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Investigating dynamic properties of discrete chaotic systems with fractional order has been receivingmuch attention recently.-is
paper provides a contribution to the topic by presenting a novel version of the fractional Grassi–Miller map, along with improved
schemes for controlling and synchronizing its dynamics. By exploiting the Caputo h-difference operator, at first, the chaotic
dynamics of the map are analyzed via bifurcation diagrams and phase plots. -en, a novel theorem is proved in order to stabilize
the dynamics of the map at the origin by linear control laws. Additionally, two chaotic fractional Grassi–Miller maps are
synchronized via linear controllers by utilizing a novel theorem based on a suitable Lyapunov function. Finally, simulation results
are reported to show the effectiveness of the approach developed herein.

1. Introduction

Nonlinear dynamics, chaos control, and chaos synchroni-
zation represent important research topics [1–27]. In par-
ticular, referring to synchronization and control, new
advances have been recently reported, for both integer-order
systems and fractional-order systems [28, 29]. In particular,
referring to continuous-time systems described by fractional
derivative, some interesting techniques involving adaptive
synchronization have been recently illustrated in [28, 29].
However, there is a remarkable difference in fractional
calculus regarding continuous-time and discrete-time sys-
tems. Namely, while fractional derivatives made their first
appearance in a letter that Gottfried Wilhelm Leibniz wrote
to Guillaume de l’Hopital in 1695, discrete fractional

calculus has been introduced by Diaz and Olser only in 1974
[6]. Indeed, the authors of [6] presented the first definition of
a discrete fractional operator, obtained by discretizing a
continuous-time fractional operator. Over the years, several
types of difference operators have been introduced in the
field of discrete fractional calculus [3, 7, 8]. In particular, a
number of fractional h-difference operators, which represent
generalizations of the fractional difference operators, have
been investigated in [7].

Based on fractional difference equations, in recent years
some chaotic discrete-time systems have been studied
[10, 25–27]. -ese systems are fractional-order maps, which
show complex unpredictable behaviors due to the nonlin-
earities included in their difference equations [7]. With the
introduction of fractional chaotic maps, attention has been
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also focused on the issues related to the synchronization and
control of these systems [12]. For example, in [26] the
fractional logistic map and its chaotic behaviors have been
illustrated, whereas in [27] the presence of chaos in frac-
tional sine and standard maps has been discussed. In [10],
discrete chaos in the fractional Hénon map is reported,
whereas in [25] the chaotic dynamics of the fractional
delayed logistic map are analyzed in detail. In [12], three
different discrete-time systems, namely, the fractional Lozi
map, the fractional Lorenz map, and the fractional flowmap,
have been studied, along with the control laws for stabilizing
and synchronizing these three maps. In [23], the fractional
generalized hyperchaotic Hénon map has been introduced,
whereas in [20], the dynamics of the Ikeda map have been
investigated via phase plots and bifurcation diagrams. In
[13], three fractional chaotic maps, namely, the Stefanski
map, the Rossler map, and theWangmap have been studied,
along with the synchronization properties of these systems.
In [16], dynamics and control of the fractional version of the
discrete double-scroll hyperchaotic map are investigated in
detail. In [18], bifurcations, entropy, and control of a
quadratic fractional map without equilibrium points are
analyzed, whereas in [9] the dynamics of fractional maps
with fixed points located on closed curves are studied.

A challenging topic in discrete fractional calculus is to
study dynamics, synchronization, and control of very
complex systems, such as the chaotic three-dimensional
(3D) maps [8]. Namely, by computing the approximate
entropy, it can be shown that 3D maps highlight a higher
degree of complexity with respect to one-dimensional (1D)
or two-dimensional (2D) fractional maps [5,21]. Since the
increased complexity can enhance the applicability of 3D
maps in pseudo-random number generators and image
encryption techniques [22], it is important to analyze their
dynamics as well as conceive improved synchronization and
control schemes for these maps. In this regard, some in-
teresting results have been recently published [11, 17, 19]. In
[11], synchronization and control schemes for a new 3D
generalized Hénonmap have been proposed, whereas in [19]
control and synchronization properties of a 3D fractional
map without equilibria have been analyzed in detail. In [17],
the fractional form of the Grassi–Miller map has been in-
troduced using the ]-Caputo delta difference. In particular,
phase portraits and bifurcation diagrams have been illus-
trated in [17], with the aim of deriving the fractional-order
range for which the system is chaotic. In addition, two
nonlinear control laws have been proposed in [17], one for
stabilizing the system dynamics and the other for syn-
chronizing a master-slave pair of maps. Although the
methods developed in [11, 17, 19] are interesting, a drawback
is represented by the fact that very complex control laws
have been exploited for controlling and synchronizing the
corresponding 3D fractional maps. For example, in [11],
synchronization and control in the 3D generalized Hénon
maps have been achieved using nonlinear control laws.
Moreover, in [19], the 3D fractional maps with hidden
attractors have been synchronized and controlled via
nonlinear control laws that include several nonlinear terms.
We would observe that it might be difficult to implement

very complex control laws in practical applications of
fractional maps. -is drawback also regards the Grass-
i–Miller map in [17], since its introduction via the Caputo
delta difference has led to complex nonlinear control laws to
achieve synchronization and control of its chaotic dynamics.

Inspired by the mentioned above considerations, this
paper provides a further contribution to the topic of dy-
namics, control, and synchronization of fractional 3D maps
by presenting a novel version of the Grassi–Miller map,
along with improved schemes for controlling and syn-
chronizing its dynamics. -e structure of the article is as
follows. In Section 2, definition of the fractional Caputo h-
difference operator [7] and a novel fractional Grassi–Miller
map is proposed, along with its chaotic dynamic behavior. In
Section 3 linear control laws are proposed to stabilize the
dynamics of the map at the origin. In particular, a novel
theorem is proved, which assures the stability condition via a
suitable Lyapunov function. In Section 4, a master-slave
system based on two chaotic Grassi–Miller maps is syn-
chronized using linear controllers. -e objective is achieved
by exploiting a novel theorem involving a Lyapunov-based
approach. Note that this paper makes an attempt to over-
come the weakness and the difficulties encountered in
[11, 17, 19]. Namely, on one hand, this paper focuses on a
novel 3D map, with the aim of exploiting the potentials
deriving from the higher degree of complexity of 3D maps
with respect to simpler 1D and 2Dmaps. On the other hand,
the paper proposes simple linear control laws (with
respected to the complex control laws developed
[11, 17, 19]), with the aim of making feasible their imple-
mentation for potential applications of 3D maps in pseudo-
random number generators and image encryption tech-
niques. In addition to these improvements, note that, by
virtue of the linearity of the control laws developed herein,
the proposed control and synchronization schemes require
less control effort with respect to the nonlinear approaches
illustrated in [17]. Finally, simulation results are reported to
show the effectiveness of the control and synchronization
methods developed herein. All the results developed thor-
ough the manuscript clearly highlight the novelty of the
conceived approach, consisting in the following: (i) the
introduction of a new 3D fractional map characterized by
complex dynamics; (ii) the proof of a novel theorem for
stabilizing the map via a linear control law; (iii) the proof of a
novel theorem for synchronizing the map via linear control
law; (iv) comparisons for illustrating the better perfor-
mances of our method if compared to recent published
articles where complex nonlinear control laws have been
used.

2. Fractional Grassi–Miller Map Based on the
Caputo h-Difference Operator

In this section, a novel version of the fractional Grassi–Miller
map is presented. To this purpose, some concepts related to the
Caputo h-difference operator are briefly summarized.

-roughout the rest of the paper, we assume that
(hN)a � a, a + h, a + 2h, . . .{ }, where h is a positive real and
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a ∈ R. -e forward h-difference operator of a function X

defined on (hN)a is defined as

ΔhX(t) �
X(t + h) − X(t)

h
. (1)

Definition 1 (see [2]). Let X: (hN)a⟶ R. -e fractional
h-sum of positive fractional order ] is defined by

hΔ
− ]
a X(t) �

h

Γ(])
􏽘

(t/h)− ]

s�(a/h)

(t − σ(sh))
(]− 1)
h X(sh), (2)

where σ(sh) � (s + 1)h, a ∈ R, and t ∈ (hN)a+]h. t
(])
h is the

h-falling fractional function with two real numbers t, h that
can be written in the form

t
(])
h �

h
]Γ((t/h) + 1)

Γ((t/h) + 1 − ])
. (3)

Definition 2 (see [1]). For X(t) defined on (hN)a and a real
order 0< ]≤ 1, the Caputo fractional h-difference operator is
given by

C
hΔ

v

aX(t) � Δ− (n− ])
a Δ

n
X(t), t ∈ (hN)a+(n− ])h, (4)

in which n � ⌈]⌉ + 1.
Now, a theorem reported in [4] is briefly illustrated, with

the aim to identify the stability conditions of the zero

equilibrium point for the fractional nonlinear difference
system written in the form

C
hΔ

v

a � F(t + ]h, X(t + ]h)). (5)

Theorem 1. .e fractional nonlinear discrete system (5) is
asymptotically stable if there exists a positive definite and
decreasing scalar function V(t, X(t)) for the equilibrium
point x � 0, such that V(t, X(t))≤ 0.

Lemma 1. For every t ∈ (hN)a+(n− ])h, the following in-
equality holds:

C
hΔ

v

aX
2
(t)≤ 2X(t + ]h)

C
hΔ

v

aX(t), 0< ]≤ 1. (6)

All the details regarding the proof of Lemma 1 can be
found in [4].

Referring to the fractional Grassi–Miller map, it was in-
troduced in [17] using the ]-Caputo delta difference operator.
-e fractional map, which proved to be chaotic for proper
values of the system parameters (α, β) and of the fractional
order ] ∈ (0, 1], possesses only a nonlinear term [17].

Herein, the fractional Caputo h-difference operator is
considered, in order to derive a different mathematical
model of the 3D Grassi–Miller map. Namely, the following
equations are proposed:

C
hΔ

v

a
x(t) � α − y

2
(t + ]h) − βz(t + ]h) − x(t + ]h),

C
hΔ

v

ay(t) � x(t + ]h) − y(t + ]h),
C
hΔ

v

az(t) � y(t + ]h) − z(t + ]h),􏽮

(7)

where C
hΔ

v

a denotes the fractional h-difference operator,
t ∈ (hN)a+(n− ])h, a is the starting point, and (α, β) are system
parameters. .e fractional map (7) can be considered a
generalized model of the map introduced in [17].

.e solution of the fractional Grassi–Miller map (7) is
obtained by introducing the fractional h-sum operator.
According to [15], the equivalent implicit discrete formula can
be written in the form

x(n + 1) � x(0) +
h
]

Γ(])
􏽘

n

j�0

Γ(n − j + ])

Γ(n − j + 1)
α − y

2
(j + 1) − βz(j + 1) − x(j + 1)􏼐 􏼑,

y(n + 1) � y(0) +
h
]

Γ(])
􏽘

n

j�0

Γ(n − j + ])

Γ(n − j + 1)
(x(j + 1) − y(j + 1)),

z(n + 1) � z(0) +
h
]

Γ(])
􏽘

n

j�0

Γ(n − j + ])

Γ(n − j + 1)
(y(j + 1) − z(j + 1)),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where x(0), y(0), and z(0) are the initial state values. Based
on predictor-corrector method [14], the implicit equation
(8) is transformed into its explicit form, which can be used
for investigating the dynamic behavior of the Grassi–Miller
map (7). By taking the initial state values x(0) � 1,

y(0) � 0.1, and z(0) � 0, with the fractional order value ] �

0.999 and the system parameters α � 1, β � 0.5, it can be
shown that map (7) displays the attractor reported in Fig-
ure 1.-e computation of the bifurcation diagram and of the
largest Lyapunov exponent, both reported in Figure 2 as a
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function of the system parameter β, clearly highlights the
chaotic behavior of the fractional Grassi–Miller map (7) for
α � 1, β � 0.5, and ] � 0.999. Regarding the bifurcation
diagram reported in Figure 2, it can be noted that the map
oscillates when β assumes values around 0.05. When β
approaches the value of 0.1, more complex dynamic regimes
appear, until β approaches the value of 0.45, when chaotic
behaviours are reached. Note that the presence of chaos for
0.45< β< 0.5 is also confirmed by the positive values

assumed by the maximum Lyapunov exponents (see Fig-
ure 2). Note that the evolution of states of the fractional map
(7), which involves the adoption of the Caputo h-difference
operator, is different from those of the map reported in [17],
the latter being based on the ]-Caputo delta difference
operator.-is can be clearly seen by comparing the shapes of
the chaotic attractors reported in Figure 1 with those of the
attractors reported in [17]. Namely, the adoption of two
different fractional operators has led to different shapes in
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Figure 1: Chaotic attractor of the fractional order Grassi–Miller map for α � 1, β � 0.5, and order ] � 0.999.
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the chaotic attractors as well as different parameter values for
generating chaos (see [17]), indicating that the proposed
Grassi–Miller map (7) provides a contribution to the topic of
3D discrete-time fractional systems.

Referring to potential applications of the proposed
model (7), it should first be noted that 3D maps highlight a
higher degree of complexity with respect to 1D and 2Dmaps
[5, 21]. -us, the applicability of the conceived 3D map (7)
would mainly be in pseudo-random number generators and
image encryption techniques. -is makes perceive the im-
portance of developing simple and feasible control methods,
given that master-slave synchronization schemes based on
model (7), in combination with encryption algorithms,

might be used for experimentally generating and recovering
the secret keys.

3. Chaos Control of the New Version of the
Grassi–Miller Map

Here, a controller is presented in order to stabilize at zero the
chaotic trajectories of the state-variables in the Grassi–Miller
map (7) with fractional order. -e objective is achieved by
adding two linear terms into both first and second equations
of the map. Namely, the controlled fractional Grassi–Miller
chaotic map is described by

C
hΔ

v

a
x(t) � α − y

2
(t + ]h) − βz(t + ]h) − x(t + ]h) + C1(t + ]h),

C
hΔ

v

ay(t) � x(t + ]h) − y(t + ]h) + C2(t + ]h),
C
hΔ

v

az(t)􏽮

� y(t + ]h) − z(t + ]h),

(9)

where C1 and C2 are suitable controllers to be determined.
To this purpose, a theorem is now given for rigorously
assuring that the dynamics of (9) can be stabilized at zero.

Theorem 2. .e three-dimensional fractional Grassi–Miller
map (9) is controlled at the origin under the following control
laws:

C1(t) � − α + βz(t) − y(t),

C2(t) � − b1y(t) − z(t),
􏼨 (10)

where |x(t)|≤ b1, ∀t ∈ (hN)a+(n− ])h.

Proof of .eorem 2. By subtracting (10) into system (9), we
get the following fractional difference equations:

C
hΔ

v

a
x(t) � − y

2
(t + ]h) − x(t + ]h) − y(t + ]h),

C
hΔ

v

ay(t) � x(t + ]h) − 1 + b1( 􏼁y(t + ]h) − z(t + ]h),
C
hΔ

v

az(t)􏽮

� y(t + ]h) − z(t + ]h).
(11)

By taking a Lyapunov function in the form
V � (1/2)(x2(t) + y2(t) + z2(t)), the adoption of the
Caputo h-difference operator implies that

C
hΔ

v

axV �
1
2

C
hΔ

v

axx
2
(t) +

1
2

C
hΔ

v

axy
2
(t) +

1
2

C
hΔ

v

axz
2
(t). (12)

By using Lemma 1, it follows that

C
hΔ

v

aV≤ x(t + ]h)
C
hΔ

v

ax(t) + y(t + ]h)
C
hΔ

v

ay(t) + z(t + ]h)
C
hΔ

v

az(t)

� − x(t + ]h)y
2
(t + ]h) − x

2
(t + ]h) − x(t + ]h)y(t + ]h) + y(t + ]h)x(t + ]h)

− 1 + b1( 􏼁y
2
(t + ]h) − y(t + ]h)z(t + ]h) + z(t + ]h)y(t + ]h) − z

2
(t + ]h)

≤ |x(t + ]h)|y
2
(t + ]h) − x

2
(t + ]h) − 1 + b1( 􏼁y

2
(t + ]h) − z

2
(t + ]h)

≤ b1y
2
(t + ]h) − x

2
(t + ]h) − 1 + b1( 􏼁y

2
(t + ]h) − z

2
(t + ]h)

� − x
2
(t + ]h) − y

2
(t + ]h) − z

2
(t + ]h)< 0.

(13)

From -eorem 1, it can be concluded that the zero
equilibrium of (9) is asymptotically stable. As a consequence,
it is proved that the dynamics of the proposed 3D

Grassi–Miller map (7) are stabilized at the origin by the
linear control laws (10). □
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Remark 1. Since all the chaotic states of map (9) are
bounded, it can be deduced that it is easy to find a parameter
b1 larger than the absolute value of the state variable x(t), as
requested by the proof of -eorem 2. Namely, the existence
of b1 is intrinsically justified by the property of boundedness
of the state x(t). -us, the value of b1 can be easily found by
looking at the plots reported in Figure 1, from which it is
clear that − 1.6<x(t)< 1.6 for any t. -rough the paper, the
value of b1 has been selected as b1 � 1.7. Note that the value
of b1 does not significantly affect the time for stabilizing the
map dynamics.

Now, we give the numerical simulation to prove the
above theory. We select α � 1 and β � 0.5, and we give the
evolution of the states and the phase-space plots as shown in
Figure 3 for ] � 0.999. -ese plots clearly show that the new
fractional map (7) is driven to the origin by linear control
laws in the form (10).

Now comparisons are carried out with recent results re-
garding 3D fractional maps, with the aim to confirm the
effectiveness of the conceived approach when comparing
control strategies formaps of similar degree of complexity. For
example, the results in [11] show that the 3D fractional map

proposed therein is stabilized after more than 20 steps,
whereas the map illustrated herein is stabilized in at most 3
steps. On the other hand, the results in [19] highlight that the
3D fractional map proposed therein is stabilized in the same
number of steps taken by our method. However, the control
law adopted in [19] is complex, since it involves some non-
linear terms, whereas the proposed control strategies is simple
and involves only linear terms. Finally, the results in [4] show
that the 3D fractional Grassi–Miller map proposed therein,
based on the-Caputo delta difference, is stabilized after more
than 20 steps, whereas the map illustrated herein, based on the
Caputo h-difference operator, is stabilized in at most 3 steps.
-ese comparisons make us perceive the effectiveness of the
proposed control strategy with respect to 3D fractional maps
of similar complexity published in recent literature.

3.1. Synchronization of the Fractional Grassi–Miller Map.
In this paragraph, a master-slave system, based on two
identical chaotic fractional Grassi–Miller maps, is syn-
chronized using linear controllers. -e dynamics of the
master system can be written as follows:

C
hΔ

v

a
xm(t) � α − y

2
m(t + ]h) − βzm(t + ]h) − xm(t + ]h),

C
hΔ

v

aym(t) � xm(t + ]h) − ym(t + ]h),
C
hΔ

v

azm(t)􏽮

� ym(t + ]h) − zm(t + ]h),
(14)

where xm(t), ym(t), and zm(t) are the system states. -e
equations of the slave system are given by

C
hΔ

v

a
xs(t) � α − y

2
s (t + ]h) − βzs(t + ]h) − xs(t + ]h) + L1(t + ]h),

C
hΔ

v

ays(t) � xs(t + ]h) − ys(t + ]h),
C
hΔ

v

azs(t)􏽮

� ys(t + ]h) − zs(t + ]h) + L2(t + ]h),
(15)

where xs(t), ys(t), and zs(t) are the system states, whereas
L1 and L2 are suitable linear controllers to be determined.

We subtract master system (14) from the slave system (15) to
get the error system as

e1(t), e2(t), e3(t)( 􏼁
T

� xs(t), ys(t), zs(t)( 􏼁
T

− xm(t), ym(t), zm(t)( 􏼁
T
. (16)

Now a theorem involving a Lyapunov-based approach is
proved, with the aim of synchronizing the master-slave (14)
and (15) via linear controllers L1 and L2.

Theorem 3. .emaster system (14) and the slave system (15)
achieve synchronized dynamics, provided that the linear
control laws L1 and L2 are selected as

L1(t) � 1 − b2 +
1
2

􏼒 􏼓
2

􏼠 􏼡e1(t),

L2(t) � βe1(t) − e2(t),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

where |ym(t)| � |ys(t)|≤ b2, t ∈ (hN)a+(n− ])h.
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Proof of .eorem 3. By taking into account (16), the dy-
namics of the error system can be written as

C
hΔ

v

a
e1(t) � y

2
m(t + ]h) − y

2
s (t + ]h) − βe3(t + ]h) − e1(t + ]h) + L1(t + ]h),

C
hΔ

v

ae2(t)􏽮

� e1(t + ]h) − e2(t + ]h),
C
hΔ

v

ae3(t) � e2(t + ]h) − e3(t + ]h) + L2(t + ]h).
(18)

By substituting the control law (17) into error system
(18), we get

C
hΔ

v

a
e1(t) � − ym(t + ]h) + ys(t + ]h)( 􏼁e2(t + ]h) − βe3(t + ]h) − b2 +

1
2

􏼒 􏼓
2
e1(t + ]h),

C
hΔ

v

a
e2(t)􏼨

� e1(t + ]h) − e2(t + ]h),
C
hΔ

v

ae3(t) � βe1(t + ]h) − e3(t + ]h).

(19)

2 4 6 8 10 12 14 16 18 20
−1.5
−1

−0.5
0

0.5
1

1.5
2

2.5
3

n

x 
(n
)

(a)

y (
n)

2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

n

(b)

z (
n)

0 2 4 6 8 10 12 14 16 18 20

−1.2
−1

−0.8
−0.6
−0.4
−0.2

0

n

(c)

−0.1 −0.05 0 0.05 0.1

−0.1
−0.05

0
0.05

0.1
−0.1

−0.05

0

0.05

0.1

xy
z

(d)

Figure 3: Stabilized states of the controlled fractional Grassi–Miller map (9) via linear control laws (10) with α � 1, β � 0.5, and fractional
order ] � 0.999.
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Now, by taking a Lyapunov function in the form V �

(1/2)(e21(t) + e22(t) + e23(t)) and by exploiting Lemma 1, it
follows that

C
hΔ

v

aV≤ e1(t + ]h)
C
hΔ

v

ae1(t) + e2(t + ]h)
C
hΔ

v

ae2(t) + e3(t + ]h)
C
hΔ

v

ae3(t)

� − b2 +
1
2

􏼒 􏼓
2
e
2
1(t + ]h) − ym(t + ]h) + ys(t + ]h)( 􏼁e1(t + ]h)e2(t + ]h)

− βe1(t + ]h)e3(t + ]h) + e2(t + ]h)e1(t + ]h) − e
2
2(t + ]h) + βe1(t + ]h)e3(t + ]h) − e

2
3(t + ]h)

≤ − b2 +
1
2

􏼒 􏼓
2
e
2
1(t + ]h) + 1 + ym(t + ]h) + ys(t + ]h)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

e1(t + ]h) e2(t + ]h)
����

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − e

2
2(t + ]h) − e

2
3(t + ]h)

≤ − b2 +
1
2

􏼒 􏼓
2
e
2
1(t + ]h) + 1 + 2b2( 􏼁 e1(t + ]h) e2(t + ]h)

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − e
2
2(t + ]h) − e

2
3(t + ]h)

� − b2 +
1
2

􏼒 􏼓
2
e1(t + ]h) − e2(t + ]h)􏼠 􏼡

2

− e3(t + ]h)≤ 0.

(20)

From -eorem 1, it can be concluded that the dynamics
of the error system (18) are stabilized at the origin. As a
consequence, it is proved that the master system (14) and the
slave system (15) achieve synchronized dynamics via linear
control laws in the form (17). □

Remark 2. It is easy to find a parameter b2 larger than the
absolute value of the variables ym(t) � ys(t), as requested by
the proof of -eorem 3. Namely, the existence of b2 is in-
trinsically justified by the property of boundedness of the
chaotic states of map (9). -us, the value of b2 can be easily
found by looking at the plots reported in Figure 1, fromwhich
it is clear that − 1.6<y(t)< 1.6 for any t. Herein, in order to
achieve synchronization, the value of b2 has been selected as
b2 � 2. Note that the value of b2 does not significantly affect
the time for synchronizing the master-slave pair.

In order to show the effectiveness of the proposed
approach, Figure 4 displays the chaotic dynamics of the
master system states (blue color) and of the slave system
states (red color) when α � 1, β � 0.5, and ] � 0.999. -ese
plots clearly show that two identical Grassi–Miller maps
achieve chaos synchronization via linear controllers. Note
that, through the manuscript, all the simulation results and
the related figures have been obtained using the software
MATLAB.

Now, we would discuss the issue regarding the com-
plexity of the proposed method. We would observe that the
approach proposed herein is simpler than similar methods
reported in literature. For example, the techniques devel-
oped in [11, 17, 19] present the drawback that very complex
control laws have been exploited for controlling and syn-
chronizing the corresponding 3D fractional maps. For ex-
ample, in [11, 19] synchronization and control have been

achieved using nonlinear control laws that include several
nonlinear terms. -is drawback also regards the Grass-
i–Miller map in [17], since complex nonlinear control laws
have been used to achieve synchronization and control of its
chaotic dynamics. Since it might be difficult to implement
very complex control laws in practical applications of
fractional maps, this paper has provided a contribution to
the topic by developing simple linear control laws for sta-
bilizing and synchronizing 3D fractional maps.

Referring to synchronization issues, now comparisons
are carried out with recent results regarding 3D fractional
maps. -e objective is to highlight the effectiveness of the
conceived approach when synchronization involves 3D
maps with similar degree of complexity. For example, the
results in [11] show that synchronization for the 3D frac-
tional map proposed therein is achieved after more than 10
steps, whereas the map illustrated herein can be synchro-
nized in at most 3 steps. On the other hand, the results in
[19] show that synchronization for the 3D fractional map
proposed therein is achieved in the same number of steps
taken by our method. However, [19] exploits a complex
control law that involves some nonlinear terms, whereas the
proposed synchronization technique is simple and involves
only linear terms. Finally, the results in [17] show that
synchronization for 3D fractional Grassi–Miller map pro-
posed therein, based on the ]-Caputo delta difference, is
achieved after more than 20 steps, whereas the map illus-
trated herein, based on the Caputo h-difference operator,
achieves synchronized dynamics in at most 3 steps. -ese
comparisons make us perceive the effectiveness of the
proposed synchronization strategy with respect to 3D
fractional maps of similar complexity published in recent
literature.
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Finally, we would briefly discuss the potential appli-
cations of the conceived approach in real world. As any 3D
map, the Grassi–Miller map highlights a higher degree of
complexity with respect to 1D or 2D fractional maps. -is
increased complexity can be very useful for pseudo-ran-
dom number generators in chaos-based communications
systems. Moreover, since the production of images is
increasing day by day in real life, confidentiality and
privacy are becoming key issues when transmitting digital
images using portable devices. -us, referring to secure
image transmission, the proposed discrete-time syn-
chronization scheme could be utilized for retrieving the
secrets keys at the receiver side in chaos-based image
encryption systems.

4. Conclusions and Future Work

By including Grassi as a coauthor, this paper has presented a
novel version of the chaotic fractional Grassi–Miller map, based
on the Caputo h-difference operator. Two novel theorems have
been proved, with the aim of deriving improved schemes (with
respect to those presented in [17]) for controlling and syn-
chronizing the dynamics of the map. Namely, while synchro-
nization and control in [17] are achieved via more complex
nonlinear control laws, herein, simple linear controllers have
been conceived. Finally, simulation results have been carried out
to highlight the effectiveness of the proposedmethod. Referring
to future improvements of the conceived approach, our plan is
to make an attempt to further simplify the control laws de-
veloped herein. Specifically, the objective is to reduce the control
law (10) to just one term C(t), instead of having two terms
C1(t) and C2(t). Furthermore, regarding synchronization, we

will try to reduce the control law (17) to just one term L(t),
instead of having two terms L1(t) and L2(t).

By exploiting the results achieved herein, our future work
will focus on two main steps. At first, we will implement the
proposedGrassi–Millermap using anArduino board, with the
aim of experimentally showing the high degree of complexity
generated by fractional 3D maps. -en, the second step will
consist in applying the conceived linear controllers to image
encryption. Namely, our plan is to implement in hardware the
proposed master-slave synchronization scheme, which will be
used in combination with an encryption algorithm to ex-
perimentally generate and recover the secret keys.
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