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Flow and heat transport 
phenomenon for dynamics 
of Jeffrey nanofluid 
past stretchable sheet subject 
to Lorentz force and dissipation 
effects
Faisal Shahzad1*, Dumitru Baleanu2,3,4*, Wasim Jamshed1, Kottakkaran Sooppy Nisar5, 
Mohamed R. Eid6,7, Rabia Safdar8 & Khadiga Ahmed Ismail9

Survey of literature unveils that nanofluids are more efficient for heat transport in comparison to 
the traditional fluids. However, the enlightenment of developed techniques for the augmentation of 
heat transport in nanomaterials has considerable gaps and, consequently, an extensive investigation 
for aforementioned models is vital. The ongoing investigation aims to study the 2-D, incompressible 
Jeffrey nanofluid heat transference flow due to a stretchable surface. Furthermore, the effect of 
dispersion of graphene nanoparticles in base liquid ethylene glycol (EG) on the performance of flow 
and heat transport using the Tawari-Das model in the existence of Ohmic heating (electroconductive 
heating) and viscous heat dissipation is contemplated. The boundary-layer PDEs are reconstituted 
as ODEs employing appropriate similarity transformation. Keller-Box Method (KBM) is utilized to 
determine the numerical findings of the problem. Graphene conducts heat greater in rate than all of 
the other materials and it is a good conductor of electrical energy. Graphene/EG nanofluid is employed 
to look out the parametric aspects of heat transport flow, drag coefficient, and heat transference rate 
phenomena with the aid of graphs and tables. The numerical outcomes indicate that concentration 
and magnetic field abate the shear stresses for the nanofluid. An increase of Graphene nanoparticle 
volume fraction parameter can boost the heat transport rate. The effect of Prandtl Number is to slow 
down the rate of heat transport as well as decelerate the temperature. Additionally, the rate of heat 
transportation augments on a surface under Deborah’s number. Results indicate that the temperature 
of the graphene-EG nanofluid is greater than the convectional fluid hence graphene-EG nanofluid gets 
more important in the cooling process, biosensors and drug delivery than conventional fluids.

List of symbols
v1, v2	� Velocity components
Y= 	� Temperature field
Cp	� Specific heat
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Cf 	� Skin friction coefficient
Y= w	� Wall temperature
Y= ∞	� Ambient temperature
f ′	� Non-dimensional velocity
L	� Characteristic length
v1w	� Wall velocity
M	� Magnetic field parameter
Nu	� Nusselt number
Pr	� Prandtl number
Ec	� Eckert number
a	� Extending rate
qw	� Wall heat flux
k	� Thermal conductivity
B0	� Magnetic field strength

Greek symbols
ν	� Kinematic viscosity
ρ	� Density of fluid
β	� Deborah number
ϒ	� Similarity z variable
�	� Dimensionless temperature
ψ	� Stream function
α	� Thermal diffusivity
σ	� Electric conductivity
µ	� Dynamic viscosity
�1	� Relaxation time
�2	� Retardation time
τw	� Wall shear-stress
φ	� Size concentration

Subscripts
nf 	� Nanofluid
f 	� Fluid phase
s	� Solid phase
p	� Nanoparticles

On account of the limited capabilities of typical heat transport base liquids (engine oil, water, polymer solutions, 
and tri-ethylene-glycols) are not adequate to address today’s requirements. Consequently, the advanced form of 
potentially high heat transport fluids ascribed to NFs is presented and launched in the industrial sectors. NFs 
are an amalgamation of nanomolecules (< 100 nm) in conventional liquids that manifest higher heat transport 
efficiency than common liquids1. NFs have acquired a great deal of importance in the last few years in varied 
disciplines such as automobile, electronics cooling, catalysis, smart computers, solar energy, transport and bio-
medical, etc.2. Dogonchi and Ganji3 have examined the numerical evaluation of heat transport nanofluid flow 
beneath the influence of Cattaneo/Christov thermal fluxing model past a stretchable surface. Eid and Mahny4 
concentrated on theoretical aspects of laminar flow and transport of heat of Sisko nanofluid past an exponentially 
stretching surface embedded in a penetrable material and tackle the problem utilizing the numerical Runge–Kutta 
Fehlberg technique. Shawky et al.5 considered the porous medium influence on magnetohydrodynamic laminar 
flowing with the transport of heat of Williamson nanofluid through an extending surface. Lin et al.6 viewed the 
impact of the Lorentz force and thermal radiative flow on the magnetite-water nanofluidic and heat transport 
via an extending rotate disk. Kumar7 considered the MHD heat transference convective nanofluid flow through 
an impetuously initiated vertical surface under the impression of thermal radiative impact. Amjad et al.8 pre-
sented the effect of the stagnation region in the boundary layer flow of Casson micropolar nanoliquid past a 
bent expanding sheet.

Study of the transport of energy utilizing the power-law liquid under the influence of magnetohydrodynamic 
is a significant topic in the fluid dynamic result in the wide-ranging of implementations in the diverse fields 
such as oil recovery, plasmas, synthetic lubricants, paints, liquid metals, alloys, oil reservoir engineering, and 
cosmetics. Various nonlinear constitutive connections have been inspected for the stress and the shear rate for 
power-law liquids. The impacts of suction/injection on pseudoplastic nanoliquid flow towards a penetrable sheet 
were scrutinized by Maleki et al.9. Mabood et al.10 have inspected the influence of Robinson’s constraint and 
Arrhenius exponential parameter law on non-Newtonian nanofluid past a thin needle with double stratification. 
Reddy and Lakshminarayana11 observed the influences of the heat radiative flowing and cross-diffusion on the 
laminar motion of three-dimensional motion of MHD non-Newtonian nanofluid along with an extending sheet 
with heat source effect. Jeffrey fluid is one of a non-Newtonian viscoelastic fluid model that portrays the most 
important characteristics of retardation and relaxation times. Rasool et al.12 address the features of magnetohy-
drodynamic Jeffrey nanofluid flow along a stretching surface with Darcy-Forchheimer relation. Ahmad et al.13 
investigated via a homotopic technique the chemically reactive impact on a boundary-layer flowing of Jeffrey 
nanofluid through an accelerated surface.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22924  | https://doi.org/10.1038/s41598-021-02212-3

www.nature.com/scientificreports/

The boundary layer laminar motion of fluid along the continuous moving surfaces with various flow char-
acteristics has turned out to be one of the important areas of interest by diverse applications in multifarious 
engineering and industrial phenomenons. Especially, in plastic manufacturing, extruded polymer sheets, fiber 
spinning, crystal growing, emulsion coated sheets, material-handling conveyors, food production, cooling of an 
infinite metallic plate, and so forth. Shahzad et al.14 inspected the influence of suction/injection in axisymmetric 
heat transference flow past an exponential stretched sheet with the magnetic field features. Ibrahim and Gadisa15 
discussed the two-dimensional flowing result in a nonlinearly moving plate by considering an Oldroyd-B fluid 
with heat source (sink) influences. Megahed16 initiated the research on a steady flowing of Maxwell fluid via an 
extending plate with heat source and variable viscosity using the shooting method. The influence of the magneto 
dipole on the flowing of ferromagnetic nanoliquid towards a flat elastic surface was scrutinized by Gowda et al.17.

In modern metal-working processes and metallurgical, the study of the magneto-fluid dynamics (MHD) flow-
ing of electrical conductive is of great significance. In controlling laminar flow and energy transport of diverse 
liquids via a stretching sheet, MHD plays a significant role. Moreover, it has various applications in MHD genera-
tors, biomedicine, furnace structure, optical modulators, cancer tumor treatment, magnetic optical wave-length 
purification schemes, nanofluid MHD pumping, photosensitive controller keys, drugs transporter, magnetic drug 
targeting, and so forth. Ghasemi and Hatami18 inspected the impact of solar radiative on MHD stagnating point 
flowing along with an elongating surface. Patil et al.19 interrogated the impact of thermal radiation on unsteady 
MHD flowing of a Powell-Eyring nanoliquid via an extending plate. The impact of viscidness heat dissipative 
variations the thermal distributions by having a role as a heat generation, which has an impact on the rate of 
heat transit. Shateyi and Marewo20 determined the heat transference characteristics in the mixed convective 
flowing of a micro-polar liquid through an unsteady stretchable plate with viscidness dissipative flowing. Swain 
et al.21 elucidated the flow of Newtonian fluid enclosed in a penetrable material above an elongated sheet under 
the impact of viscous dissipation. Like viscous heat dissipation, Joule heating or Ohmic heating plays the role 
of heat source in viscous fluids. Aly and Pop22 deliberated the viscous dissipation and partial slippery aspects in 
the 2D flowing of hybrid nanoliquid above an accelerating sheet.

Based on the above-mentioned articles and as far as we know, MHD Jeffrey nanofluid heat transport flow 
above a linearly stretchable surface with Ohmic heating, viscous heat dissipation, and graphene nanoparticles 
suspension had not been examined. The tested nanofluid is comprised of graphene nanoparticles and ethylene 
glycol as the base liquid. A substantial research is being accomplished about the numerical solution of the 
nanofluid flow model, though very few investigators attempted to tackle the nanofluid flow problem with novel 
numerical method. Numeric solutions for the dimensionless stream function and dimensionless temperature 
is determined under the aegis of robust Keller box method. Diagrams and tables are constructed to explore 
the results of appropriate factors on flowing, energy, heat transport rate, and surface drag force with the aid of 
MATLAB program.

Physical model
Two-dimensional time-independent, laminar, and incompressible electrically conducting Jeffrey nanoliquid 
flowing via a linear stretchable sheet with heat generation (absorption), Ohmic heating, and viscous dissipation 
effects are examined. Graphene is utilized as the nanomaterials while ethylene glycol is the conventional base 
liquid. x−axis is drawn alongside the horizontal stretched plate and y−axis is considered perpendicular to the 
stretchable plate. The sheet with a fixed rate a and speed (v1)w = ax is extending in the x−axis orientation such 
that nanofluid is confined in y > 0 . Transverse magnetism field with strength B0 is utilized in y−direction as 
exhibited in Fig. 1. An induced magnetism field is not alleged because of the contemplation of an insignificant 
small Reynolds number. The sheet is observed to attain a temperature Y= w in the square form at sheet y = 0 i.e., 
Y= w = A(x/L)2 + Y= ∞.

Figure 1.   Physical flow configuration.
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The model submitted is governed by the continuity, momentum, and energy equations of the boundary-layer 
below

The limit constraints revealed by the model’s physics are:

The speed comprises two constituent parts for every orientation, i.e., v1 and v2 in x and y orientations, sepa-
rately. Table 1 encapsulates the material parameters for the Jeffrey nanomaterial23,24. Table 2 yields the thermo-
physical attributes of the standard fluid along with nanomolecules25.

The stream function �
(

x, y
)

= � is such that v1 = ∂�
∂y  and v2 = − ∂�

∂x  . By announcing the subsequent dimen-
sionless quantities

then the Eqs. (1)−(3) reduce to:

The affined boundary constraints are:

Dimensionless variables associated with the above equations are expressed as

(1)
∂v1
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}

Table 1.   Thermophysical attributes for Jeffrey nanofluid.

Properties Nanofluid

Dynamic viscosity µnf = µf (1− φ)−2.5

Density ρnf = (1− φ)ρf + φρs

Heat capacity (ρCp)nf = (1− φ)
(

ρCp

)

f
+ φ

(

ρCp

)

s

Thermal conductivity κnf
κf

= [
(

κs+(m−1)κf
)

−(m−1)φ(κf −κs)]
[(κs+(m−1)κf )+φ(m−1)(κf −κs)]

Electrical condectivity
σnf
σf

= 1+ 3(σs−σf )φ
(

σs+2σf
)

−
(

σs+σf
)

φ

Table 2.   Thermo-physical attributes of ethylene glycol and graphene.

Physical properties ρ (kg/m3) Cp (J/kgK) Κ (W/mK) σ (S.m)−1

Graphene 2250 2100 2500 1 × 10−7

Ethylene glycol 1114 2415 0.252 5.5 × 10−6
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The valuable quantities from the engineering applications viewpoint in the course of this study are the drag 
force Cf  and the heat transport rate Nux that are expressed as

where τw = µnf

(

∂v1
∂y

)

 is the surface shear stress and qw = −knf

(

∂Y=
∂y

)

 is the sheet heat fluxing. Invoking the 
nondimensional variables announced prior, the Eq. (10) can be delineated as:

herein Rex = (v1)wx
νf

 signifies Reynolds number.

Numerical process
The system of governing ODEs is nonlinear and coupled. The governing ODEs (6) and (7) with the endpoint 
condition (8) are tackled numerically by employing the robust Keller-box method26,27 utilizing MATLAB soft-
ware which is dependent on the finite-difference procedure. The solution technique of the Keller box method is 
summed up in the flow chart in Fig. 2:

Numerical procedure
We initiate dependent variables v̂1 , ṽ2 , ṽ3 and g̃ so that

Thus Eqs. (6) and (7) might be arranged as

and

The endpoint constraints same way are altered and changes into the form

The net on ϒ is defined employing the succeeding nodes (see Fig. 3):
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ṽ2j − ṽ2j−1

xj
=
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Figure 2.   Flow chart of the current methodology.

Figure 3.   Finite difference space grid.
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Linearization mechanism of the acquired nonlinear difference Eqs. (16)–(21) is executed with the assistance 
of Newton’s method and the subsequent substitution is unveiled:

Utilize this procedure in Eqs. (16)–(21) and disregarding the truncation errors term in δ′s

where

(20)
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ṽ2j+ṽ2j−1
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The linearized set of equations possess the subsequent block- tridiagonal structure

wherein

Next, we factorize matrix A into

wherein

in which � represent the unknowns and [I] , [αi] , [�i] and [χi] are 6⋆6 matrices. We run the simulations until 
ϒmax = 12 for the similarity variable. In calculations, a grid-size of xj = 0.001 is remarked to be proper and an 
error-tolerance has been supposed as 10−6 . In the current investigation, a consistent mesh of size xj = 0.001 is 
found to assure the convergence and the results are achieved through an error of tolerance 10−5 in all instances. 
We had assimilated our outcomes with the present literary work of Chen et al.28 and Narayana et al.29 underneath 
convinced conditions are met and had observed a remarkable agreement with that literature (see Table 3). This 
comparison has given us assurance in further results.
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Results and discussions
In the present sector, the physical significance of renowned factors like concentration of nanoparticles 
φ(0.0 ≤ φ ≤ 0.1) , magnetic field parameter M(0.0 ≤ M ≤ 1) , Prandtl number Pr(0.5 ≤ Pr ≤ 9) , Deborah 
number β(0.0 ≤ β ≤ 1.5) , Eckert number Ec(0.5 ≤ Ec ≤ 2.5) , heat source/sink parameter γ ∗(−0.3 ≤ γ ∗ ≤ 0.3) 
and Jeffrey fluid parameter �1(0.1 ≤ �1 ≤ 0.9) against velocity, temperature, the drag coefficient, and the heat 
transference rate is examined through Figs. 4, 5, 6, 7, 9, 10, 11, 12, 13. Table 4 illustrates computational values 
of drag force Re1/2x Cf  and heat transference rate Re−1/2

x Nux via graphene/EG nanofluid for higher estimation 
of the concentration of nanomolecules φ , magnetic field M , Deborah β , Eckert Ec , and Prandtl Pr numbers. 
There is a diminution in the magnitude of Re1/2x Cf  for larger φ and M although it embellishes for larger β . It is 
also noted that for larger estimation of φ and β the heat transference rate enhances while for increasing Pr , Ec 
and M it diminishes.

Table 3.   Comparing of �′(0) values when Ec = M = β = φ = 0.

Pr Present study Ref.28 Ref.29

1 1.3333 1.33334 1.3333

5 2.3801 2.30796 2.3080

10 4.7968 4.79686 4.7969

Figure 4.   Velocity F ′(ϒ) via β and M.

Figure 5.   Temperature �(ϒ) via β and M.
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Figure 4 delineates for velocity distribution f ′(ϒ) versus the Jeffrey fluid variable β and magnetic parameter 
M . It is remarked that by reinforcing the amounts of the Deborah number β the magnitude of the momentum 
inclines to increase. Physically higher Jeffrey parameter implies the material behavior as a non-Newtonian regime, 
gradually predominated by elasticity and indicating solid-like behavior. It is determined that the creation of wall 
parallel resistive Lorentz force under the magnetic force field enhances the opposition in the flow field. Figure 4 
displays that the axial velocity profile declines with a boost in M . It is determined that the creation of wall parallel 
resistive Lorentz force under the magnetic force field enhances the opposition in the flow field. Figure 5 unfolds 
the impacts of β and M on the temperature field. It has been perceived that a boost in β abates the temperature 
and the thickness of the thermal boundary layer. As β has an association with the retardation time, so a rise in 
the β causes the boost in retardation time. Consequently, it reduces the temperature of the fluid. The relation 
among thermal field � and magnetic field M is directly related. The growth in the temperature is because of the 
impending body force which causes more resistance to the fluid flow. The magnetic parameter has an association 
with operative Lorentz-force, which produces resisting in the liquid flowing, as a consequence, heat is generated 
leading to embellishment in �.

Based on Fig. 6, on incorporating more nanoparticle size φ of graphene nano solid-particles in the ethylene 
glycol standard liquid, the laminar motion profiles of graphene–EG nanofluid diminish for spherical shape 
nanoparticles. In physical terms, amplification in the strength of φ leads to advanced concentration of graphene 
nanomolecules in standard liquid. Consequently, a greater amount of graphene nanoparticles in base fluid 
boosts resistance to flow, which causes a reduction in a fluid motion. The effect of solid volumetric fraction φ 
on temperature field �(ϒ) is examined in Fig. 7. As anticipated, the graph supports a substantial increase in 

Figure 6.   Velocity F ′(ϒ) via φ.

Figure 7.   Temperature �(ϒ) via φ.
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temperature by adding more graphene nanoparticles into ethylene glycol. In physical terms, a rise in thermal 
conductivity was found, which enhances the thermal distribution.

The temperature field �(ϒ) under the action of Prandtl number Pr is represented in Fig. 8 for various values 
of β . As Pr is momentum diffusivity over thermal diffusivity. With an increase in Pr temperature difference 
reduces this means that thermal diffusivity tends to decrease, as a result, temperature �(ϒ) of the nanofluid 
declines. The variation of viscous heat dissipation also named Eckert number Ec on temperature field �(ϒ) is 
portrayed in Fig. 9. The augmenting of temperature appears with a rise in Ec . That is because the friction between 
fluid layers plays a vital part to magnify the measure of heat in fluid, as heat energy is stored in the nanofluid 
throughout the entire process.

The variation of skin friction coefficient Re
1
2
x Cf  versus φ and M is illustrated in Fig. 10. As described in the 

graph, it is remarked that higher values of φ and M diminish Re
1
2
x Cf  at the surface of the sheet. Figure 11 is 

designed to guess the comportment of Deborah number β and concentration of nanoparticles φ on Re
1
2
x Cf  . It is 

discovered that drag force exhibits increasing behavior for incrementing amounts of β but declines in the status 
of φ . As the Deborah number β is exploited to elucidate the visco-elastic attribute of a material.

The change of local Nusselt number Re−
1
2

x Nux with various parameters is displayed in Figs. 12 and 13. It is 
remarked that the heat transference rate diminishes with a boost in Eckert and Prandtl numbers. In the case of 
a larger Pr , nanoliquid thermal diffusivity is declined, accordingly, the heat transport rate lessens. As expected, 

the local Nusselt number Re−
1
2

x Nux increase with increasing Deborah number β and nanomolecules size φ . The 

Table 4.   Computational amounts of Cf  and Nux for different choices of novel factors.

φ β M Pr Ec Re
1/2
x Cf Re

−1/2
x Nux

0.0 0.5 0.5 0.7 0.3 0.2786 2.3967

0.05 0.2157 2.8250

0.1 0.1450 3.2767

0.05 0.0 0.2 0.7 0.3 0.6498 2.7488

0.5 0.8968 3.0275

1.0 1.0444 3.1798

0.05 0.2 0.0 0.7 0.3 1.1515 3.4733

0.5 0.9788 2.9922

1.0 0.8304 2.5469

0.05 0.5 0.5 0.5 0.3 0.9539 4.5684

1.0 0.9539 3.7008

1.5 0.9539 2.6658

0.05 2.0 0.5 0.7 0.5 0.9053 3.0130

1.0 0.9053 1.7572

1.5 0.9053 0.9061

Figure 8.   Temperature �(ϒ) via Pr and β.
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Figure 9.   Temperature �(ϒ) via Ec and β.

Figure 10.   Skin friction Cf  via φ and M.

Figure 11.   Skin friction Cf  via φ and β.
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reason is that the increment of β intensifies the fluid elasticity within the flow vicinity. By the accretion of volume 
fraction of nanoparticles, the collisions of nanoparticles aggravates and assists to augmentation of turbulence 
intensity of the mixture. The augmentation of turbulence intensity strengthens the advection energy transfer 
inside the working mixture. In view of this, the energy transfer coefficient increases and leads to enhancement 
of heat transfer rate.

Main findings
Numerical scrutiny of MHD graphene-EG nanofluid flow above a stretchable surface with viscidness heat dis-
sipative flow and Ohmic heating influences is explored. The most important consequences of the existing inves-
tigation are as described below:

•	 The graphene-EG Jeffrey nanofluid velocity gets decreased owing to augmentation in nanoparticle size φ and 
magnetic force M parameters while the behavior of velocity profile gets overturned due to Jeffrey parameter 
β.

•	 Prandtl number Pr and Jeffrey parameter β parameters diminish the temperature of Jeffrey nanoliquid in the 
boundary-layer regime whereas the fluid temperature is enhanced owing to a rise in concentration, Lorentz 
force, and viscous heat dissipation parameters.

•	 The Local Nusselt Number of graphene-EG Jeffrey nanofluid is reduced owing to β , Pr , and Ec parameters 
though it is augmented result in an upsurge in nanoparticles volume fraction parameter.

•	 The graph emphasizes that both conventional fluid and nanofluid are good in heat transsport rate. By com-
paring, graphene-EG nanofluid yield high heat transport rate in comparison with base fluid.

Figure 12.   Nusselt number Nux via Ec and β.

Figure 13.   Nusselt number Nux via φ and Pr.
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•	 Lorentz force and concentration diminish the frictional force at the stretchable plate.
•	 The acquired outcomes depict that both base fluid and nanofluid offer positive response on shear stress. By 

comparing, convectional fluid holds better augmentation of shear stress in comparison with to graphene-EG 
nanofluid.

Received: 12 August 2021; Accepted: 8 November 2021
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