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Abstract: Recently, many rapid developments in digital medical imaging have
made further contributions to health care systems. The segmentation of
regions of interest in medical images plays a vital role in assisting doctors
with their medical diagnoses. Many factors like image contrast and quality
affect the result of image segmentation. Due to that, image contrast remains a
challenging problem for image segmentation. This study presents a new image
enhancementmodel based on fractionalRényi entropy for the segmentationof
kidneyMRI scans. The proposed work consists of two stages: enhancement by
fractional Rényi entropy, and MRI Kidney deep segmentation. The proposed
enhancement model exploits the pixel’s probability representations for image
enhancement. Since fractional Rényi entropy involves fractional calculus that
has the ability to model the non-linear complexity problem to preserve the
spatial relationship between pixels, yielding an overall better details of the
kidneyMRI scans. In the second stage, the deep learning kidney segmentation
model is designed to segment kidney regions in MRI scans. The experimental
results showed an average of 95.60% dice similarity index coefficient, which
indicates best overlap between the segmented bodies with the ground truth.
It is therefore concluded that the proposed enhancement model is suitable and
effective for improving the kidney segmentation performance.

Keywords: Fractional calculus; rényi entropy; convolution neural networks;
MRI kidney segmentation

1 Introduction

The new imaging technologies have gained an important role in the early diagnosis of kidney
diseases. Every year, many people in developing countries are diagnosed with kidney diseases
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because of hypertension, diabetes mellitus, and glomerulonephritis. Various types of abnormalities
such as renal cysts, renal calculi, and renal infections are related to the renal system. The precise
segmentation of medical images is significant, but considered as a challenge because of the patho-
logical changes and large variations in the renal shapes. As such, developing an automatic method
to extract the kidney region is difficult because of image noise, inhomogeneity, discontinuous
boundaries as well as the similar visual appearance of neighboring parts of various structures.

The MRI image acquisition could result in varying image contrast qualities and image arti-
facts, which degrade the quality of the captured image. Therefore, the efforts to improve the image
contrast quality will enhance the performance of the whole imaging system, and provide valuable
information for the diagnosis and treatment processes. During kidney segmentation, as shown in
Fig. 1, the precise and correct segmentation of kidney edges is important for many applications
associated with surgical planning and diagnosis (Fig. 1b). The inaccurate segmentation occurs due
to the complex tissue environment surrounding the kidney, including the renal column (Fig. 1c),
and liver, which have the same intensities due to low image contrast (Fig. 1d). Thus preprocessing
of kidney MRI scans is an important procedure to enhance the image contrast which may lead
to a better kidney segmentation. The internal structure of the kidney is complex and difficult to
recognize. Several neighboring tissues or organs, including the renal column (Fig. 1c), muscles,
and liver have the same intensities (Fig. 1d). The varieties of kidney shapes (in terms of length
and volume) and the captured image contrast complicates the segmentation of the kidney. It is
therefore evident why the kidney segmentation methods may not perform well. This motivates us
to propose a new enhancement model for kidney MRI scans which improves the segmentation
performance and accuracy. The proposed model must perform the segmentation process accurately
to detect the kidney boundary and eliminate the unwanted structures of nearby regions (e.g.,
renal column, muscles, and liver) that share the same properties as the kidney (e.g., in intensity).
This study is prepared as follows: The related work introduced in Section 2. Section 3 describes
the proposed model. Section 4 discusses the experimentation results. Finally, Section 5 concludes
the study.

Figure 1: Sample images showing the results of automatic segmentation of kidney MRI scans.
(a) The original image, (b) Correctly-segmented kidney, (c) Inaccurate segmentation, with the renal
column (arrow), (d) Inaccurate segmentation, with the liver
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2 Related Work

2.1 Image Enhancement
Image enhancement is the process of improving the contents of an image for specific appli-

cation. Different image processing algorithms have been developed to enhance image contrast [1].
Many contrast enhancement algorithms are applied to the whole image, often leading to unde-
sirable results. In contrast, enhancement method using the Riesz fractional model [2], which is
proposed for enhancing low-contrast text images, overcome this issue. This method was developed
for detection and recognition of text in license plate images. Another approach for the enhance-
ment of kidney images was proposed based on new local fractional entropy [3]. This technique
performs poorly with kidney MRI scans that suffer from low contrast. For text enhancement in
low-quality images, Roy et al. [4] proposed a new fractional Poisson based image enhancement
model for text in video frames. Another image contrast enhancement approach based on image
histogram has been proposed by Tohl et al. [5]. This method used the histogram operation to
enhance the low contrast pixels in edges. However, the method failed when no clear edges are
present. The study by [6] focused on the enhancement of brain MRI scans using Grünwald
Letnikov (G-L) mask. The method applied the fractional derivative to form two masks of different
pixels’ sizes to preserve the correlation of the neighboring image pixels. However, this method
is not robust for low contrast images, since it only focused on enhancing the edges of brain in
the MRI scans. Accordingly, we can confirm that, in the case of kidney image enhancement, it
is not easy to maintain the image quality while enhancing the low contrast region. To solve this
problem, the deep learning based methods have been recently applied as new image enhancement
algorithms. In [7], an adaptive image contrast enhancement model using CNN has been proposed
to enhance low contrast images. However, this method may not work well for kidney MRI scans.
In summary, the above enhancement methods have been developed to address several image
enhancement challenges where the enhancement of the whole image is more suitable than local
enhancement (as in the case of kidney scans enhancement).

2.2 Kidney Segmentation
The methods developed for kidney segmentation in MRI scans perform poorly when input

images suffer from low contrast, artifacts, and variability in the shape of kidney. As a result, the
automatic segmentation of the kidney in MR images remains a challenging problem in image
processing. The objective of image segmentation is to slice an image into various segments and
discrete areas, which is a significant initial step towards the analysis of the contents of an image.
Image segmentation is normally used to find boundaries, and to locate objects in images. Many
researches have studied the kidney segmentation using different techniques with different medical
images. Will et al. [8] applied the thresholding and shape detection for kidney segmentation in
MR images. It is known that the MR imaging suffer from inappropriate imaging factors which
increase the challenges associated with segmentations. Even though the method is efficient, the
thresholding only performed well with clear MR images. Another approach for automated kidney
segmentation in MRI scans was proposed by Gloger et al. [9]. In this study, a variation edge
alignment force was proposed to guide the shape level set segmentation of the boundaries of
the outer organs. Using kidney ultrasound images, Marsousi et al. [10] presented a technique for
segmenting the 3D kidney shape. An effective strategy is applied to overcome ultrasound-explicit
problems, including speckle noise, low boundary contrast, and partial kidney occlusion. This study
offered another shape model called “the complex valued implicit shape model” by consolidating prior
information of prepared shapes and anatomical learning. After that, the recognized kidney is
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segmented through the use of a novel complex area-based level set methodology. However, the
proposed kidney detection is likely unable to recognize the kidney shape with different ultrasound
image qualities. Another kidney segmentation technique for ultrasound images was proposed by
Nithya et al. [11]. This approach proposed an artificial neural network for kidney stone detection,
and multi-kernel k-means clustering for kidney segmentation. In that study, the median, as a
denoising filter, was used, then the texture analysis has been used as the main features for
classification. The accuracy of segmentation may not be good enough due to the clustering
result which is sensitive to the type of kernel used, leading to a reduced overall segmentation
accuracy. From non-differentiated contrast computed tomography (CT) information, an automatic
approach of kidney segmentation was proposed by Turco et al. [12]. As a preprocessing step, this
approach applied a manual selection of kidney regions in order to reduce the effect of noise. This
method was also developed for non-contrast enhanced CT data. The common drawbacks of the
above-mentioned segmentation techniques are the hand crafted features and thresholds. These two
approaches affect the accuracy of the kidney regions segmentation and may not qualify as “fully
automatic” methods. Alternatively, deep learning has only been recently used for image processing
applications [13]. It is a trainable multi stage architecture where each stage detects certain feature
patterns. Currently, different deep CNN models have been proposed such as AlexNet, GoogleNet,
DenseNet, and U-Net [14]. These deep CNNs are used in different applications such as object
detection, segmentation, and image classification. Thong et al. [15] proposed a CT scan kidney
segmentation algorithm at variable pixel densities by using convolutional networks approach. The
method was evaluated using collected dataset of 79 scans. This method achieved an accurate
segmentation but at a higher computation time. Sharma et al. [16] presented a fully automated
CNNs of different layers, which learned features without using any handcrafted features. The
method was tested using the ADPKD patient dataset of 244 CT acquisitions. This method
suffered from false positive identification due to small isolated noise which is wrongly classified as
foreground. More recently, Jackson et al. [17] developed an automated kidney segmentation using
3D CNNs for right and left kidney contours. This method achieved accurate segmentation (dice
score of 0.91) of right and left kidneys in clear CT images with the renal radiation dose. Along
the same approaches, Haghighi et al. [18] proposed a kidney segmentation in dynamic contrast-
enhanced MRI scans using a 3D U-Net. The segmentation performance was evaluated using both
normal and abnormal kidney images. However, the 3D U-Net is not memory efficient and needs
several parameters to learn. Another CT kidney segmentation model was proposed by Couteauxa
et al. [19] where 5 levels of U-Net architecture was used to achieve successful segmentation
of kidney. However, the CT images were cropped around the kidney which removed all other
surrounding tissues. The image segmentation techniques that employ the CNN model show better
performance and higher accuracy compared to the classical image segmentation methods [20,21].

From the review on the CNN models of kidney segmentation above, it can be observed
that most of the used CNN models are based on the architecture of U-Net, which works well
with certain selected types of images. The motivation for this study is to develop a CNN based
model for automated kidney segmentation in MRI scans. Our contribution can be summarized
as follows:

1. A new image enhancement algorithm for kidney MRI scan which is based on fractional
Rényi entropy

2. A new deep learning-based network for the segmentation of kidney body from the
MRI scan.
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3 The Proposed Model

The proposed work consists of two stages: First, the enhancement by fractional Rényi
Entropy; then, the deep segmentation of kidney MRI.

3.1 Proposed Enhancement Algorithm
The image enhancement stage is based on derivatives function for improving the perception of

image quality. Since fractional calculus includes such derivations, this motivated us to propose the
new enhancement algorithm that is based on fractional Rényi entropy (FRE) [22]. In information
theory, Entropies measure the variety, improbability, or uncertainty of a scheme. In the setting of
fractal measurement approximation, the Rényi entropy indicates the foundation of the notion of
isolated measurements. It is presented as follows:
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denotes the p-norm of the vector of probabilities. Note that ‖P‖β+ε ≤ ‖P‖β , for a small
non-negative real number (ε > 0). In general, for all discrete random variables, Rβ (ρ) is a non-
increasing concave function in β ≥ 0. Note that, when β →1, we have the Shannon Entropy. And
when β → 0, the Rényi entropy indicates the logarithm of the dimension of the space that is
R0 (ρ)= log (m). In addition, the derivative of Rβ (ρ) with respect to β, which minimizes the value
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We proceed to investigate some properties of the information in images by introducing more
studies and properties of fractional Rényi entropy.

Theorem 1. Consider Eq. (1) over a set of probability of pixel. The preference of alternative
of Eq. (1) is obtained in terms of Rényi entropy by

(Rβ (ρ))′ = dRβ (ρ)

dβ
∼= Rβ (ρ)

β
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ρi
β

)
, β �= 0 (6)
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Proof.

Define a set δ of a window of dimension m as follows:
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Since all pixels take equal probability, then
∑m

j=1 ρ
β
j = 1; thus the set δ becomes

δ = {ρ1β , . . . ,ρmβ
}
.

By applying δ in Eq. (2), we have

dRβ (ρ)

dβ
=− 1

(1−β)2

m∑
i=1

(
log

δi

ρi

)
(δi)

=− 1

(1−β)2

m∑
i=1

(
log

ρi
β

ρi

)(
ρi

β
)

=− 1

(1−β)2

m∑
i=1

(
log

(
ρi

β−1
))(

ρi
β
)

=− (β − 1)

(1−β)2

m∑
i=1

log (ρi)
(
ρi

β
)

= 1
1−β

m∑
i=1

log (ρi)
(
ρi

β
)
.

Now, from Eq. (2), a calculation implies that
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Then we obtain (10)
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In our discussion, we shall use Eq. (6), which shows the relationship of the fractional Rényi
entropy with its derivative (changing of entropy) with respect to the fractional power β. Also, we
note that, when β → 1, we still have the Shannon Entropy. Hence, Eq. (6) is convergent to well
know entropy. Next, we proceed to introduce a connection between the fractional Rényi entropy
and gamma function. Note that gamma function indicates a good result in image processing,
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which is indicated in many fractional operators (differential and integral). The final enhanced
image Ie is formulated by:

Ie= I ∗ Rβ (ρ)

β

(
m∑
i=1

ρi
β

)
(7)

where I is the input image. For each pixel in the input image, the proposed image enhancement
model derives fractional Rényi entropy of order β.

The logic of applying fractional Rényi entropy for pixel type image enhancement is that the
Rényi entropy enhances regions with low gray-level changes depending on its pixel’s probability.
In order to determine the value for β used in deriving fractional Rényi entropy operator in
Eq. (7), we choose our collected data for experimentation, where the average NIQE is calculated
for different β values. Fig. 2 shows that the average NIQE reaches 4.67 when β = 1.45. Hence,
we chose β = 1.45 for all the experiments in this study.

Figure 2: The average NIQE measure for different values of β

3.2 Network Architecture
In this section, we discuss the proposed CNN based kidney segmentation algorithm for deep

learning. There are two stages for image segmentation using CNNs, the training and the pixel-by-
pixel classification. The main architecture of CNNs includes two essential parts: feature extraction
and classification. The details are illustrated in Tab. 1, and the network architecture is shown in
Fig. 3. The feature extractor consists of several connected layers in sequence, each layer of CNNs
receives the output from the previous neighbor and passes it to next layer. CNNs consist of several
convolution layers (CONV), pooling layers, activation function, dropout and class output layer.
Each convolution layer includes a set of small filters, named kernels or convolution filters, which
are applied to every layer independently to produce a tensor of feature maps. The extent to which
the kernel filter convolves around the input volume by shifting from one position to another is
called Stride. The output volume shrinks as the stride increases, so that the spatial dimensions of
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the output volume decrease significantly after each convolution layer, and this has an impact on
the performance of the CNNs.

Table 1: The layers of proposed CNN model

Layers Filter size Stride Output

CONV1+ReLU1 3 ∗ 3 [1 1] 128 ∗ 128 ∗ 64
Max pooling1 2 ∗ 2 [2 2] 64 ∗ 64 ∗ 64
CONV2+ReLU2 3 ∗ 3 [1 1] 64 ∗ 64 ∗ 64
Transposed convolution 4 ∗ 4 [2 2] 128 ∗ 128 ∗ 64
CONV3 1 ∗ 1 [1 1] 128 ∗ 128 ∗ 64
Softmax – – 128 ∗ 128 ∗ 64
Pixel classification – – 128 ∗ 128 ∗ 1

Figure 3: The network architecture

In each convolution layer, the stride (step size) controls how the filter shifts around the
input volume, while the max pooling layer handles the down-sampling by using the rectangular
pooling regions. Practically, striding filter by one or two pixels is acceptable, but higher values
may negatively impact the performance of CNNs. Therefore, it is essential to preserve the input
as much as possible in the early layers of CNNs in order to not lose the low level features. To
do this, zero-padding is needed to preserve the same spatial dimensions. After each convolution
layer, an activation layer, a rectified linear unit (ReLU), is used. The most commonly deployed
activation function that is used in the activation layer of CNNs is ReLU, which is used to delete
all of the negative numbers in the feature maps and set them to zero. The rectified features are
then passed over the pooling layers (also named down sampling layer). A single value for each
sub-region is determined to be passed to the output of the pooling layer. A filter of size (2× 2)
with a stride of 2 is used to extract these sub-regions. Two common functions that are frequently
used in the pooling layer of CNNs are the max and average pooling functions. The network is
divided into two paths, one is the down-sampling for feature extraction path, and the other is the
up-sampling path for precise localization of features in the higher resolution layers. The proposed
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segmentation was trained using 128× 128 pixels input BMP images. Reducing the training image
size will help in reducing the processing time. The hyper parameters of the proposed model were
adjusted turn the loss function to convergence during training. The learning rate has been set to
0.0001, with momentums of 0.9 and 200 epochs, and 64 minimum batch size of 300 iteration
number. The code was developed using MATLAB 2020a. We used an NVidia GeForce GTX GPU
with 12 GB RAM for the training. The label samples are important during the training process
because the proposed CNN model uses pixels as the primary learning object. For this reason,
they must be accurately labeled. Manually segmented kidney regions were used as a ground truth.
This was done under the supervision of a physician. The training stage continued through the
following steps: (1) Input both images and their labels into the CNN model as training samples.
(2) Calculate the loss function. (3) Update the network parameters. The filters that operate on the
output of the CONV1 layer extracted the lower-level features such as lines. The filters for layer
CONV2 detected the edges and blobs, indicating that the filters at CONV2 are edge detectors and
color filters, which are more complex patterns compared to the CONV1 layer. The complexity of
the patterns increases considerably with depth of layers.

4 Experimental Results

4.1 Kidney MRI Dataset
In this study, a total number of 230 MRI kidney scans were collected. This dataset was

acquired by SIEMENS machine with a slice thickness of 1.72 units. All of the collected cases
were diagnosed by physicians. The participants signed a consent form to grant the use of their
images in this research. The collected images were in DICOM format.

4.2 Image Enhancement Results
To evaluate the proposed image enhancement method, we considered three standard image

processing enhancement methods, and two existing enhancement methods, which have been devel-
oped for improving the poor-quality images. The methods are Shamasneh et al.’s method [23]
which proposes different fractional calculus for enhancing the poor quality of kidney images,
and Raghunandan et al.’s method [2] which utilizes fractional calculus for enhancing the poor
quality of license plate images. We choose the above methods for the comparative study because
the primary objective of these existing methods is to improve poor quality images. For validating
enhancement results given by the proposed approach, we used NIQE (Naturalness Image Quality
Evaluator), which measures the quality of an image affected by arbitrary distortion. The reason
for choosing this measure is that it does not require the original images for evaluation. It is
noted that the low score of NIQE indicates better quality of enhanced images. The qualitative
enhancement results using our collected kidney MRI scans dataset are shown in Fig. 4. When we
look at the input images as shown in Fig. 4a and the corresponding enhanced images by proposed
method as shown in Fig. 4g, the brightness and fine details such as pixels’ edges increase following
the application of the proposed method compared to the input images, irrespective of the image
content. Therefore, we can conclude that the proposed enhancement method is effective, and
independent of the image contents. When we look at the qualitative results of Fig. 4, the proposed
method achieves the highest quality in almost all images compared to the existing methods.

Quantitative enhancement results are stated in Tab. 2. The proposed enhancement method
achieved the best NIQE score compared to the existing methods. This shows that the proposed
method performs better regardless of image content. This is because the proposed enhancement
method improved the fine details in images with low contrast.
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Figure 4: The enhancement results of the proposed and existing enhancement models. (a) Input
image, (b) CLAHE, (c) AIV, (d) Histogram equalization, (e) Al-Shamasneh et al. [3],
(f) Raghunandan et al. [2], (g) Proposed enhancing method
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Table 2: The quality measures (NIQE) for enhanced images of the proposed and existing enhance-
ment models

Method Images

1 2 3 4 5

HE 5.53 5.42 5.67 5.78 6.15
CLAHE 4.94 5.84 5.21 6.01 6.59
AIV 4.97 5.46 4.89 5.72 5.71
Al-Shamasneh et al. [3] 5.24 4.82 4.61 5.28 4.92
Raghunandan et al. [2] 5.35 5.87 5.18 5.98 6.20
Proposed enhancing method 3.69 3.64 3.50 3.96 3.90

4.3 Kidney Segmentation Results
To evaluate the kidney deep segmentation, we calculated the accuracy and the Dice similarity

coefficient (DSC). We trained the proposed CNN segmentation model for automated segmentation
of kidneys in MRI scan using a collected image dataset of 230 images. For evaluation, accuracy
and DSC were used to measure the overlap between the background G and kidney region I.

Accuracy(Acc)= TP+TN
TP+TN +FP+FN

(8)

Dice (I ,G)= 2 ∗ |intersection(I ,G)|
|I | + |G| (9)

where TP, TN, FP and FN are the true positive, true negative, false positive and false nega-
tive respectively.

Figure 5: Kidney segmentation results of the proposed model. (a) Test images, (b) Ground truth,
(c) Proposed CNN results
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Figure 6: The results of comparative analysis of kidney segmentation between the proposed
method and existing methods. (a) Input images, (b) Hasan et al. [24], (c) Li et al. [25], (d) Ibrahim
et al. [26], (e) Al-Shamasneh et al. [23], (f) DL semantic segmentation [27] (g) Proposed segmen-
tation method
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After successful training using enhanced kidney images, the test images were fed into the
proposed trained model to obtain kidney segmentation results. The test images belong to another
set of MRI scans that have not been used for the training before. The qualitative results of the
proposed segmentation model using the test images are shown in Fig. 5.

It could be seen that the segmentation results of the proposed model almost match the ground
truth (Fig. 5). However, in some images, the segmentation results included the renal column,
which has been falsely segmented as kidney body. Nonetheless, our proposed model achieved an
acceptable segmentation accuracy especially at the boundaries of the kidney body.

4.4 Kidney Segmentation Comparative Analysis
We further compared the performance of the proposed kidney segmentation model to other

kidney segmentation techniques using the same dataset.

The proposed model is compared with the following state-of-the-art methods: Hasan et al. [24]
proposed a segmentation method for MRI brain scan; Li et al. [25] applied the level set approach
for kidney segmentation; Ibrahim et al. [26] used new fractional calculus approach as an energy
function for MRI brain tumor segmentation, while [23] applied a new kidney segmentation
method using a new fractional energy minimization function. The qualitative results compared to
existing methods are illustrated in Fig. 6, while the comparative analysis based on accuracy and
Dice metrics are given in Tab. 3. It could be seen that the proposed model separates the kidney
region more accurately compared to the other methods. Also, a standard deep learning Semantic
Segmentation (DLSS) is used for comparison as well [27]. From Tab. 3, it is evident that the
proposed segmentation model achieves a much higher segmentation accuracy and Dice similarity
coefficient compared to the other methods.

Table 3: Performance of the proposed and other methods using our own dataset

Methods Accuracy (%) DSC (%)

Hasan et al. [24] 90.73 78.84
Li et al. [25] 85.34 80.72
Ibrahim et al. [26] 92.90 79.92
Alaa et al. [23] 98.95 92.70
DLSS [27] 95.93 84.42
Proposed Method 99.10 95.60

5 Conclusions

In this study, we have presented a new image enhancement model based on fractional Rényi
entropy for deep kidney segmentation in MRI scans. The proposed image enhancement model
exploits the pixel’s probability representations for image enhancement, making the proposed model
more robust against the inhomogeneous intensity values of kidney MRI scans. The proposed
model has the ability to preserve the spatial relationship between the pixels of the image, which
helped in enhancing the fine details of the kidney MRI scans, irrespective of the image con-
trast. Moreover, the proposed CNN kidney segmentation model has less parameters compared
to existing kidney segmentation methods which require a larger memory size. The experimental
results indicated that the proposed method could improve the performance of automatic kidney
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segmentation compared to the existing kidney segmentation methods. Future works may aim to
enhance the proposed model by reducing the number of false positives through training with
larger and more complex datasets, which may in turn increase the segmentation accuracies.
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