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Abstract: Fault-tolerant control addresses the control of dynamical systems such that they remain
functional after the occurrence of a fault. To allow the controller to compensate for a fault, the system
must exhibit certain redundancies. Alternatively, one may relax performance requirements for the closed-
loop behaviour after the occurrence of a fault. To achieve fault tolerance for a hierarchical control
architecture, a combination of both options appears to be advisable: on each individual level of the
hierarchy, the controller may compensate the fault as far as possible, and then pass on responsibility
to the next upper level. This approach, when further elaborated for discrete-event systems represented
by formal languages, turns out to impose a hard lower-bound inclusion specification on the closed-loop
behaviour. The present paper discusses the corresponding synthesis problem and presents a solution.
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1. INTRODUCTION

The aim of fault-tolerant control is the continuation of the
system operation in case of a fault occurrence. Hereby, it is
possible to make use of system redundancies or to allow a
degradation of the system performance after encountering a
fault. In this paper, the stated options are interpreted in the
context of a hierarchical control architecture. We argue that, for
each level of the hierarchy, a controller should use redundancies
to compensate the effects of the fault whenever possible. When
compensation becomes impossible, the fault should be made
explicit for compensation by the next higher level, and so forth.

For discrete-event systems represented by formal languages,
the described strategy can be formalised as a supervisory con-
trol problem with a hard lower-bound inclusion specification
(such as the fault-free behaviour) and an upper-bound inclusion
specification, that can be relaxed if otherwise no solution exists
(in case of uncontrollable behaviour after a fault). This contrasts
the well studied problem with a hard upper bound and the op-
tion to relax the lower bound. We note that the idea of relaxing
the upper bound is solved by Lafortune and Chen (1990) for
the prefix-closed case using the infimal closed controllable su-
perlanguage. The authors also remark that for the general case
of non-closed languages the infimum fails to be controllable.
However, in the present paper, we are interested in non-closed
languages for the specific situation of fault-tolerent control and
propose a non-infimal but sensible solution for the problem at
hand. Our approach retains regularity and we indicate how it
can be implemented for finite automata representations.

Several approaches for fault-tolerance are proposed in the exist-
ing discrete-event systems literature, and we give selected refer-
ences relevant to the present paper. Paoli and Lafortune (2005);
Paoli et al. (2011) consider fault detection by a diagnoser and

switching to a different supervisor for each fault before the
desired system behaviour is violated. In (Wen et al., 2008) it
is proposed that the system behaviour shall converge to the
nominal system behaviour after a fault occurrence, whereas Ku-
mar and Takai (2012) determine necessary and sufficient condi-
tions for controller reconfiguration in the case of faults. Fault-
accommodating models are used in Wittmann et al. (2013) to
represent the fault and to develop a fault-hiding control archi-
tecture similar to the well established approach for continuous
systems. The computation of supremal fault-tolerant sublan-
guages is suggested by Sülek and Schmidt (2013) for systems
where certain events can not longer occur. Sülek and Schmidt
(2014) propose a method for converging to a desired behaviour
under fault. It is common to all of the above approaches that
one needs to explicitly provide a formal representation of some
desirable (but potentially degraded) behaviour that is to be
achieved after a fault occurrence. In the present contribution,
we propose a systematic way to derive this design parame-
ter from the nominal specification and a fault-accommodating
plant model. Motivated by hierarchical control architectures,
our controller indicates any effects of the fault that it cannot
compensate by a distinguished event.

The paper is organised as follows. In Section 2, we provide
the relevant notation. Section 3 discusses the classical supervi-
sory control method. Section 4 illustrates fault-accommodating
models by example and points out limitations of this approach.
The main idea and method of relaxing the upper-bound speci-
fication language for fault tolerance is developed in Section 5
and applied to an example in Section 6.

2. PRELIMINARIES AND NOTATION

Let Σ be a finite alphabet, i.e., a finite set of symbolsσ ∈ Σ. The
Kleene-closure Σ∗ is the set of finite strings s = σ1σ2 · · ·σn,
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n ∈ �, σi ∈ Σ, and the empty string ǫ ∈ Σ∗ , ǫ � Σ. The length
of a string s ∈ Σ∗ is denoted |s| ∈ �0, with |ǫ| = 0. If, for two
strings s, r ∈ Σ∗, there exists t ∈ Σ∗ such that s = rt, we say r
is a prefix of s, and write r ≤ s; if in addition r � s, we say r
is a strict prefix of s and write r < s. The prefix of s ∈ Σ∗ with
length n ∈ �0, n ≤ |s|, is denoted pren s. In particular, pre0 s = ǫ
and pre|s| s = s. If, for two strings s, t ∈ Σ∗, there exists r ∈ Σ∗

such that s = rt, we say t is a suffix of s. The suffix of a string
s ∈ Σ∗ obtained by deleting the prefix of length n, n ≤ |s|, is
denoted sufn s; i.e., s = (pren s)(sufn s).

A formal language (or short a language) over Σ is a subset
L ⊆ Σ∗ . The prefix of a language L ⊆ Σ∗ is defined by
pre L :={r ∈ Σ∗ | ∃ s ∈ L : r ≤ s}. A language L is closed if
L = pre L. A language K is relatively closed w.r.t. L if K =
(pre K)∩L. The prefix operator distributes over arbitrary unions
of languages. However, for the intersection of two languages L
and H, we have pre (L ∩ H) ⊆ (pre L) ∩ (pre H). If equality
holds, L and H are said to be non-conflicting.

For two languages K, M ⊆ Σ
∗
, K is said to converge to M,

denoted by M ⇐ K, if there is a non-negative integer n such
that for each s ∈ K, there exists an i ≤ n such that sufi s ∈ M.
For two languages N, K ⊆ Σ

∗
, let K/N :={ t | ∃ s ∈ N : st ∈ K }.

Then, K is said to converge to M after N if M ⇐ K/N (also
referred to as conditional convergence).

For the observable events Σo ⊆ Σ, the natural projection
po : Σ

∗
→ Σ

∗
o is defined iteratively: (1) let poǫ := ǫ; (2) for

s ∈ Σ∗ , σ ∈ Σ, let po(sσ) :=(pos)σ if σ ∈ Σo, or, if σ � Σo,
let po(sσ) := pos. The set-valued inverse p−1

o of po is defined
by p−1

o (r) :={s ∈ Σ
∗
| po(s) = r } for r ∈ Σ

∗
o. When applied

to languages, the projection distributes over unions, and the
inverse projection distributes over unions and intersections. The
prefix commutes with projection and inverse projection.

Given two languages L, K ⊆ Σ∗ , and a set of uncontrollable
events Σuc ⊆ Σ, we say K is controllable w.r.t. L, if (pre K)Σuc ∩
(pre L) ⊆ pre K. Controllability is retained under union.

An automaton is a tuple G = (Q, Σ, δ, qo, Qm), with state
set Q, initial state qo ∈ Q, marked states Qm ⊆ Q, and the
partial transition function δ : Q × Σ → Q with its common
extension to the domain Q × Σ∗ . We denote the generated
language L(G) :={s ∈ Σ∗ | δ(qo, s)! } and the marked language
Lm(G) :={s ∈ Σ∗ | δ(qo, s) ∈ Qm }.

Given a language, define the equivalence relation [≡L] on Σ∗

by s′ [≡L] s′′ if and only if (∀ t ∈ Σ
∗

)[ s′t ∈ L ↔ s′′t ∈ L ].
Then there exists a state minimal automata representation of L
with the equivalence classs of [≡L] as state set. If the latter is
finite, L is called regular.

3. SUPERVISORY CONTROL

We give a concise review of the basic control problem intro-
duced by Ramadge and Wonham (1987, 1989), in a variation
that turns out convenient for the present paper.

Given an alphabet Σ, consider a language L ⊆ Σ∗ to represent
the plant with local behaviour pre L (set of all event sequences
that can be generated as time passes) and accepted behaviour L
(to indicate task completion).

For the purpose of control, the alphabet is partitioned in con-
trollable events and uncontrollable events, i.e., Σ = Σc ∪̇Σuc. In
the original literature, the controller is represented as a causal

feedback map f : pre L → Γ with the set of control-patterns
Γ :={γ |Σuc ⊆ γ ⊆ Σ}. In this paper, we represent f as a language
H and impose three requirements to obtain a setting equivalent
to non-blocking supervisory control from the cited literature 1 .

Definition 1. Given Σ = Σc ∪̇ Σuc, a language H ⊆ Σ
∗ is an

admissible controller for the plant L ⊆ Σ
∗
, if

(H0) H is closed,

(H1) H is controllable w.r.t. L, and

(H2) L and H are non-conflicting. �

For the commonly studied control problem, we consider a plant
L ⊆ Σ∗ and lower- and upper language inclusion specifications
A ⊆ Σ

∗
and E ⊆ Σ

∗
, in order to ask for an admissible controller

H, such that the accepted closed-loop behaviour K = L ∩ H
satisfies the closed-loop requirement A ⊆ K ⊆ E.

Definition 2. Given Σ = Σc ∪̇ Σuc, the control problem under
consideration is parametrised by languages ∅ � A ⊆ E ⊆ L ⊆
Σ
∗. A controller H ⊆ Σ∗ solves the problem, if it is admissible

to the plant L and if in addition

(H3) A ⊆ L ∩ H ⊆ E . �

Except for differences in notation, a constructive solution has
been presented by Ramadge and Wonham (1987, 1989). It is
based on two technical results. First, it is observed that a lan-
guage K can be obtained as the closed-loop behaviour K = L ∩
H with some admissible controller H if and only if K is itself
controllable and relatively closed w.r.t. L. Second, controllabil-
ity and relative closedness are retained under arbitrary union.
Thus, given the upper bound E, there exists a unique supremal
subset that is controllable and relatively closed:

K↑ := sup{K ⊆ E |K is cntrl. and rel. closed w.r.t. L } . (1)

In particular, H := pre K↑ is admissible and we have L ∩ H =
K↑ ⊆ E. If K↑ happens to also satisfy the lower bound
specification A ⊆ K↑, then H solves the control problem. If,
on the other hand, K↑ does not satisfy the inclusion A ⊆ K↑,
then neither does any other achievable closed-loop behaviour
and, thus, the control problem has no solution. If the parameters
A ⊆ E ⊆ L are regular, then so is K↑, and an automaton
representation can be computed in polynomial time 2 . Thus, for
practical problems, one can first compute a representation of K↑

and then test for A ⊆ K↑.

4. EXAMPLE

We provide a simple example to illustrate the well-known re-
sults presented so far and we utilise the example to outline how
supervisory control is applied to hierarchical control architec-
tures and how one may address fault tolerance in this context.

Consider a processing machine that interacts with its envi-
ronment by receiving a workpiece, processing the workpiece,
returning the workpiece, and so forth. At a suitable level of ab-
straction, the machine is represented by the automaton defined
in Fig. 1, referring to the events g (get a workpiece), a (use tool
A for processing), b (use tool B for processing), p (progress
increment), d (processing complete), and x (workpiece exits

1 In the original literature, the plant is represented by an automaton, and, thus,

can itself be blocking. When using a single language to represent the plant,

blocking can be modelled by a distinguished event.
2 More precisely, the complexity is O(n2m2), where n and m denote the state

counts of automata representations of L and E, respectively.
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machine). Regarding transport, a controller may choose how
long to keep the workpiece in the machine until enabling x.
Regarding processing, a controller can schedule the usage of the
two tools by enabling a and b according to a particular recipe.

Fig. 1. plant behaviour L with contr. events {a, b, x}

The task is to design a controller that accepts external com-
mands A and B to select a particular processing scheme and to
provide external feedback X upon completion of a workpiece.
The two language inclusion specifications defined in Fig. 2 re-
late the external events with the actual machine behaviour.Note
that throughout this paper, we use the convention to interpret
each individual automaton over the alphabet of those events that
can actually occur. The overall specification E is then obtained
by intersecting the inverse projections of each E1 and E2 to the
full alphabet Σ = {g, a, b, p, d, x, A, B, X}.

Fig. 2. upper bound specifications E1 (left) and E2 (right)

For the purpose of controller design, we regard the external
interface events as controllable in order to allow the synthesis
procedure to figure when to accept commands A or B and
when to provide acknowledgment X according to the intended
semantics; i.e., Σc = {a, b, x, A, B, X}. An automaton repre-
sentation of the resulting supremal controllable and relatively
closed sublanguage K↑ is shown in Fig. 3. As expected, both
processing schemes are scheduled according to the external
commands A and B, with acknowledgment X at completion.
Thus, for practical purposes, we can accept the lower bound
A :=K↑ implied by the upper bound E. The closed-loop be-
haviour w.r.t. the external interface is given by the projection
Lo := poK↑ with Σo :={A, B, X}; see Fig. (3).

Fig. 3. closed loop K↑ (left) with external behaviour Lo (right)

The external interface can be put to use in the context of a
larger manufacturing system made up from multiple processing
machines. After equipping each individual machine with low-
level control as in the above example, one may compose the
respective external behaviours to obtain an abstraction of an
overall plant. This abstraction can be used for the subsequent
design of a controller that coordinates the individual machines.
In principle, the high-level controller can be constructed by the
same synthesis method as demonstrated in the above design
of a low-level controller. However, special care must be taken
regarding possible conflicts in the overall system, in particular
when shared resources are represented by shared events. This
issue has been discussed intensively with a range of practical

results; e.g. (Schmidt et al., 2008; Wong and Wonham, 2000,
1996; Schmidt and Breindl, 2011; Komenda et al., 2012; Leduc
et al., 2001). 3

Turning the discussion towards fault tolerance, we assume
that processing tool A is subject to a breakdown condition,
referred to as fault. For the purpose of the present paper, we
follow the approach of fault-accommodating models proposed
by Wittmann et al. (2012). The authors suggest to represent the
fault by a distinguished event f � Σ and otherwise to proceed as
usual 4 . For its simplicity, this approach seamlessly integrates
with a wide range of hierarchical design methodologies.

Technically, the alphabet is extended Σf :=Σ ∪̇ {f} by the fault
event {f}, and we use a language Ld ⊆ Σ

∗
f to represent the

conditions under which the fault occurs and the effect it has
for the future behaviour, i.e., we may assume Ld ∩ Σ

∗
= ∅ and

pre Ld ∩ Σ
∗
⊆ pre L. Then, the plant behaviour including the

fault amounts to the union Lf = L∪Ld, where the original model
L is also referred to as the nominal plant. For our example, we
use the fault-accommodating model Lf defined in Fig. 4.

Fig. 4. fault-accommodating model Lf

It is readily verified that the nominal controller H := pre K↑

conflicts with the fault-accommodating plant Lf . Therefore,
we lift the original specification to the extended alphabet by
Ef := p−1

f E, with the set-valued inverse p−1

f of the natural pro-
jection pf : Σ∗f → Σ

∗. Re-evaluation of the synthesis formulae
with Lf and Ef as parameters yields the closed-loop behaviour
K↑f with automata representation given in Fig. 5. By design, the
controller Hf := pre K↑f is admissible for Lf . In particular, Lf

and Hf are non-conflicting – in this sense, Hf is a fault toler-
ant controller. However, we also observe the strict inclusions
K↑f � K↑ and Lof � Lo. In our design, the controller never
uses tool A in oder to prevent a subsequent conflict caused by
a possible breakdown. This is regarded a conservative strategy:
for our application we would prefer the controller to utilise tool
A until the fault actually occurs.

Fig. 5. fault tolerant K
↑

f
(left) with ext. behaviour Lof (right)

3 The processing machine example has been verified to be consistent for the

purpose of abstraction based control with the method proposed by Moor (2014).

Alternatively, one can extend the interface alphabet by g to satisfy the natural

observer condition; see (Wong and Wonham, 2000; Schmidt et al., 2008).
4 Wittmann et al. (2012) flag the fault event as unobservable and then apply

the common approach for supervisory control under partial observation.
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5. RELAXING THE UPPER BOUND

Given a control problem with lower bound A and upper bound E
for the closed-loop requirement (H3) from the previous section,
let K↑ denote the supremal closed-loop behaviour that satisfies
the upper bound inclusion K↑ ⊆ E under admissible control;
see (1). Recall that if A � K↑, the problem has no solution. In
this case, K↑ can be interpreted as the

minimal relaxation of the lower bound A required to solve
the problem while insisting on the upper bound E.

As long as K↑ still indicates some relevant behaviour (e.g.
more than just the empty string), giving the upper bound E
priority and setting A :=K↑ is a reasonable approach for many
application. However, as pointed out by the example in the pre-
vious section, there are also situations that suggest the converse
strategy: if the original control problem has no solution, one
may alternatively ask for the

minimal relaxation of the upper bound E to establish solv-
ability while insisting on the lower bound A.

One may approach this question via the following infimum:

K↓ := inf{K ⊇ A |K is cntrl. and rel. closed w.r.t. L } . (2)

However, while relative closedness is retained under arbitrary
intersection, controllability is not. Only in the special case when
L is closed, the above infimum matches the infimal closed
and controllable superlanguage which is itself controllable;
see (Lafortune and Chen, 1990). For the purpose of this paper,
prefix-closedness of L is considered a too restrictive prerequi-
site and we present an alternative approach.

Our discussion is based on a quantitative analysis for how the
upper bound E restricts the closed-loop behaviour, which shall
give us an indication of where to relax E such that the supremal
closed-loop behaviour K↑ that satisfies E also satisfies the lower
bound A. For an arbitrary sequence s ∈ pre L in the local plant
behaviour, consider the following languages

Ls := L ∩ (sΣ
∗
) , (3)

Es := E ∩ (sΣ
∗
) , (4)

K↑s := sup{K ⊆ Es |K is cntrl. and rel. closed w.r.t. Ls } . (5)

The plant Ls and the upper bound specification Es are obtained
as variants of the original parameters L and E, respectively,
under the additional assumption that event sequences generated
by the plant will start with tracking s. By construction, the
closure Hs := pre K↑s is admissible for the plant Ls and will
enforce the upper bound specification Es ⊆ E. Moreover,
provided that K↑s is nonempty, we must have s ∈ pre K↑s . If, for
whatever reason, the plant indeed starts by tracking s, one may
from then on exercise control Hs to enforce E. We summarise
all sequences s with nonempty K↑s as the target set T ,

T :={s |K↑s � ∅} . (6)

Once the plant has tracked a sequence s from the target T ,
enforceability of E is persistent under control Hs .

Proposition 3. For the control problem under consideration
and two sequences s, r ∈ Σ∗ with K↑s as defined by (5), the
following implication holds:

s ≤ r ∈ pre K↑s ⇒ r ∈ T . (7)

Proof. For r ∈ pre K↑s with s ≤ r, we consider the candidate
K :=K↑s ∩ (rΣ∗). By the prerequisite on r, we have r ∈ pre K.
We now establish that K is an achievable closed-loop behaviour
for the plant Lr that satisfies the upper bound K ⊆ Er . For

controllability of K, pick t ∈ pre K and σ ∈ Σuc such that
tσ ∈ pre Lr . For the case of t < r, we obtain tσ ∈ pre r ⊆ pre K.
If not t < r, we must have r ≤ t. Here, we note by s ≤ r ≤ tσ
that tσ ∈ pre Ls and t ∈ pre K↑s . Thus, controllability of K↑s
implies tσ ∈ pre K↑s , and, we again obtain tσ ∈ pre K. For
relative closedness, observe that (pre K) ∩ Lr ⊆ (pre K↑s )∩ Ls ∩
(rΣ∗) = K↑s ∩ (rΣ∗) = K. In summary, K ⊆ Er is indeed an
closed-loop behaviour for the plant Lr . This implies K ⊆ K↑r
and, thus, concludes the proof. �

The following proposition relates T to the upper bound K↑ of
achievable closed-loop behaviours of the control problem under
consideration.

Proposition 4. For the control problem under consideration
and with K↑ and T defined by Eqs. (1) and (6), we have

pre K↑ ⊆ T , (8)

where equality holds if and only if T is closed.

Proof. For the special case of s = ǫ, we observe K↑s = K↑.
Then, implication (7) reads [ r ∈ pre K↑ → r ∈ T ], and,
thus, the inclusion (8) is derived from Proposition 3. Regarding
equality, closedness of T is obviously implied by pre K↑ = T .
For the converse implication, assume that T is closed, and, thus
satisfies (H0). Now pick an arbitrary t ∈ pre T and σ ∈ Σuc such
that tσ ∈ pre L. Then we can choose s such that t ∈ pre K↑s . As
above, this implies tσ ∈ pre K↑s for both cases t < s and s ≤ t.
In particular, we conclude tσ ∈ pre T and have established
controllability (H1) of T w.r.t. L. Likewise, non-conflictingness
(H2) can be observed. Pick an arbitrary t ∈ (pre L) ∩ T to then
choose s such that t ∈ pre K↑s . Again, for both cases t < s
and s ≤ t, we obtain t ∈ pre (L ∩ T ). Clearly, T ⊆ E, and
E can be used as a controller that enforces the upper bound
E. Supremality of K↑ then implies T ⊆ K↑. Taking prefixes
on both sides together with the inclusion (8) implies equality
T = pre K↑. �

Thus, if T is closed, it solves the control problem with accepted
closed-loop behvaiour K↑ and provides no further insight. More
interestingly, if T fails to be closed, we have pre K↑ � pre T . In
this situation, we propose to replace the implicit requirement
pre A ⊆ pre K↑ imposed by the original problem parameters
with the weaker requirement

pre A ⊆ pre T , (9)

i.e., the lower bound A only needs to be consistent with the
persistent possibility of enforcement of the upper bound E.

Now consider the candidate controller H defined by

M :=∪s∈T pre K↑s , (10)

N :={sσt | s ∈ M, sσ � M, σ ∈ Σuc and t ∈ Σ
∗
} , (11)

H :=M ∪ N . (12)

The rationale for component M is to enforce the upper bound
E, once the closed-loop evolves on a string that allows so.
Recall that s ∈ pre K↑s for s ∈ T to observe M = pre T .
The rationale for component N is to allow the closed-loop to
exit M, whenever controllability requires so. We give a formal
statement of relevant properties of our candidate controller H.

Proposition 5. For the control problem under consideration
we impose the additional requirement (9). Then the candidate
controller H defined by (12), also referring to (5) and (6), is
admissible for the plant L. Moreover, the accepted closed-loop
behaviour K = L ∩ H satisfies the bounds
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A ⊆ K ⊆ E ∪ N . (13)

A ∩ (TΣ
∗
) ⊆ K ∩ (TΣ

∗
) ⊆ E . (14)

Proof. We make two preliminary observations from the defini-
tion of M and N. As a union of closed languages M is itself
closed. Moreover, for all r ∈ pre N with r � M, we have
rΣ∗ ⊆ N. We now verify that H is an admissible controller
for the plant L. To establish that H is closed (H0), pick any
strings r ∈ H. If r ∈ M, we have pre r ⊆ M ⊆ H since M
is closed. If r ∈ N we can rewrite r = sσt with s ∈ M and
sσ � M. This implies sσ ∈ N and sσ pre t ⊆ N ⊆ H. Regarding
prefixes of r shorter than sσ, we have pre s ⊆ M ⊆ H. We
now turn to controllability (H1). Let r ∈ pre H and σ ∈ Σuc

such that rσ ∈ pre L. For a proof by contradiction, assume
that rσ � H. Then rσ � M and rσ � N. By the definition
of N, the conjunction implies r � M, and, by r ∈ H, we
must have r ∈ N. Referring to the preliminary observation, we
obtain rσ ⊆ rΣ∗ ⊆ N ⊆ pre H. This contradicts with the initial
assumption, and we conclude rσ ∈ pre H. To establish a non-
conflicting closed loop (H2), pick any r ∈ (pre L) ∩ H. For the
first case, assume that r ∈ M. Thus, by the definition of M, we
have r ∈ pre K↑s for some s ∈ T . In particular, there exists t such
that rt ∈ K↑s ⊆ Ls ⊆ L and rt ∈ K↑s ⊆ H. Thus, r ∈ pre (L ∩ H).
For the second case, assume that r � M, and, hence, r ∈ N. By
the preliminary observation, this implies rΣ

∗
∈ N. By r ∈ pre L,

we pick t such that rt ∈ L and again obtain r ∈ pre (L ∩ H).
This concludes the proof of (H2). So far, we have established
that H is indeed an admissible controller for L. Regarding the
lower bounds, pick an arbitrary s ∈ A. With the prerequisite (9)
we obtain s ∈ pre T , and we choose t such that st ∈ T . Hence,
st ∈ pre K↑st and, in particular, s ∈ pre K↑st ⊆ M ⊆ H. With
s ∈ A ⊆ L we obtain s ∈ K We turn to the upper bounds and
pick an arbitrary s ∈ K. Consider the case where s ∈ M and
choose r such that s ∈ pre K↑r . In particular, we have s ∈ rΣ∗ ,
and thus s ∈ Lr . Relative closedness of K↑r w.r.t. Lr then implies
s ∈ K↑r ⊆ Er ⊆ E. As intended, the closed loop complies to E
as long as it is controlled by M, and for this case both upper
bounds are satisfied. For the second case, we have s � M, and,
hence, s ∈ N. For the second upper bound we can in addition
use s ∈ TΣ∗ and pick v ≤ s such that v ∈ T , and, hence,
v ∈ pre K↑v . From the definition of N, we denote r < s the
longest prefix with r ∈ M to write s = rσt ∈ N. Since T ⊆ M,
we must have v ∈ M, i.e., v ≤ r. We apply Proposition 3 to
obtain r ∈ pre K↑v and, in turn, controllability of K↑v implies
rσ ∈ pre K↑v ⊆ M. Thus, we have derived a contradiction
and conclude, that once a closed-loop trajectory passes T , it
is controlled by component M, which enforces E. �

For practical controller synthesis, one may first compute an
automaton representation of T to then derive representations
of N and the relaxed specification E′ = E ∪ N. The supremal
achievable closed-loop behaviour can then be computed in the
usual manner. Regarding a representation of T we note the
following proposition.

Proposition 6. For the control problem under consideration
and with T defined by Equation (6), we have for all s, s′ ∈ Σ∗

with s [≡L] s′ and s [≡E] s′that s ∈ T if and only if s′ ∈ T .

Proof. Let s and s′ be equivalent as required and assume that
s ∈ T , i.e., K↑s � ∅. In particular s ∈ pre L and, by equivalence,
s′ ∈ pre L. Following (Moor, 2014), Lemma 8, we obtain

H
′
= {r | r ∈ Σ

∗
, s′ � pre r} ∪ {s′t | st ∈ pre K↑s }

as an admissible controller with s′ ∈ pre ( Ls′ ∩ H
′
). Thus, we

are left to show that it enforces the upper bound. Pick any t

such that s′t ∈ Ls′ ∩ H
′
. In particular st ∈ pre K↑s . With

s′t ∈ L equivalence implies st ∈ L, and, we obtain by relative
closedness st ∈ K↑s ⊆ E. Observe again by equivalence s′t ∈ E.
This concludes the proof with Ls′ ∩ H

′
⊆ Es′ . �

By the above proposition, a representation of T can be con-
structed by inspection of the state set of the product com-
position of automata representations of L and E. The overall
complexity is of order O(n2m2), where n and m denote the state
counts of the representations of L and E, respectively.

6. EXAMPLE (CNT.)

We continue the example from Section 4. Recall that the closed-
loop behaviour K↑f achievable for the fault-accommodation
plant Lf was a strict subset of the supremal closed loop K↑

for the nominal plant L. For the particular example, this is
considered undesirable and we propose to relax the upper
bound specification E according to the previous section.

We begin with computing the target T w.r.t. the original upper
bound E and the fault-accommodating plant model Lf . For
illustration purposes, Fig. 6 shows T (marked language) as a
subset of (pre E) ∩ (pre Lf ) (generated language). Note that,
only when the fault occurs during processing mode A (state P),
with a subsequent progress event p, the generated string escapes
from pre T .

Fig. 6. target T for plant L f and original upper bound E

Observe that pre K↑ ⊆ pre T , and we can apply the method
from the previous section to synthesise a controller for the lower
bound specification A = K↑ by relaxing the upper bound E by
E′ :=E ∪ N from Equation (13) in Proposition 5; see Fig. 7.

Fig. 7. relaxed upper bound E′ := E ∪ N

Computing the supremal achievable closed-loop behaviour K′f
and taking the projection to the high-level alphabet, we obtain
the external behaviour L′

of
given in Fig. 8.

Fig. 8. external behaviour L′
of

obtained by upper bound E′

Note that the external behaviour allows for either processing
mode A or B. However, when selecting processing mode A, the
component N from Equation (11) enables all events. Based on
this model, no practical coordinating controller will ever select
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mode B. We therefore introduce the distinguished event F to
indicate externally when the fault has occurred and the original
upper bound cannot be met anymore. This is achieved by using
the relaxed upper bound E′′ := E ∪ N′′ with

N′′ :={sσFt | s ∈ M, sσ � M, σ ∈ Σuc and t ∈ Σ
∗
} , (15)

in place of the original component N. Re-evaluating the synthe-
sis formulae, denote the closed-loop behaviour K′′f and external
behaviour L′′

of
; see also below Fig. 9.

Fig. 9. ext. behaviour L′′
of

obtained by upper bound E′′ = E∪N′′

With this setting, both processing modes can be selected, and
only when the fault takes effect, the external behaviour de-
grades. This is indicated by the high-level event F. However,
no more desirable behaviour is exhibited by L′′

of
after the fault.

As an option to shape the closed-loop behaviour K′′f obtained
so far, we propose a language convergence specification to
recover the fault-tolerant behaviour K↑f after the occurrence of
F. Technically, we ask for an admissible controller H such that

K↑f ⇐ ( K′′f ∩ H )/(Σ
∗
F ) . (16)

The synthesis problem for language convergence specifications
is studied in (Willner and Heymann, 1995), including algorith-
mic decidability and a computational procedure for regular lan-
guages. An adaption for conditional convergence, as required
for the present paper, has been presented in Sülek and Schmidt
(2014) 5 . Note that the resulting controller H is guaranteed not
to restrict the local closed-loop behaviour before the system
passes the condition Σ∗F. Technically, our lower bound K↑f does
not contain any F event. Hence, the additional controller H does
not violate the lower bound K↑f .

The external behaviour of the final result for our example is
given in Fig. 10. In a multiple machines setting, the coordinat-
ing controller can utilise both processing modes until the fault
takes effect. From then on, mode A is disabled but mode B is
still provided via the external interface.

Fig. 10. ext. behaviour L′′′
of

with convergence specification

CONCLUSION

The objective of fault-tolerant control is to faithfully operate a
plant which is subject to a fault. If a fault cannot be compen-
sated by utilising plant redundancies, a fault-tolerant controller
will allow for degraded performance. When performance spec-
ifications are given by language inclusions, one may insist on a
given upper bound and accept the implied lower bound or one
may insist in a given lower bound and accept the implied upper
bound. While the first strategy is a common choice for discrete-
event systems, we discuss the second strategy and insist in
the nominal closed-loop behaviour as a lower bound when
synthesising the fault-tolerant controller. We illustrate potential
benefits in the context of hierarchical control by an example.

5 The proposed algorithm is of complexity O(n222|m|), where n and m denote

the state counts of automata representations of L and M, respectively.

There, the proposed approach amounts to a compensation of
the fault whenever possible and a propagation of the remaining
effects of the fault upwards in the control hierarchy.
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