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In this work a poweful approach is presented to solve the time-fractional gas 
dynamics equation. In fact, we use a fictitious time variable y to convert the de-
pendent variable w(x, t) into a new one with one more dimension. Then by taking 
a initial guess and implementing the group preserving scheme we solve the problem. 
Finally four examples are solved to illustrate the power of the offered method.
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time fractional gas dynamics equation, Caputo derivative

Introduction

Calculus of fractional order is increasingly being worked to model various physical 
systems. Since many physical phenomena growing in engineering as well as in allied sciences 
can be depicted by developing models with the help of the fractional calculus. The fractional 
partial equations response ultimately converges to the non-fractional equations, fulfilling a no-
table care in the present times. The fractional derivatives are important due to broad scope of 
applications for mathematical modelling of problems such as traffic flow models, control, and 
relaxation processes [1-11]. There are some some analytical and numerical methods which are 
implemented to solve the fractional equations such as Group preserving scheme [12, 13], differ-
ential transform methods [14-16], homotopy pertubation methods [17-20]. This presented work 
is dedicated to study the following time fractional gas dynamics equation (TFGD):
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The gas dynamics equations are mathematical terminology that are adjunct on the 
physical laws of conservation such as the conservation of momentum, conservation of mass, 
and conservation of energy. Many authors solved the fractional gas dynamics equations using 
different numerical and analytical methods [21-29]. The differential transform method is imple-
mented for solving TFGD [30, 31] and Fractional homotopy analysis transform method [32].

In this presented work, we create a powerful and reliable numerical approach to obtain 
the numerical solution of TFGD equation. This approach is firstly presented by Liu [33].

The fictitious time integration method (FTIM)

The Caputo fractional derivative of for fractional order α > 0 is described by [34, 35]:
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By using Caputo fractional derivative definition and 0 ≤ α < 1 for eq. (1):
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Now, we multiply the eq. (3) into the parameter η as a fictitious damping coefficient 
which can help our to raise the stability of numerical integration:
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Now, we impose the following transformation:
( , , ) (1 ) ( , ), 0 1dz x t y y w x t d= + < ≤ (5)

By using previous transformation, eq. (4) converts to a new form:
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From eq. (5) we can get:
1(1 ) ( , )dz d y w x t
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A combination of eqs. (7) and (6), concludes:
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Then, eq. (8) can be transformed into a new form of PDE for z, by using w = z / (1+ y)d:
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By using:
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Next, by multiplying 1/(1 + y)d on both sides of eq. (9), we obtain:
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Using again the transformation w = z/(1 + y)d , we get:
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We have to emphasis that y plays the fictitious co-ordinate role which able us to em-
bed eq. (3) into a new PDE form in a space called 3-space, denoted R3. As well as, by a initially 
guess w(x, t, 0), for all y ≥ 0, w = w(x, t, y) is an undetermined function with regard to the 
conditions in eq. (1).

Supposing w ji (ξ) := w(xi, tj,
 
y) and K ji := K(xi, tj

 
) as the discrete values of w and K 

at a point (xi, tj). Implementing a semi-discretization to the eq. (12) concludes:
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To calculate the aforementioned integral terms we cam write the following approxi-
mation:
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Which stepsize Δx is (b − a) / M1, ∆t = T / M2, xi = a + i∆x and tj = j∆t.

The GPS for extracted system of ODE

In this stage, with w = (w 11, w 21, ..., w nm)T we can write the eq. (13) in the following 
form:

( , ), ,Ny y′ = ∈ ∈w E w w   (15)
where E indicates a vector with ij-elements being the right-hand side of eq. (13) and w′ denotes 
the differential of w with regard to y, and N = M1 × M2 is the number of total grid point.

In this step we can use of group-preserving scheme (GPS) that introduced by Liu [33].
Let:

1 ( )l ll+ =X B X (16)
where Xl indicates the value of X at the yl and B(l) is a component of SO0(N, 1) which rep-
resents the group value of B at yl .

The Lie group can be created from C which is a element of so(N, 1):
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The X := (wT, ∥w∥)T is a vector in Minkowskian space which converts eq. (15) into  
∂X/∂y = CX.
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is a Liu algebra of the proper orthochronous Lorentz group SO0(N, 1). By replacing eq. (17) for 
Bl into eq. (16), we have:
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in this stage, by selecting an initial value u ji  (0) we can apply GPS to solve numerical solution of 
eq. (15) from the initial fictitious y0 to a chosen final fictitious time yf . Moreover, we can control 
the convergence of w ji  at the l and l + 1 steps by the following criterion:
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where ε is the convergence criterion.

Numerical examples

To show the power of our method four examples are solved.
Example 1: In order to show the ability of presented method we consider the following 

fractional TFGD equation with fractional order α = 0.9.

0 , ( , ) ( , ) ( , ) ( , )(1 ( , )) 0C
xt w x t w x t w x t w x t w x tα

+ + − − =

We implement the presented method to solve this problem under parameters η = 35 
and d = 0.1. The initial guess and stepsize for y are supposed as w ji (0) = 1e−5 and ∆y = 1e−3. We 
use the number of knots M1 = 25 and M2 = 25 in each co-ordinates of space and time, respec-
tively. Also, considered domain in this example is Ω = [0,1] × [0,1]. Figure 1 is dedicated to 
show the exact solution w(x,t) = e–x+t and approximate solutions obtained by presented scheme. 
Power of the method with maximum absolute error 1.4 ⋅ 10–17 is shown in fig. 2.

Example 2: Suppose following problem of TFGD with α = 1.5 and a = 2.

i
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In order to manage the stability 
and convergency of the approach we 
choose η = 5, d = 0.001, respectively. Ini-
tial guess is w ji (0) = 0.001 and stepsize 
of method is same with Example 1. For  
M1 = M2 = 39 and ∆y = 10–10. Exact  
w(x, t) = at–x and numerical solutions 
are plotted in fig. 3. Absolute numerical 
errors for this example 1 ⋅ 10–17 which 
are depicted in fig. 4.

Example 3: We take the TFGD 
equation with:

2 2 2
0 , ( , ) ( , ) ( , ) (1 ) ( , ) 0, 0C

xt w x t w x t w x t t w x t x aα
+ + − + − = >

Under parameters α = 0.3, η = 2, d = 0.001, ∆y = 10–5, M1 = M2 = 19 and initial guess w ji (0) 
= 0.0001. The solutions and maximum absolute errors are demonstrated in figs. 5 and 6, respec-
tively. Moreover, the exact solution of this example is w(x, t) = x/(1 + t) and Ω = [0, 1] × [0, 1].

Figure 2. Plot of error for Example 1
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Figure 1. Plots of the exact and approximate  
solutions for Example 1
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Conclusion

In this work we have converted TFGD equation into a new type of functional PDE in 
one more dimension by implementing a fictitious co-ordinate. Then by using a semi-discreti-
zation for original equation, the GPS as a geometric approach is imposed to solve the obtained 
system of first order ODE. Four numerical examples are solved, which demonstrate that our 
presented scheme is powerful and applicable to gain the numerical solutions of TFGD equation.

Nomenclature

Figure 4. Plot of error for Example 2

Figure 6. Plot of error for Example 3 Figure 5. Plots of the exact and approximate 
solutions for Example 3
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B	 − an element of Lorentz group
C 	 − augmented matrix
d 	 − convergence rate parameter
E 	 − M-dimensional vector field in eq. (15)
g1 	 − initial solute concentration
IM 	 − M-dimensional unit matrix
h 	 − boundary solute concentration
K	 − source term
N 	 − M number of discretized points
SO0(M,1) − M-dimensional Lorentz group

T 	 − time
∆t 	 − time stepsize
w 	 − solute concentration
x 	 − space dimension
∆x 	 − space stepsize

Greek symbols
α 	 − fractional derivative order
η 	 − fictitious damping coefficient
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