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Abstract

We briefly review our recent results on the geometry of nonholo-
nomic manifolds and Lagrange–Finsler spaces and fractional calculus
with Caputo derivatives. Such constructions are used for elaborating
analogous models of fractional gravity and fractional Lagrange me-
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1 Introduction

We can construct analogous fractional models of geometries and physi-
cal theories in explicit form if we use fractional derivatives resulting in zero
for actions on constants (for instance, for the Caputo fractional derivative).
This is important for elaborating geometric models of theories with frac-
tional calculus even (performing corresponding nonholonomic deformations)
we may prefer to work with another type of fractional derivatives.

In this paper, we outline some key constructions for analogous clas-
sical and quantum fractional theories [1, 2, 3, 4, 5, 6] when methods of
nonholonomic and Lagrange–Finsler geometry are generalized to fractional
dimensions.1

An important consequence of such geometric approaches is that using
analogous and bi–Hamilton models (see integer dimension constructions
[7, 9, 10]) and related solitonic systems we can study analytically and numer-
ically, as well to try to construct some analogous mechanical and gravita-
tional systems, with the aim to mimic a nonlinear/fractional nonholonomic
dynamics/evolution and even to provide certain schemes of quantization,
like in the ”fractional” Fedosov approach [4, 8].

This work is organized in the form: In section 2, we remember the
most important formulas on Caputo fractional derivatives and nonlinear
connections. Section 3 is devoted to fractional Lagrange–Finsler geometries.
There are presented the main constructions for analogous fractional gravity
in section 4.

Acknowledgement: This paper summarizes the results presented in
our talk at the 3d Conference on ”Nonlinear Science and Complexity”, 28–31
July, 2010, Çhankaya University, Ankara, Turkey.

1we recommend readers to consult in advance the above cited papers on details, nota-
tion conventions and bibliography
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2 Caputo Fractional Derivatives and N–connecti-

ons

We summarize some important formulas on fractional calculus for non-
holonomic manifold elaborated in Refs. [1, 2, 3, 5]. Our geometric arena

consists from an abstract fractional manifold
α

V (we shall use also the term
”fractional space” as an equivalent one enabled with certain fundamental
geometric structures) with prescribed nonholonomic distribution modeling
both the fractional calculus and the non–integrable dynamics of interactions.

The fractional left, respectively, right Caputo derivatives are denoted in
the form

1x

α

∂xf(x) :=
1

Γ(s− α)

x∫

1x

(x− x′)s−α−1

(
∂

∂x′

)s

f(x′)dx′; (1)

x

α

∂
2x
f(x) :=

1

Γ(s− α)

2x∫

x

(x′ − x)s−α−1

(
−

∂

∂x′

)s

f(x′)dx′ .

Using such operators, we can construct the fractional absolute differential
α

d := (dxj)α 0

α

∂j when
α

dxj = (dxj)α (xj)1−α

Γ(2−α) , where we consider 1x
i = 0.

We denote a fractional tangent bundle in the form
α

TM for α ∈ (0, 1),
associated to a manifold M of necessary smooth class and integer dimM =
n.2 Locally, both the integer and fractional local coordinates are written in

the form uβ = (xj , ya). A fractional frame basis
α
eβ = eβ

′

β(u
β)

α

∂β′ on
α

TM is

connected via a vierlbein transform eβ
′

β(u
β) with a fractional local coordinate

basis
α

∂β′ =

(
α

∂j′ = 1xj′

α

∂j′ ,
α

∂b′ = 1yb
′

α

∂b′

)
, (2)

for j′ = 1, 2, ..., n and b′ = n+1, n+2, ..., n+n. The fractional co–bases are

written
α
e

β
= e β

β′ (uβ)
α

duβ
′
, where the fractional local coordinate co–basis is

α

duβ
′

=
(
(dxi

′

)α, (dya
′

)α
)
. (3)

It is possible to define a nonlinear connection (N–connection)
α

N for

a fractional space
α

V by a nonholonomic distribution (Whitney sum) with

2The symbol T is underlined in order to emphasize that we shall associate the approach
to a fractional Caputo derivative.
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conventional h– and v–subspaces, h
α

V and v
α

V,

α

T
α

V = h
α

V⊕v
α

V. (4)

Locally, such a fractional N–connection is characterized by its local coeffi-

cients
α

N={ αNa
i }, when

α

N= αNa
i (u)(dx

i)α ⊗
α

∂a.

On
α

V, it is convenient to work with N–adapted fractional (co) frames,

αeβ =

[
αej =

α

∂j −
αNa

j

α

∂a,
αeb =

α

∂b

]
, (5)

αeβ = [ αej = (dxj)α, αeb = (dyb)α + αN b
k(dx

k)α]. (6)

A fractional metric structure (d–metric)
α
g = { αgαβ} = [ αgkj,

αgcb] on
α

V can be represented in different equivalent forms,

α
g = αgγβ(u)(du

γ)α ⊗ (duβ)α (7)

= αgkj(x, y)
αek ⊗ αej + αgcb(x, y)

αec ⊗ αeb

= ηk′j′
αek

′

⊗ αej
′

+ ηc′b′
αec

′

⊗ αeb
′

,

where matrices ηk′j′ = diag[±1,±1, ...,±1] and ηa′b′ = diag[±1,±1, ...,±1],
for the signature of a ”prime” spacetimeV, are obtained by frame transforms
ηk′j′ = ekk′ e

j
j′

αgkj and ηa′b′ = eaa′ e
b
b′

αgab.

We can adapt geometric objects on
α

V with respect to a given N–connection

structure
α

N, calling them as distinguished objects (d–objects). For instance,

a distinguished connection (d–connection)
α

D on
α

V is defined as a linear con-
nection preserving under parallel transports the Whitney sum (4). There is
an associated N–adapted differential 1–form

αΓτ
β = αΓτ

βγ
αeγ , (8)

parametrizing the coefficients (with respect to (6) and (5)) in the form
αΓ

γ
τβ =

(
αLi

jk,
αLa

bk,
αCi

jc,
αCa

bc

)
.

The absolute fractional differential αd =
1x

α

dx+ 1y

α

dy acts on fractional
differential forms in N–adapted form. This is a fractional distinguished
operator, d–operator, when the value αd := αeβ αeβ splits into exterior h-
and v–derivatives when

1x

α

dx := (dxi)α
1x

α

∂i =
αej αej and

1y

α

dy := (dya)α
1x

α

∂a = αeb αeb.

4



Using such differentials, we can compute in explicit form the torsion and cur-
vature (as fractional two d–forms derived for (8)) of a fractional d–connection
α

D = { αΓτ
βγ},

αT τ
+

α

D αeτ = αd αeτ + αΓτ
β ∧ αeβ and (9)

αRτ
β +

α

D αΓτ
β = αd αΓτ

β − αΓ
γ
β ∧ αΓτ

γ = αRτ
βγδ

αeγ ∧ αeδ.

Contracting respectively the indices, we can compute the fractional Ricci
tensor αRic = { αRαβ +

αRτ
αβτ} with components

αRij +
αRk

ijk,
αRia + − αRk

ika,
αRai +

αRb
aib,

αRab +
αRc

abc (10)

and the scalar curvature of fractional d–connection
α

D,

α
sR +

αgτβ αRτβ = αR+ αS, αR = αgij αRij,
αS = αgab αRab, (11)

with αgτβ being the inverse coefficients to a d–metric (7).

The Einstein tensor of any metric compatible
α

D, when
α

Dτ
αgτβ = 0, is

defined αEns = { αGαβ}, where

αGαβ := αRαβ −
1

2
αgαβ

α
sR. (12)

The regular fractional mechanics defined by a fractional Lagrangian
α

L

can be equivalently encoded into canonical geometric data ( L

α

N, L
α
g, α

cD),
where we put the label L in order to emphasize that such geometric objects
are induced by a fractional Lagrangian as we provided in [1, 2, 3, 5]. We also

note that it is possible to ”arrange” on
α

V such nonholonomic distributions

when a d–connection 0

α

D = { α
0 Γ̃

γ′

α′β′} is described by constant matrix
coefficients, see details in [9, 10], for integer dimensions, and [5], for fractional
dimensions.

3 Fractional Lagrange–Finsler Geometry

A Lagrange space Ln = (M,L), of integer dimension n, is defined by
a Lagrange fundamental function L(x, y), i.e. a regular real function L :
TM → R, for which the Hessian Lgij = (1/2)∂2L/∂yi∂yj is not degenerate.

We say that a Lagrange space Ln is a Finsler space Fn if and only if
its fundamental function L is positive and two homogeneous with respect to

5



variables yi, i.e. L = F 2. For simplicity, we shall work with Lagrange spaces
and their fractional generalizations, considering the Finsler ones to consist
of a more particular, homogeneous, subclass.

Definition 3.1 A (target) fractional Lagrange space
α

Ln = (
α

M,
α

L) of frac-

tional dimension α ∈ (0, 1), for a regular real function
α

L :
α

TM → R, when
the fractional Hessian is

L
α
gij =

1

4

(
α

∂i

α

∂j +
α

∂j

α

∂i

)
α

L 6= 0. (13)

In our further constructions, we shall use the coefficients L

α

gij being in-

verse to L
α
gij (13).

3 Any
α

Ln can be associated to a prime ”integer” Lagrange
space Ln.

The concept of nonlinear connection (N–connection) on
α

Ln can be intro-
duced similarly to that on nonholonomic fractional manifold [1, 2] consider-

ing the fractional tangent bundle
α

TM.

Definition 3.2 A N–connection
α

N on
α

TM is defined by a nonholonomic

distribution (Whitney sum) with conventional h– and v–subspaces, h
α

TM

and v
α

TM, when
α

T
α

TM = h
α

TM⊕v
α

TM. (14)

Locally, a fractional N–connection is defined by a set of coefficients,
α

N={ αNa
i }, when

α

N= αNa
i (u)(dx

i)α ⊗
α

∂a, (15)

see local bases (2) and (3).
Let us consider values yk(τ) = dxk(τ)/dτ, for x(τ) parametrizing smooth

curves on a manifold M with τ ∈ [0, 1]. The fractional analogs of such
configurations are determined by changing d/dτ into the fractional Caputo

derivative
α

∂τ =
1τ

α

∂τwhen
αyk(τ) =

α

∂τx
k(τ). For simplicity, we shall omit

the label α for y ∈
α

TM if that will not result in ambiguities and/or we shall
do not associate to it an explicit fractional derivative along a curve.

3We shall put a left label L to certain geometric objects if it is necessary to emphasize
that they are induced by Lagrange generating function. Nevertheless, such labels will be
omitted (in order to simplify the notations) if that will not result in ambiguities.
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By straightforward computations, following the same scheme as in [7]
but with fractional derivatives and integrals, we prove:

Theorem 3.1 Any
α

L defines the fundamental geometric objects determin-
ing canonically a nonholonomic fractional Riemann–Cartan geometry on
α

TM being satisfied the properties:

1. The fractional Euler–Lagrange equations

α

∂τ (
1yi

α

∂i

α

L)−
1xi

α

∂i

α

L = 0

are equivalent to the fractional ”nonlinear geodesic” (equivalently, semi–
spray) equations

(
α

∂τ

)2

xk + 2
α

Gk(x, αy) = 0,

where
α

Gk =
1

4
L

α

gkj
[
yj

1yj

α

∂j

(
1xi

α

∂i

α

L

)
−

1xi

α

∂i

α

L

]

defines the canonical N–connection

α
LN

a
j =

1yj

α

∂j

α

Gk(x, αy). (16)

2. There is a canonical (Sasaki type) metric structure,

L
α
g = α

Lgkj(x, y)
αek ⊗ αej + α

Lgcb(x, y)
α
Le

c ⊗ α
Le

b,

where the preferred frame structure (defined linearly by α
LN

a
j ) is

α
Leν = ( α

Lei, ea).

3. There is a canonical metrical distinguished connection

α
cD = (h α

cD, v α
cD) = { α

cΓ
γ
αβ = ( αL̂i

jk,
αĈi

jc)} ,

(in brief, d–connection), which is a linear connection preserving under

parallelism the splitting (14) and metric compatible, i.e. α
cD

(
L
α
g
)
=

0, when
α
c Γ

i
j =

α
c Γ

i
jγ

α
Le

γ = L̂i
jke

k + Ĉi
jc

α
Le

c,

7



for L̂i
jk = L̂a

bk, Ĉ
i
jc = Ĉa

bc in α
cΓ

a
b =

α
c Γ

a
bγ

α
Le

γ = L̂a
bke

k + Ĉa
bc

α
Le

c,

αL̂i
jk =

1

2
α
Lg

ir ( α
Lek

α
Lgjr +

α
Lej

α
Lgkr −

α
Ler

α
Lgjk) ,

αĈa
bc =

1

2
α
Lg

ad ( αec
α
Lgbd +

αec
α
Lgcd −

αed
α
Lgbc)

are just the generalized Christoffel indices.4

Finally, in this section, we note that:

Remark 3.1 We note that α
cD is with nonholonomically induced torsion

structure defined by 2–forms

α
LT

i = Ĉi
jc

αei ∧ α
Le

c,

α
LT

a = −
1

2
LΩ

a
ij

αei ∧ αej +
(

αeb
α
LN

a
i − αL̂a

bi

)
αei ∧ α

Le
b

computed from the fractional version of Cartan’s structure equations

d αei − αek ∧ α
cΓ

i
k = − α

LT
i,

d α
Le

a − α
Le

b ∧ α
c Γ

a
b = − α

LT
a,

d α
cΓ

i
j −

α
c Γ

k
j ∧

α
cΓ

i
k = − α

LR
i
j

in which the curvature 2–form is denoted α
LR

i
j.

In general, for any d–connection on
α

TM, we can compute respectively
the N–adapted coefficients of torsion αT τ = { αΓτ

βγ} and curvature αRτ
β =

{ αRτ
βγδ} as it is explained for general fractional nonholonomic manifolds

in [1, 2].

4 Analogous Fractional Gravity

Let us consider a ”prime” nonholonomic manifold V is of integer dimen-

sion dim V = n+m,n ≥ 2,m ≥ 1.5 Its fractional extension
α

V is modelled

4for integer dimensions, we contract ”horizontal” and ”vertical” indices following the
rule: i = 1 is a = n+ 1; i = 2 is a = n+ 2; ... i = n is a = n+ n”

5A nonholonomic manifold is a manifold endowed with a non–integrable (equivalently,
nonholonomic, or anholonomic) distribution. There are three useful (for our consider-
ations) examples when 1) V is a (pseudo) Riemannian manifold; 2) V = E(M), or 3)
V = TM, for a vector, or tangent, bundle on a base manifold M. We also emphasize that
in this paper we follow the conventions from Refs. [7, 1, 2] when left indices are used as
labels and right indices may be abstract ones or running certain values.

8



by a quadruple (V,
α

N,
α

d,
α

I), where
α

N is a nonholonomic distribution stating
a nonlinear connection (N–connection) structure. The fractional differen-

tial structure
α

d is determined by Caputo fractional derivative (1) following
formulas (2) and (3).

For any respective frame and co–frame (dual) structures,

αeα′ = ( αei′ ,
αea′) and

αeβ
′
= ( αei

′
, αea

′
) on

α

V, we can consider frame
transforms

αeα = A α′

α (x, y) αeα′ and αeβ = Aβ
β′(x, y)

αeβ
′

. (17)

A subclass of frame transforms (17), for fixed ”prime” and ”target”
frame structures, is called N–adapted if such nonholonomic transformations
preserve the splitting defined by a N–connection structure N = {Na

i }.
Under (in general, nonholonomic) frame transforms, the metric coeffi-

cients of any metric structure
α
g on

α

V are re–computed following formulas

αgαβ(x, y) = A α′

α (x, y) A β′

β (x, y) αgα′β′(x, y).

For any fixed
α
g and

α

N, there are N–adapted frame transforms when

α
g = αgij(x, y)

αei ⊗ αej + αhab(x, y)
αea ⊗ αeb,

= αgi′j′(x, y)
αei

′

⊗ αej
′

+ αha′b′(x, y)
αea

′

⊗ αeb
′

,

where αea and αea
′
are elongated following formulas (6), respectively by

αNa
j and

αNa′

j′ = A a′

a (x, y)Aj
j′(x, y)

αNa
j(x, y), (18)

or, inversely,
αNa

j = A a
a′ (x, y)Aj′

j(x, y)
αNa′

j′(x, y)

with prescribed αNa′

j′ .
We preserve the N–connection splitting for any frame transform of type

(17) when

αgi′j′ = Ai
i′A

j
j′

αgij ,
αha′b′ = Aa

a′A
b
b′

αhab,

for A i′

i constrained to get holonomic αei
′
= A i′

i
αei, i.e. [ αei

′
, αej

′
] = 0

and αea
′
= dya

′
+ αNa′

j′dx
j′ , for certain xi

′
= xi

′
(xi, ya) and ya

′
=

ya
′
(xi, ya), with αNa′

j′ computed following formulas (18). Such conditions
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can be satisfied by prescribing from the very beginning a nonholonomic dis-
tribution of necessary type. The constructions can be equivalently inverted,
when αgαβ and αNa

i are computed from αgα′β′ and αNa′

i′ , if both the

metric and N–connection splitting structures are fixed on
α

V.
An unified approach to Einstein–Lagrange/Finsler gravity for arbitrary

integer and non–integer dimensions is possible for the fractional canonical d–
connection αD̂. The fractional gravitational field equations are formulated
for the Einstein d–tensor (12), following the same principle of constructing
the matter source αΥβδ as in general relativity but for fractional metrics
and d–connections,

αÊ βδ =
αΥβδ .

Such a system of integro–differential equations for generalized connections
can be restricted to fractional nonholonomic configurations for α∇ if we
impose the additional constraints

αL̂c
aj =

αea(
αN c

j ),
αĈi

jb = 0, αΩa
ji = 0.

There are not theoretical or experimental evidences that for fractional
dimensions we must impose conditions of type (4) but they have certain
physical motivation if we develop models which in integer limits result in
the general relativity theory.
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