and

(D%c−h)(τ) =
(
− τ d

dτ

)n 1

Γ(n− %)

∫ c

τ

(
log

θ

τ

)n−%−1
h(θ)

dθ

θ
,

where n = [R(%)] + 1.

Lemma 2.3. If R(%) > 0, R(ς) > 0 and 0 < b < c <∞, then we have(
I%b+
(

log
θ

b

)ς−1)
(τ) =

Γ(ς)

Γ(ς + %)

(
log

τ

b

)ς+%−1
,(

I%c−
(

log
c

θ

)ς−1)
(τ) =

Γ(ς)

Γ(ς + %)

(
log

c

τ

)ς+%−1
.

Definition 2.4. Let 0 < b < c < ∞, R(%) ≥ 0, n = [R(%) + 1]. The left and right CHFDs of
order % are respectively defined by

(CD%b+h)(τ) = D%b+

[
h(θ)−

n−1∑
k=0

δkh(b)

k!

(
log

θ

b

)k]
(τ),

and

(CD%c−h)(τ) = D%c−

[
h(θ)−

n−1∑
k=0

(−1)kδkh(c)

k!

(
log

c

θ

)k]
(τ).
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We define space W = C(E ,R) the Banach space of all continuous functions from E → R
endowed with a topology of uniform convergence with the norm defined by ‖z‖ = sup{|z(τ)|, τ ∈
E}. Let AC[1, T ] be the space functions that are absolutely continuous on [1, T ]. Let us introduce
the space ACnδ [1, T ], which consists of those function h by

ACnδ [1, T ] =
{
h : [1, T ]→ C, δn−1h(τ) ∈ AC[1, T ], δ = τ

d

dτ

}
.

Lemma 2.5. If T : X → Scld(Y) is upper semi-continuous (USC), then Gr(T ) is a closed subset
of X ×Y; i.e., for every sequence {un}n∈N ⊂ X and {vn}n∈N ⊂ Y, if un → u∗ and vn → v∗, then
un → T v∗. Conversely, if T is completely continuous and has a closed graph, then it is USC.
Definition 2.6. A function z ∈ C3(E ,R) is called a solution of problem (2) and (3) if ∃ a
function α(τ) ∈ L1(E ,R) with α(τ) ∈ H(τ, z(τ)) such that

CHD%z(τ) = α(τ), 2 < ς ≤ 3, ∀ τ ∈ E ,

z(1) = 0, z′(1) = 0, z(T ) = ξHIςz(υ) + ζ

m−2∑
i=1

νiz(ϑi),

where 1 < υ < ϑ1 < ϑ2 < · · · < ϑm−2 < T .
Lemma 2.7. For any ĥ ∈ C(E ,R), z ∈ C3(E ,R), the function z is the solution of the problem

CHD%z(τ) = ĥ(τ), τ ∈ E ,

z(1) = 0, z′(1) = 0, z(T ) = ξHIςz(υ) + ζ

m−2∑
i=1

νiz(ϑi),
(4)

if and only if

z(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
ĥ(θ)

dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
ĥ(θ)

dθ

θ

+ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
ĥ(θ)

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
ĥ(θ)

dθ

θ

]
, (5)

where

∆ = (log T )2 − 2ξ(log υ)2+ς

Γ(3 + ς)
− ζ

m−2∑
i=1

νi(log ϑi)
2. (6)

3. Single-valued case for the problem (1) and (3)
We define Π :W →W as

Π(z)(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
h(θ, z(θ))

dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
h(θ, z(θ))

dθ

θ

+ ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
h(θ, z(θ))

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
h(θ, z(θ))

dθ

θ

]
, (7)

in view of Lemma 2.7. Suitable for computation, we represent:

Ω =
1

∆Γ(%+ 1)

(
∆(log T )%+(log T )2

(
ζ

m−2∑
i=1

νi(log ϑi)
%
))

+
(log T )2

∆

(
ξ(log υ)%+ς

Γ(%+ ς + 1)
+

(log T )%

Γ(%+ 1)

)
.(8)

Let a continuous function be h : E × R → R. We need the following premises in order to prove
the existence and uniqueness results.
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(K1) |h(τ, z1)− h(τ, z2)| ≤ P|z1 − z2|, ∀ τ ∈ E , z1, z2 ∈ R,P > 0.
(K2) |h(τ, z(τ))| ≤ δ(τ) for (τ, z) ∈ E × R, and δ ∈ C(E ,R+) with ‖δ‖ = max

τ∈E
|δ(τ)|.

(K3) H : E × R→ S(R) has non-empty compact and convex values and is Caratheodory.
(K4) ∃ a non-decreasing continuous function φ : [0,∞] → [0,∞]and a function κ ∈ C(E ,R+)

such that ‖H(τ, z)‖S = sup{|w| : w ∈ H(τ, z)} ≤ κ(τ)φ(‖z‖) for each (τ, z) ∈ E × R.

(K5) The Q constant exists such that
Q

φ(Q)‖κ‖Ω
> 1, where Ω is set by (8).

(K6) H : E × R→ Scpt(R) is such that H(·, z) : E → Scpt(R) is measurable for each z ∈ R.
(K7) Fg(H(τ, z),H(τ, z)) ≤ ρ(τ)|z− z| ∀ E and z, z ∈ R with ρ ∈ L1(E ,R+) and g(0,H(τ, 0)) ≤

ρ(τ) ∀ τ ∈ E .

Theorem 3.1. Suppose (K1), (K2) holds. If{
P(log T )2

∆

(
ξ(log υ)%+ς

Γ(%+ ς + 1)
+ζ

m−2∑
i=1

νi
(log ϑi)

%

Γ(%+ 1)
+

(log T )%

Γ(%+ 1)

)}
<1. (9)

Then there is at least one solution to the problem (1) and (3).

Proof. Determining Bε = {z ∈ W : ‖z‖ ≤ ε}, where ε ≥ ‖δ‖Ω. To prove the hypothesis of
Theorem (see [17]), we divide the Π operator given by (7) as Π = Π1 + Π2 to Bε, where

(Π1z)(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
h(θ, z(θ))

dθ

θ
,

(Π2z)(τ) =
(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
h(θ, z(θ))

dθ

θ

+ ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
h(θ, z(θ))

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
h(θ, z(θ))

dθ

θ

]
.

For ẑ1, ẑ2 ∈ Bε,

|(Π1ẑ1)(τ) + (Π2ẑ2)(τ)| ≤ sup
τ∈E

{
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
|h(θ, z(θ))|dθ

θ

+
(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
|h(θ, z(θ))|dθ

θ

+ ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
|h(θ, z(θ))|dθ

θ

+
1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
|h(θ, z(θ))|dθ

θ

]}

≤ ‖δ‖

{
(log T )%

Γ(%+ 1)
+

(log T )2

∆

(
ξ(log υ)%+ς

Γ(%+ ς + 1)
+ ζ

m−2∑
i=1

νi
(log ϑi)

%

Γ(%+ 1)
+

(log T )%

Γ(%+ 1)

)}
≤ ‖δ‖Ω ≤ ε,
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That implies Π1ẑ1 + Π2ẑ2 ∈ Bε. Now, we have to prove that Π2 is a contractive. Let z1, z2 ∈ R,
and τ ∈ E . Then, along with (9) with the (K1) assumption, we get

‖Π2z1 −Π2z2‖ ≤
P(log T )2

∆

(
ξ(log υ)%+ς

Γ(%+ ς + 1)
+ζ

m−2∑
i=1

νi
(log ϑi)

%

Γ(%+ 1)
+

(log T )%

Γ(%+ 1)

)
‖z1 − z2‖.

The operator Π2, as specified in statement (K1), is a contraction. Next, we’ll show Π1’s compact
and continuous. h-continuity implies continuous operator Π1. Π1 is bounded uniformly as Bε,

‖Π1z‖ ≤
‖δ‖(log T )%

Γ(%+ 1)
.

In addition, with sup
(τ,z)∈E×Bε

|h(τ, z)| = ĥ <∞ and τ1 < τ2, τ1, τ2 ∈ E , we have

|(Π1z)(τ2)− (Π1z)(τ1)| =

∣∣∣∣∣ 1

Γ(%)

∫ τ2

1

(
log

τ2

θ

)%−1
h(θ, z(θ))

dθ

θ

− 1

Γ(%)

∫ τ1

1

(
log

τ1

θ

)%−1
h(θ, z(θ))

dθ

θ

∣∣∣∣∣
≤ ĥ

Γ(%)

∣∣∣∣∣
∫ τ1

0

[(
log

τ2

θ

)%−1
−
(

log
τ1

θ

)%−1]dθ
θ

+

∫ τ2

τ1

(
log

τ2

θ

)%−1dθ

θ

∣∣∣∣∣.
(10)

As τ1 → τ2, the RHS of the above inequality tends to zero. So Π1 on Bε is relatively compact.
Then Π1 is compact on Bε by Theorem (see Lemma 1.2 [33]). Therefore, all of Theorem’s
assumptions (see [17]) are fulfilled. Hence, there is at least one solution for the problem (1) and
(3) on E .

Theorem 3.2. Suppose (K1) hold. Additionally, it assumes PΩ < 1, where Ω is specified in (8).
Then, there exists an unique solution for the problem (1) and (3) on E.

Proof. Define sup
τ∈E
|h(τ, 0)| = V < ∞. Choosing ε ≥ VΩ

1− PΩ
, we show that ΠBε ⊂ Bε, where

Bε = {z ∈ W : ‖z‖ ≤ ε}. For z ∈ Bε, we have

|(Πz)(τ)| ≤ sup
τ∈E

{
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
|h(θ, z(θ))|dθ

θ

+
(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
|h(θ, z(θ))|dθ

θ

+ ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
|h(θ, z(θ))|dθ

θ

+
1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
|h(θ, z(θ))|dθ

θ

]}

≤(Pε+ V) sup
τ∈E

{
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1dθ

θ



ICMMCMSE 2020
Journal of Physics: Conference Series 1850 (2021) 012107

IOP Publishing
doi:10.1088/1742-6596/1850/1/012107

6

+
(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1dθ

θ

+ ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1dθ

θ

+
1

Γ(%)

∫ T

1

(
log

T

θ

)%−1dθ

θ

]}
≤ (Pε+ V)Ω. (11)

Thus, ‖(Πz)‖ ≤ ε is derived from (11). Now, for z, ẑ ∈ W, we’re getting

|Πz(τ)−Πẑ(τ)| ≤ sup
τ∈E

{
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
|h(θ, z(θ))− h(θ, ẑ(θ))|dθ

θ

+
(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
|h(θ, z(θ))− h(θ, ẑ(θ))|dθ

θ

+ ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
|h(θ, z(θ))− h(θ, ẑ(θ))|dθ

θ

+
1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
|h(θ, z(θ))− h(θ, ẑ(θ))|dθ

θ

]}

≤P‖z − ẑ‖

{
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1dθ

θ

+
(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1dθ

θ

+ ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1dθ

θ

+
1

Γ(%)

∫ T

1

(
log

T

θ

)%−1dθ

θ

]}
= PΩ‖z − ẑ‖.

Therefore,

‖Πz −Πẑ‖ ≤ PΩ‖z − ẑ‖.

Since by definition PΩ < 1, Π represents a contraction. Theorem (see Theorem 1.4 [33]) follows
that on E the equation (1) and (3) has an unique solution.

4. Multi-valued case for the problem (2) and (3)
Theorem 4.1. Suppose (K3),(K4), and (K5) holds. Then, the (2) and (3) problems contain at
least one solution on J .
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Proof. Let us describe an operator ΨH :W → S(W) by

ΨH(z) =



s ∈ W :

s(τ) =



1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
h(θ, z(θ))

dθ

θ

+ (log τ)2

∆

[
ξ 1

Γ(%+ς)

∫ υ
1

(
log υ

θ

)%+ς−1
h(θ, z(θ))dθθ

+ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
h(θ, z(θ))

dθ

θ

− 1
Γ(%)

∫ T
1

(
log T

θ

)%−1
h(θ, z(θ))dθθ

]
,


for α ∈ MH,z. We must prove that ΨH fulfills the premises of the Theorem (see Theorem
8.5 [12]). First, for every z ∈ W, we present that ΨH is convex. Next, in W bounded sets, we
prove ΨH maps to bound sets. Let Bε = {z ∈ W : ‖z‖ ≤ ε} be a bounded ball in W for the
positive number ε. Then, for each s ∈ ΨH(z), z ∈ Bε ∃ α ∈MH,z such that

s(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
h(θ, z(θ))

dθ

θ

+
(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
h(θ, z(θ))

dθ

θ

+ ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
h(θ, z(θ))

dθ

θ

− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
h(θ, z(θ))

dθ

θ

]
.

For τ ∈ E , we have

|s(τ)| = 1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
|α(θ)|dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
|α(θ)|dθ

θ

+ ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
|α(θ)|dθ

θ
+

1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
|α(θ)|dθ

θ

]

≤φ(‖z‖)‖κ‖

{
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1dθ

θ

+ ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1dθ

θ
+

1

Γ(%)

∫ T

1

(
log

T

θ

)%−1dθ

θ

]}
≤φ(‖z‖)‖κ‖Ω.

Consequently,

‖s‖ ≤ φ(‖z‖)‖κ‖Ω.

We demonstrate that the maps bounded sets into equicontinuous sets of W. Let τ1, τ2 ∈ E for
τ1 < τ2 and z ∈ Bε. For each s ∈ ΨH(z), we get

|s(τ2)− s(τ1)| ≤ φ(ε)‖κ‖
Γ(%)

∣∣∣∣∣
∫ τ1

0

[(
log

τ2

θ

)%−1
−
(

log
τ1

θ

)%−1]dθ
θ
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+

∫ τ2

τ1

(
log

τ2

θ

)%−1dθ

θ

∣∣∣∣∣+
φ(ε)‖κ‖|(log τ2)2 − (log τ1)2|

∆

×

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1dθ

θ

+ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1dθ

θ
+

1

Γ(%)

∫ T

1

(
log

T

θ

)%−1dθ

θ

]
.

The RHS of the above inequality obviously tends to be zero, independently of z ∈ Bε as
τ2 − τ1 → 0. Because ΨH meets the (K3), (K4), and (K5) then the Theorem (see Lemma
1.2 [33]) follows that ΨH :W → S(W) is completely continuous. When we conclude that it has
a closed graph, ΨH is shown to be upper semicontinuous (USC), as ΨH is already shown to be
completely continuous. Thus we’ll prove that ΨH has a closed graph. Let zn → z∗, sn ∈ ΨH(zn)
and sn → s∗. We will prove then that ΨH(z∗). Joined with sn ∈ ΨH(zn), ∃ αn ∈ ΨH(zn), such
that for each τ ∈ E .

sn(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
αn(θ)

dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
αn(θ)

dθ

θ

+ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
αn(θ)

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
αn(θ)

dθ

θ

]
.

Thus it is necessary to show that ∃ α∗ ∈MH,z∗ 3 for each τ ∈ E ,

s∗(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
α∗(θ)

dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
α∗(θ)

dθ

θ

+ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
α∗(θ)

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
α∗(θ)

dθ

θ

]
.

Consider a Y linear operator : L1(E ,R)→W as

s 7→ Y(α)(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
α(θ)

dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
α(θ)

dθ

θ

+ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
α(θ)

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
α(θ)

dθ

θ

]
.

Remember that

‖sn(τ)− s∗(τ)‖ =

∥∥∥∥∥ 1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
(αn(θ)− α∗(θ))

dθ

θ

+
(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
(αn(θ)− α∗(θ))

dθ

θ

+ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
(αn(θ)− α∗(θ))

dθ

θ
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− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
(αn(θ)− α∗(θ))

dθ

θ

]∥∥∥∥∥→ 0,

as n → ∞. The Y ◦ MH,z is a closed graph operator according to Lemma 2.5. We have
sn(τ) ∈ Y(MH,zn). So, because of zn → z∗, we have

s∗(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
α∗(θ)

dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
α∗(θ)

dθ

θ

+ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
α∗(θ)

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
α∗(θ)

dθ

θ

]
,

for some α∗ ∈ MH,z∗ . There is an open set P ⊆ W with z /∈ ΨH(z) for every ε ∈ (0, 1) and all
z ∈ ∂P. Then there’s α ∈ L1(E ,R) with α ∈MH,z so we have

z(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
α(θ)

dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
α(θ)

dθ

θ

+ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
α(θ)

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
α(θ)

dθ

θ

]
, τ ∈ E .

As in step 2, it is possible to have ‖z‖ ≤ φ(‖z‖)‖κ‖Ω, which means ‖z‖
φ(‖z‖)‖κ‖Ω ≤ 1. With regard

to (K5), ∃ Q such that ‖z‖ 6= Q. Allow us to set P = {z ∈ W : ‖z‖ < Q}. Notice that the
operator ΨH : P → S(W) is USC and completely continuous. There is no z ∈ ∂P from P’s
choice to z ∈ εΨH(z) for some ε ∈ (0, 1). Thus, we conclude from the Theorem (see Theorem
8.5 [12]) that the ΨH has a fixed point z ∈ P, which is a solution for this (2) and (3) problem.

Theorem 4.2. Suppose (K6), (K7) holds. Additionally, it assumes Φ := ‖η‖Ω < 1, where Ω is
specified in (8). Then, there exists at least one solution for the problem (2) and (3) on E.

Proof. Consider that the setMH,z is nonempty by presumption of (K6) for every z ∈ W, so H
has a measurable selection (see Theorem III.6 [8]). We demonstrate that the ΨH, specified at
the beginning of the Theorem 4.1 statement, satisfies the hypotheses of Theorem (see [9]). To
show that ΨH(z) ∈ Scld(W) for every z ∈ W, let {pn}n≥0 ∈ ΨH(z) be such that pn → p ∈ W as
n→∞. Then p ∈ W and ∃ αn ∈MH,zn such that, for every τ ∈ E ,

pn(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
αn(θ)

dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
αn(θ)

dθ

θ

+ ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
αn(θ)

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
αn(θ)

dθ

θ

]
.

We shift a sub-sequence to get αn converging to α in L1(E ,R), when H has compact values, so
we have

αn(τ)→ α(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
α(θ)

dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
α(θ)

dθ

θ

+ζ

m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
α(θ)

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
α(θ)

dθ

θ

]
.
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Therefore, p ∈ ΨH(z). We show that ∃ Φ < 1 such that

Fg(ΨH(z),ΨH(z)) ≤ Φ‖z − z‖, for each z, z ∈ W.

Let z, z ∈ W and p1 ∈ ΨH(z). Then ∃ α1(τ) ∈ H(τ, z(τ)) such that, for each τ ∈ E ,

p1(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
α1(θ)

dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
α1(θ)

dθ

θ

+ ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
α1(θ)

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
α1(θ)

dθ

θ

]
.

With the (K7) hypothesis, we have Fg(H(τ, z),H(τ, z)) ≤ g(τ)‖z(τ)−z(τ)‖. So, ∃ q ∈ H(τ, z(τ))
such that |α1(τ − q)| ≤ g(τ)‖z(τ)− z(τ)‖, τ ∈ E . Define G : E → S(R) by

G(τ) = {q ∈ R : |α1(τ)− q| ≤ g(τ)‖z(τ)− z(τ)‖}.

Since the G(τ) ∩ H(τ, z(τ)) multivalued operator is measurable, a α2(τ) function exists, which
is a measurable G selection. So α2(τ) ∈ H(τ, z(τ)) and |α1(τ) − α2(τ)| ≤ g(τ)|z(τ) − z(τ)| for
each τ ∈ E . Determining

p2(τ) =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
α2(θ)

dθ

θ
+

(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
α2(θ)

dθ

θ

+ ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
α2(θ)

dθ

θ
− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
α2(θ)

dθ

θ

]
, for each τ ∈ E .

Therefore,

|p1(τ)− p2(τ)| =
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1
|α1(θ)− α2(θ)|dθ

θ

+
(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1
|α1(θ)− α2(θ)|dθ

θ

+ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1
|α1(θ)− α2(θ)|dθ

θ

− 1

Γ(%)

∫ T

1

(
log

T

θ

)%−1
|α1(θ)− α2(θ)|dθ

θ

]

≤ ‖ρ‖

{
1

Γ(%)

∫ τ

1

(
log

τ

θ

)%−1dθ

θ

+
(log τ)2

∆

[
ξ

1

Γ(%+ ς)

∫ υ

1

(
log

υ

θ

)%+ς−1dθ

θ

+ζ
m−2∑
i=1

νi
1

Γ(%)

∫ ϑi

1

(
log

ϑi
θ

)%−1dθ

θ

+
1

Γ(%)

∫ T

1

(
log

T

θ

)%−1dθ

θ

]}
‖z − z‖
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≤ (‖ρ‖Ω)‖z − z‖.

Hence,

‖p1 − p2‖ ≤ (‖ρ‖Ω)‖z − z‖.

Thus, we have

Fg(ΨH(z),ΨH(z)) ≤ (‖ρ‖Ω)‖z − z‖,

when we interchange the z and z functions. Since ΨH is a contraction, it follows from Theorem
(see [9]) that ΨH has a fixed point z which is a solution to the problem (2) and (3).

5. Examples
Example 5.1. Consider the following BVP

CHD
62
25 z(τ) =

1

(log τ)2 + 1
+
|z(τ)|

1 + |z(τ)|
· e

(log τ)2

(3 + τ)2
, τ ∈ [1, 2], (12)

z(1) = 0, z
′
(1) = 0, y(T ) = ξHI

42
25 z(υ) + ζ

m−2∑
i=1

νiz(ϑi). (13)

Here, % = 62
25 , ς = 42

25 , ξ = 1
40 , ζ = 1

30 , υ = 5
4 , T = 2, ν1 = 19

50 , ν2 = 29
50 , ν3 = 39

50 , ϑ1 = 37
25 ,

ϑ2 = 42
25 , ϑ3 = 47

25 .
Moreover, we find that

|h(τ, z(τ))| =
1

(log τ)2 + 1
+
|z|

1 + |z|
1

(3 + τ)2
as

|h(τ, z1(τ))− h(τ, z2(τ))| ≤ 1

16
‖z1 − z2‖.

With the above specifics, we find that ∆ ∼= 0.08731557467270329, Ω ∼= 0.03246116745330087.
Thus, the presumptions of Theorem 3.1 are satisfied. Hence, by Theorem 3.1, the problem (12)-
(13) has at least one solution on E.

Example 5.2. Consider the following BVP

CHD
72
25 z(τ) =

√
τ

1 + τ
+
|z(τ)|

1 + |z(τ)|
· elog τ

(4 + τ2)
, τ ∈ [1, 2], (14)

with the boundary conditions (13). Additionally, we find that

|h(τ, y(τ))| =

√
τ

1 + τ
+
|z|

1 + |z|
elog τ

(4 + τ2)
as

|h(τ, z1(τ))− h(τ, z2(τ))| ≤ 1

5
‖z1 − z2‖.

With the above specifics, we find that ∆ = 0.08731557467270329 and Ω = 0.012610111547411674.
Thus, the presumptions of Theorem 3.2 are satisfied. Hence, by Theorem 3.2, the problem (14)
with (13) has a unique solution on E.
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6. Conclusion
Through fixed-point theorems of Krasnoselskii, and Banach for equations, we discussed the

existence and uniqueness results for CHFDEs and inclusions supplemented by non-local boundary
conditions, and alternative of Leray-Schauder for multivalued maps and fixed-point theorem due
to Covitz for inclusions. When we have fixed the parameters involved in the problem (ξ, ζ) (1)-
(3), our results correspond to certain specific problems. Suppose that taking ξ = 0 in the results

provided, we are given the problems (1) and (2) with the form: y(T ) = ζ
m−2∑
i=1

νiz(ϑi), while the

results are y(T ) = ξHIςz(υ), followed by ζ = 0.
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