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Abstract

This research is related to present a novel fractional Mayer neuro-swarming intelligent solver for
the numerical treatment of multi-fractional order doubly singular Lane-Emden (LE) equation
using combined investigations of the Mayer wavelet (MW) neural networks (NNs) optimized
by the global search effectiveness of particle swarm optimization (PSO) and interior-point (IP)
method, i.e. MW-NN-PSOIP. The design of novel fractional Mayer neuro-swarming intelligent
solver for multi-fractional order doubly singular LE equation is derived from the standard LE
model and the shape factors; fractional order terms along with singular points are examined.
The modeling based on the MW-NN strength is implemented to signify the multi-fractional
order doubly singular LE model using the ability of mean squared error in terms of the merit
function and the networks are optimized with the integrated capability of PSOIP scheme. The
perfection, verification and validation of the fractional Mayer neuro-swarming intelligent solver
for three different cases of the multi-fractional order doubly singular LE equation are recognized
through comparative investigations from the reference results on different measures based on
the convergence, robustness, stability and accuracy. Furthermore, the statics interpretations
further validate the performance of the proposed fractional Mayer neuro-swarming intelligent
solvers.

Keywords: Lane-Emden Multi-fractional Model; Mayer Wavelet Neural Systems; Singular Sys-

tems; Particle Swarm Optimization; Artificial Neural Networks; Interior Programming.

1. INTRODUCTION

The fractional order differential system represented
with fractional order and integer terms have been
broadly investigated due to the numerous applica-
tions in control systems, physics, engineering and
mathematical sciences. The study of fractional cal-
culus along with different operatives have become
an interesting and valued topic for the researchers
during the last 30 to 35 years, few paramount
implications of these operatives are the Weyl-
Riesz operator I the Riemann-LiouvilleZ Grnwald—
Letnikov operativé® and the Erdlyi-Kober opera-
tive¥ Many researchers worked on the importance
and significance of these mentioned fractional oper-
atives in diverse fields, like as to model the frac-
tional viscoplasticity™ dynamical investigations

of the earth system/” detection of edge in road
hurdle B surfacevolume reaction models? electro-
magnetic theory established using the concepts
of fractional calculus™® LC-electric circuit fractal
model ™ comprehensive performances in the real
supplies 12 viscoelastic model systems ™ nanofluids
mathematical models™ and many more, see refer-
ences therein 1519

There are various classes of linear or nonlinear,
homogeneous or non-homogeneous, singular or non-
singular systems, which are not easy to solve numer-
ically or analytically by using the conventional or
traditional schemes, one of the class is the Lane—
Emden (LE) that is famous due to singularity at the
origin. The LE system occurs in quantum mechan-
ics, astrophysics and spherical gas cloud, etc., which
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are considered difficult and stiff to solve due to sin-
gular nature. A number of deterministic systems
have been functional to solve the LE system?2026
and its generic form is given a

A2z L Adz
dx? " X dX
+H(Z)=G(X), A>1, (1)
dz(0)
(0) =4, dX ’

where A is the shape vector form in Eq. () with sin-
gularity at origin, i.e. X = 0. The structure of frac-
tional Mayer neuro-swarm heuristic solver for multi-
fractional order doubly singular (MFODS) model
based on LE equation, i.e. MFODS-LE equation is
given ag3l

X”\% (XA dﬁs) Z(X)+ H(Z) = G(X),

(2)
where A is a real positive number. For the derivation

of MFODS-LE equation, the values of ¢ and s are
defined as

q=2, s=p, where0<fg<l. (3)

The simplified form of Eq. () using the values of
Eq. @) is written as

2 3
X—Add7 (XAC;Z(—B) Z(X)+ H(Z) = G(X),
(4)

Simplifying the above equation, we get

d? y d°

dx? (X dXﬁ) 2(X)
dP+2
dXB+2
4s+1
x dXB+1

= X* Z(X) + 22X !

Z(X) + A\ —1)

X X”dfi(—ﬁﬁ (X). (5)

Consequently, the mathematical model is
achieved as
dP+2 2\ d°t+1

axer2 X+ % axee
AA—=1) d°
X2 dxP

Z(X)

Z(X) (6)

Fractional Mayer Neuro-Swarm Heuristic Solver

The achieved mathematical form given in Eq. (@)
is called as MFODS-LE model, the singular-point
is noticed twice at the origin at X and X2, respec-
tively, the values of the shape factors are 2\ and
A(A—1) in the second and third factors, while the
fractional order is 3 that appears thrice as 3, 6+ 1
and [ + 2. Furthermore, for A = 1, the third factor
vanishes, and the value of the shape factor becomes
2. The purpose of this research is to design as well
as numerically present the solutions of the MFODS-
LE model defined in Eq. (@) through the Mayer
wavelet (MW) neural networks (NNs), i.e. MWNNs
improved with the global search effectiveness of par-
ticle swarm optimization (PSO) and interior-point
(IP) method, i.e. MW-NN-PSOIP. The novel fea-
tures of this research are defined into segments as:

(1) A novel design of the MFODS-LE model is
described with the derivation procedure using
the standard form of the LE system.

(2) Soft computing or machine learning procedures-
based novel fractional Mayer neuro-swarm com-
puting intelligent solver has been considered
and oppressed to solve the MFODS-LE system.

The numerical procedures through neuro-swarm
computational solvers are widely exploited for the
investigations of singular or non-singular mod-
els represented by linear or nonlinear differen-
tial systems using NNs trained with swarming or
evolutionary computing techniques 333 Few cur-
rent implementations of these methods are sin-
gular functional differential models 3837 gingular
third-order nonlinear model 28 prey—predator mod-
elsB? plasma physics model ™ model of heartbeat
dynamics* infectious disease model for HIV infec-
tion *2 singular heat conduction human head-based
model ¥ multiple singularity-based nonlinear mod-
els# singular atomic physics model of Thomas—
Fermi equation® corneal shape mode® and multi-
point boundary value systems*? These current con-
tributions inspired the authors to design the novel
fractional Mayer neuro-swarming intelligent solver
for the mathematical MFODS-LE model. Some
noticeable and prominent geographies of proposed
novel fractional Mayer neuro-swarming intelligent
solver in the form of MW-NN-PSOIP for solving
the novel MFODS-LE model are itemized as:

e A novel MFODS-LE model is derived from the
fundamental LE system model and effectively
treated to get the numerical solutions using the
proposed fractional MW-NN-PSOIP method.
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e The proposed Mayer neuro-swarming intelligent
solver through fractional MW-NN-PSOIP is pre-
sented to solve three different singular variants
of the MFODS-LE model and comparison of
the obtained numerical results from the existing
exact/true results validate its stability, correct-
ness and convergence.

e The presentation of the proposed fractional MW-
NN-PSOIP method is recognized via the statisti-
cal inquiries by means of Theil’s inequality coeffi-
cient (TIC), semi-interquartile range (SI.R), and
variance account for (VAF).

e Beside the soundly accurate results for the
MFODS-LE model, smooth operations, ease of
understanding, stability, exhaustive applicability
and robustness are other valued advantages of the
novel fractional Mayer neuro-swarming intelligent
solver.

The remaining parts of the paper are reported
as follows: The proposed fractional MW-NN-
PSOIP methodology is defined in Sec. [2] for solv-
ing MFODS-LE model. Performance measures are
given in Sec. 8l The details of the results are pro-
vided in Sec.[d The conclusions along with research
guidelines are reported in Sec.

2. METHODOLOGY

Fractional Mayer neuro-swarm intelligent-based
computational procedure.

This section is associated to present the frac-
tional Mayer neuro-swarm intelligent-based compu-
tational mechanism and execution process for the
MFODS-LE model using the designed fractional
MW-NN-PSOIP for the MW kernels. The construc-
tion of error-based fitness/merit function (MF) of
the model and its optimization with PSOIP is also
described in this section.

2.1. Activation Function: Fractional
MW-NNs

The models based on ANN are implemented to
provide the numerical solutions of many fractional
order models®%2 In this procedure, Z (X)shows
the proposed solutions of the designed system,
D™ 7(X)and D?Z(X) indicate the nth order inte-
ger as well as respective fractional derivative. The
network terminologies become mathematically as

follows:

.
Z2(X) =) _piT(wiX + q),
i=1

DMZ(X)=> pD"T(wX +q),  (7)
=1

.
DPZ(X)=> pD°T(w;X +q),
=1

where r being a number to represent neurons, p, w
and ¢ are the entries of W, as given below:

W =[p,w,q]
for P = [plvp?w"vpr]; W = [whwz,...,wr] and
a = [¢1,92,-..,9-]. The MW activation/transfer

kernel/function is written as follows:
T(X)=35X"—84X5 +70X5 — 20X, (8)

The modified (M) using Eq. () is given as follows:

Z(X)
35(w; X + ¢;)*
i — 84(w; X + ¢;)°
&= Prl ro(wix + ¢8|
— QO(U)ZX + Qi)7
D™ Z(X)
i — 84D (w0; X + ¢;)° (9)
= Dbi
T £ 70D™) (w; X + ¢;)°
— 20D (w; X + ;)7
DPZ(X)
35D6(U)ZX + Qi)4
- — 84DF (w; X + ¢;)°

+70DF (w; X + ¢;)°
—20D8 (w; X + ;)7

The arbitrary ANN combinations with MW
kernels is applied for solving the designed novel
MFODS-LE model associated with the accessibil-
ity of the appropriate weight vector W. In order
to evaluate the estimated ANN weights, we use the
mean squared error-based MF called Fgj; which is
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written as follows:
Eriy = Erit—1 + Erit—2, (10)

where EFpi;—1 and Epj—9 are the MF's related to the
differential equation and boundary conditions of the
MFODS-LE model, which are written as follows:

1 T
Epit—1 = N Z
i=1

a2 2
— 7,
dXB+2
2N dPtt
= ___7
«| X axE ,
AA—1) d° P
X2 dxPTT
+H(Z,) -G,
(11)
1 7 \2 > 2
Erit—2 = 5((20) +(Zn)7) (12)
for
Nh=1, Z.=2Z(X,), G,=G(X,),
X, =rh.

One may define the solution of MFODS-LE model
(6) with the obtainability of suitable weights W,
such that Epy; — 0.

2.2. Networks Optimization

The optimization of the parameter for the fractional
MW-ANN is achieved by hybrid of PSO and IP; i.e.
PSOIP to solve the MFODS-LE model.

2.3. Optimization Using PSOIPA

The computational hybrid character of PSO and
IPA i.e. PSOIPA approves the parameter optimiza-
tion for solving the second kind of PD model.

PSO is an optimization global search schemé®®
applied broadly as a functioning replacement of
the genetic algorithm that is also a global search
technique *? Kennedy and Eberhart suggested PSO,
i.e. a renowned easy implementation global search
method and short memory processes required. 20
Few current PSO applications are fuel ignition net-
work Bl feature arrangements®2 to balance the U-
lines stochastic model operation procedure of
microgrids®® and physical models based on nonlin-
carity 53

Fractional Mayer Neuro-Swarm Heuristic Solver

In this study, a single applicant or candidate
solution using the process of optimization is called
particle of the swarm. To adjust the PSO param-
eters, the scheme offers optimal solutions Pf];l
and Pégl iteratively that represents the respective
swarm position as well as velocity, which is mathe-
matically written as follows:

X4 =XtV (13)
Vi =TVl A (Pl - X

+A(Pog' — X4y, (14)

where X; is the position and Vj is the velocity, A;
and A, are the constant acceleration values.

The process of hybridization of the PSO is imple-
mented for rapidly convergence ability with IP
method by taking the best particle of the swarm
as a start point. Therefore, a quick and effective
local search IP method is applied to adjust the profi-
cient outcomes using the designed MW-NN-PSOIP
method. Few current submission of the IP method
is the active noise control nets® mixed comple-
mentarily monotone nets, reproduction of aircraft
parts riveting®® nonlinear identification systems®?
and economic load dispatch models2

3. PERFORMANCE INDICES

The performance processes based on the TIC and
EVAF are shown in this section. The mathematical
notations of TIC and EVAF along with the global
demonstrations of Global TIC (G-TIC) and Global
EVAF (G-EVAF) have been proposed to solve the
MFODS-LE model, mathematically represented as

JEY (2~ 2,)

TIC = ——,  (15)
(Viziiz2+\Jixr, 22)
B var(Z; — Z;)
VAF = <1—W) x 100, (16)

EVAF = [VAF — 100].

4. SIMULATIONS AND RESULTS

The numerical outcomes of the comprehensive simu-
lations to solve three cases based on the MFODS-LE
model are provided here. The proposed solver MW-
NN-PSOIP results depending on the multiple runs
for the MFODS-LE model-based cases are plotted
with sufficient graphical and numerical illustrations
to assess the accuracy as well as convergence.

2140017-5



Fractals 2021.29. Downloaded from www.worldscientific.com
by CANKAYA UNIVERSITY on 04/28/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

Z. Sabir et al.

Example 1. Consider the MFODS-LE model
shown in Eq. (@) which is written as
dP+2 dB+1

4P

= X?G(X)=J(X), Z(0)=ZzZ(1)=0,

X2

Z(X)+ X*H(Z)

where

J(X) = X9t2 _ xs+2

4 X2 < I['(g+1) xa-B-2
L(g-p-1)
- F(S + 1) x37ﬂ72
N(s—p-1)
F(q + 1) Xq—ﬁ—l
I'(qg—B)
_ F(S + 1) Xsfﬁfl
I'(s—p—1)
I'(g+1) _
+2( L g9 P
<F(q -B+1)
I'(s+1) 3
- . 18
Ts—p+1)" > 1)
In Eq. (I8)), g and s are taken as positive. Combining
Eqgs. (IT7) and (I8)), the updated form is written as:
dP+2 4s+1

4P

+2dX—5
— Xa+2 _ xs+2
['(g+1) q—B—2
I'(q—06— 1)X
I'(s+1)
T(s—p-1)
I'(g+1)
I'(qg - )
[(s+1) L5—B-1
(s—0-1)
I'(g+1) a—B
2 <F(q—ﬁ+ 1)X
I'(s+1)
CT(s—p+1)

+4X(

X2

Z(X)+ X*H(Z)

+ X2
XS—B—Q

xa—p-1
+4x

Xs—ﬂ) ,Z(0) = Z(1) = 0.

(19)

The exact solution of the above MFODS-LE model
(19) is given as

Z(X) = X9 - X*. (20)

Now for the specific values of ¢ = 4 and s = 3, the
exact solution can be taken the form as

Z(X)=X*- X3 (21)
The MF for Eq. (I9) is written as

1
Erig—1 = ~

i=1

((Z0)* + (Z)?). (22)

Three cases for the MFODS-LE model are consid-
ered for different values of g, i.e. 8 = 0.2, 0.5 and
0.8, respectively.

To observe the performance of all the three cases
of the MFODS-LE model, optimization is executed
by PSOIP method. The entire procedure is repeated
for 70 times to produce the parameters of ANNs.
These trained ANN weights are applied to the first
set of the system (9) to assess the proposed results
for all cases of the MFODS-LE model. The mathe-
matical representations accomplished by one set of
the optimized factors to design the fractional MW-
NN-PSOIP method for all cases of the MFODS-LE
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model are written as
Zo_q = 2.4252
35(—0.844X + 0.9955)4
—84(—0.844X + 0.9955)°
+70(—0.844X + 0.9955)°
—20(—0.844X + 0.9955)7
—0.2540
35(—0.030X — 0.2822)*
— 84(—0.030X — 0.2822)°
+70(—0.030X — 0.2822)°
—20(—0.030X — 0.2822)7
—0.0175
35(0.3751X — 0.5716)*
—84(0.3751X — 0.5716)°
+70(0.3751X — 0.5716)°
—20(0.3751X — 0.5716)"
4+ —1.2977
35(0.9050X + 0.8468)%
—84(0.9050X + 0.8468)°
+70(0.9050X + 0.8468)% |’
—20(0.9050X + 0.8468)"

Zc—o = 0.6909
35(—0.793X + 0.9935)*
—84(—0.793X + 0.9935)°
+70(—0.793X + 0.9935)6
—20(—0.793X + 0.9935)7
—0.3197
35(—0.886X + 1.0407)*
—84(—0.886X + 1.0407)5
+70(—0.886X + 1.0407)¢
—20(—0.886X + 1.0407)7
—0.5709
35(0.1136X — 0.3916)*
—84(0.1136X — 0.3916)°
+70(0.1136 X — 0.3916)°
—20(0.1136X — 0.3916)7

+ - = 1.2977

Fractional Mayer Neuro-Swarm Heuristic Solver

35(0.9050X + 0.8468)%
—84(0.9050X + 0.8468)5
+70(0.9050X + 0.8468)°
—20(0.9050X + 0.8468)7

9

(24)
Zo—3=—0.032
35(0.0823X + 1.6275)*
—84(0.0823X + 1.6275)°
+70(0.0823X + 1.6275)8
—20(0.0823X + 1.6275)7
—0.0204
35(—0.974X + 1.1694)%
—84(—0.974X + 1.1694)°
+70(—0.974X + 1.1694)5
—20(—0.974X + 1.1694)%
—0.7684
35(0.3340X — 0.8961)*
—84(0.3340X — 0.8961)°
+70(0.3340X — 0.8961)°
—20(0.3340X — 0.896)7
+ o0+ 1.2977

(23) 35(0.0969X + 0.3591)%

—84(0.0969X + 0.3591)5
+70(0.0969X + 0.3591)°
—20(0.0969X + 0.3591)7

(25)

The approximate outcomes obtained by the MW-
NN-PSOIP are represented in Eqgs. (23)—(28) and
these obtained numerical outcomes are graphically
established in Figs. M-Ik for all cases of the
MFODS-LE model. The comparison of three solu-
tions best, worst and mean is provided in Figs. Id—
@ for all cases of the MFODS-LE model. It is
observed that the best, worst and mean outcomes
overlapped to each other. This exact assessment
of the numerical outcomes designates the perfec-
tion of the proposed MW-NN-PSOIP method. The
absolute error (AE) are plotted in Fig. [Ilg for all
cases of the MFODS-LE model. It is depicted that
the AE for Cases 1-3, lie in the range of 10707
10799, 107971079 and 1079810719, respectively.
The span of the performance investigations in terms
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=
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(h) Performance studies for all the cases of MFODS-LE system

Fig. 1 Outcomes of proposed scheme (a)—(c), weight sets (d)—(f), AE values (g) and performance studies (h).
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Fig. 2 Statistical performance of the MW-NN-PSOIP method via Fitness values along with histogram and box plots for all

the cases of MFODS-LE system.

of Fitness, TIC and EVAF values is provided in
Fig. h for all cases of the MFODS-LE model.
It is observed that the best fitness for Cases 1-3
are closely lying around 10~14-10716, 10-13-10~™
and 10714 ~1071%, respectively. The TIC values for
all the cases of the MFODS-LE model lie around

10~'2-10713. Furthermore, the EVAF values for all
the cases of the MFODS-LE model lie in the range
of 1071410716,

The performance practices for the Fitness, EVAF
and TIC together with the histogram values and
box plots are drawn in Figs. BHZ] for all cases of the
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Fig. 3 Statistical performance of the MW-NN-PSOIP method via TIC along with histograms as well as boxplots for all the

cases of MFODS-LE system.

MFODS-LE system. It is depicted that the values of
the Fitness, TIC and EVAF for all the cases of the
MFODS-LE system lie around 107%°-10713, 1079
10~'2 and 107%°-10713. On the behalf of these sta-
tistical values, one can undertake that the designed
MW-NN-PSOIP scheme is accurate and precise.

For the precision and accuracy investigations, the
statistical gages through MINimum (Min), Median,
MAXimum (Max), Mean, SIR and standard devi-
ation (ST.D) are calculated for 60 times execution
of the designed MW-NN-PSOIP and outcomes are
shown in Table [ for the MFODS-LE model-based
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Fig. 4 Statistical performance of the MW-NN-PSOIP method via EVAF values along with histogram and boxplots for all

the cases of MFODS-LE system.

Cases 1-3. The independent trials of the proposed
MW-NN-PSOIP solver based on Min and Max val-
ues are known as the best and worst executions,
respectively. SI.R is the one half of the first and
third quartiles. The desired small levels of all the
operators, i.e., Min, Median, Max, Mean, ST.D
and SI.R authenticate the performance, stability

and accuracy of the proposed fractional MW-
NN-PSOIP scheme for solving all cases of the
MFODS-LE model. To check the convergence of the
fractional MW-NN-PSOIP scheme, the global per-
formance in terms of G.FIT, G.TIC and G.EVAF
for 60 independent runs to solve the MFODS-LE
system is tabulated in Table Bl It is seen that
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Table 1 Outcomes of Statistical Investigations for MW-NN-PSOIP in Case of the MFODS-LE Model.

Index Mode Z(X)for Inputs X
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 Min 2.60E-09 9.40E—-12 5.10E—10 2.70E—09 1.40E—-09 3.40E—09 5.20E—-09 4.40E—09 3.10E—-09 1.90E—09

Max 1.00E-02 1.70E—-02 3.70E—02 7.00E—02
Median 5.30E-05 4.60E—05 2.40E—05 1.50E—05

1.10E-01 1.60E—01 2.20E-01 2.80E—01 3.50E—01 3.80E—01
1.20E-05 1.10E—-05 8.50E—-06 4.10E—06 3.50E—06 4.50E—06

Mean 8.30E—04 9.20E—04 1.00E—03 1.50E—03 2.10E—03 3.00E—03 3.80E—03 4.80E—03 5.90E-03 6.40E—-03

SI.R 2.50E—-04 2.30E-04 1.50E—-04 1.10E—04 9.80E—-05 8.60E—05 7.10E—-05 5.80E—05 5.00E—-05 4.30E—-05
ST.D 1.90E-03 2.60E—03 4.90E-03 9.0E—-03 1.40E-02 2.10E-02 2.80E—-02 3.60E—02 4.50E—02 4.80E—-02
2 Min 1.30E—-10 1.80E—-08 2.2E—-09 2.30E-08 1.70E—08 1.10E—08 1.10E-08 7.00E—09 3.60E—09 9.60E—11
Max 2.10E-02 2.60E-02 3.90E—-02 7.30E—02 1.10E-01 1.70E-01 2.40E-01 3.10E-01 3.70E-01 4.20E-01

Median 1.90E-06 2.40E—06 2.00E-06 1.70E—06

1.70E-06 1.60E—06 1.50E—06 1.30E—06 1.20E—06 1.10E—06

Mean 7.20E-04 1.00E—-03 1.30E—03 1.80E—03 2.50E—03 3.40E—03 4.50E—03 5.50E-03 6.60E-03 7.40E—-03

SI.R 1.20E—-04 1.40E—-04 1.20E-04 1.10E—-04 1.10E-04 9.90E—-05 9.10E—05 8.40E—-05 7.80E—05 7.30E—-05
ST.D 2.80E—03 4.00E—-03 5.80E—03 9.70E—03 1.50E—02 2.30E—02 3.10E-02 3.90E—02 4.80E—-02 5.40E—-02
3 Min 3.70E-10 4.00E—-09 8.50E—10 4.00E—09 5.00E—-09 2.30E—09 6.10E—-11 2.10E-09 3.70E—-09 4.90E—09
Max 5.00E-04 1.40E-03 1.70E-03 1.80E—03 2.00E—-03 2.00E—03 2.10E-03 2.10E-03 2.10E-03 2.10E—-03

Median 1.70E-06 2.50E—06 2.60E—-06 2.80E—-06 3.00E—-06 3.10E—06 3.10E—06 2.90E—-06 2.90E—-06 2.80E—06
Mean 5.20E—-05 1.40E-04 1.70E—04 1.90E—04 2.00E—-04 2.10E—04 2.20E-04 2.20E—04 2.20E—-04 2.20E—04
SI.LR 2.30E—-05 6.30E—05 7.80E—05 8.50E—05 9.10E—05 9.50E—05 9.70E-05 9.80E—05 9.90E-05 9.90E—-05
ST.D 1.10E-04 3.00E—04 3.70E—-04 4.10E—04 4.40E—04 4.60E—04 4.60E—04 4.70E—04 4.70E—04 4.70E—-04

Table 2 Global Measures for All Cases of the MFODS-LE Model.

Case G.FIT G.TIC G.EVAF

Min SI.LR Min SI.R Min SI.LR
1 3.34998E—15 2.24432E—-07 9.22705E—13 1.60408E—08 1.11022E—14 6.48665E—06
2 1.57893E—14 1.12123E—-07 1.00447E—12 1.14505E—08 4.84057TE—14 5.24990E—-07

3 6.58516E—15 6.56010E—08 3.44520E—13 6.23001E—-09 5.99520E—15 6.74192E—-08

the Min values of the G.FIT, G.TIC and G.EVAF
lie closed to 10714-10715, 10712-10=1% and 10~
10715, while the S.IR for these performances lies
around 10797-107%,107%8-107% and 1079610798
for solving MFODS-LE model-based Cases 1-3. The
ideal close values of the global operators further val-
idate the accuracy of the proposed fractional MW-
NN-PSOIP scheme.

5. CONCLUSION AND UPCOMG
RELATED RESEARCH

In this work, multi-fractional doubly singular non-
linear LE system is developed by implementing the
idea of the generic form of the LE system. The
fractional factor, shape factors and the singular-
based points are also reported in the modeled equa-
tions. It is observed that the singular points appear
twice. The shape factor appears single both in
the LE standard form as well as in the present
modeling work. To access the perfection of the

designed novel multi-fractional LE system, three
cases have been implemented and their numeri-
cal performance has been investigated using the
influential ANNs along with PSO and IP method.
The fractional MW-NN-PSOIP method is broadly
executed on multi-fractional LE system for three
variants to demonstrate the robustness, accuracy
and stability. The achieved numerical outcomes
from the fractional MW-NN-PSOIP method are
compared with the exact outcomes with precision
around 7-9 decimal points of accuracy, which val-
idates the perfection as well as efficiency. Fur-
thermore, statistical assessments of the suggested
fractional MW-NN-PSOIP method on 70 execu-
tions give accurate and precise numerical outcomes.
Subsequently, the suggested fractional MW-NN-
PSOIP method is not only prominent for smooth
viable/operational results, but also one can extend
and apply the said scheme with ease.

In the future, one can explore the MW-
NN-PSOIP method-based novel fractional Mayer
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Neuro-swarming intelligent solver for differential
equations containing integer as well as fractional
order representation of the variables.
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