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1 The basic question and its consequences

When we deal with classical calculus and its applications, one of the first advantages we
have is that we have physical and geometrical meanings of classical derivative and integral.
However, we recall that the basic question of L'Hospital was if we can extend the meaning
of the classical derivative to noninteger case. The magnificent answer of Leibniz [1] mo-
tivated a series of interesting results reported during the last 325 years (see for example
Refs. [2-16] and the references therein). Besides, we strongly believe that many valuable
answers of the primary question will be reported in the future. During the eighteenth and
nineteenth centuries, there were a lot of top level scientists such as Euler, Laplace, Fourier,
Abel, Liouville, Grunwald, Letnikov, Riemann, Laurent, Heaviside, and some others who
reported interesting results within fractional calculus (see for example [2, 11, 17, 18] and
the references therein). In the twentieth century, but before 1985, we can mention some
of high level researchers in fractional calculus such as Weyl, Hardy, Littlewood, Levy, Zyg-
mud, Riesz, Doetsch, Erdelyi, Widder, Rabotnov, Feller, Maraval, Sneddon, Gorenflo, Ca-
puto, Dzherbashyan, Samko, Srivastava, Oldham, Osler, Mainardi, Love, Spanier, Mathai,
Saxena, Ross, McBride, Blair, Nigmatullin, Oustaloup, Bagley, Torvik among others (see
for example [11] and the references therein).

Nowadays, fractional calculus deals with the study of so-called fractional order integral
and derivative operators over real or complex domains and their applications. Fractional
calculus is actually a misnomer; the so-called designation of integration and differentia-
tion of arbitrary order is more appropriate. More details regarding the history of fractional
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calculus (see for more details [2—16] and the references therein) can be seen for example in
[2,17, 18] and the references therein. In our opinion, the physical and geometrical mean-
ings of fractional operators are still not clearly established despite many interesting at-
tempts (see for example [19] and the references therein) to tackle these still contemporary
open problems. In our opinion, even for the notion of the fractional order of a fractional
derivative [8], we do not have yet a clear meaning. Of course, for given real data corre-
sponding to complex phenomena, let us identify the order of a fractional operator utilised
within a related fractional model, but what is the case when the fractional order becomes
an irrational number?

During the last decades, fractional calculus started to be used as a powerful tool by
many researchers working in several branches of science and engineering, e.g., the frac-
tional control theory [6, 9]. Especially after 2010, in our opinion, we can identify some new
viewpoints within fractional calculus. Besides, a lot of real-world applications were treated
within fractional calculus, e.g., in biology and related areas (among many new results, see
for example [8, 11-16, 21-30] and the references therein).

Very recently, fractional calculus has been passing through a process of filtration of sev-
eral suggested operators reported during the last decade. In fact, in our opinion, we assist
in the process of natural classification in the classes of fractional operators (see for example
[17, 20, 25] and the references therein for more details about this topic).

2 The theory

Starting from the earlier stage of fractional calculus, many researchers aimed to extend
the classical calculus. Thus, several fractional operators have been introduced during the
last 325 years [4, 9]. For example, the Caputo derivative appeared naturally in the work of
Abel, Liouville [31], and it was introduced by Caputo in [3] to solve a practical problem.

Definition 2.1 The Riemann-Liouville fractional integral of a function g € L'[a, b], with
the constant of integration 4, is defined as follows for ¢ € [a, b] and the order of integration
a € C with Real(x) >0 [4, 7, 9]:

al’g(t) = ﬁ / (t -9 'g0) dy. (1)

Definition 2.2 The Riemann-Liouville fractional derivative of a function g € C"[a, b] is
defined as follows for ¢ € [a, b], the order of differentiation o € C with Real(a) > 0 and
n—-1<Realla)<nl4,7,9]:

d}’l
D%g(t) = — (al"“g(¢)). 2
aDg(t) = < (al"g(0) 2)
Definition 2.3 The Caputo fractional derivative of a function g € C”[a, b] is defined as fol-
lows for ¢t € [a, b], the order of differentiation & € C with Real(e) > 0 and n—1 < Real(x) <
nl4,7,9]:

CaD’g(t) = al"™® (iﬂg(t)). (3)

Also, the integral of Riemann-Liouville [4, 7, 9] type appears in several natural pro-
cesses, and it played a key factor in fractional calculus. Several numerical methods used
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for fractional differential equations have been investigated (see for example [9, 11, 13, 14]
and the references therein), but still they are in the process of developing despite of the
important progress done within this field. For example, the key role of the initialisation of
fractional differential equations has received a huge attention of researchers during the last
few years. The most general type of fractional differential equations involved the so-called
Caputo like operators containing various types of kernels. In this case, in our opinion, we
have to find the answer to the following question: why for a fractional operator not having
yet a very clear physical meaning do we have to use the initial conditions similar to the
classical case?

In our opinion, the ideas formulated by Liouville in 1832 [31] and related to the fractional
calculus have remained contemporary; namely, we need new types of fractional operators
for solving real-world problems which were not able to be solved with other types of ex-
isting mathematical tools. So far, in our opinion, the answer to the question “which is the
most general fractional operator solving all types of complicated dynamical systems with
various memory effects?” could not be found, and it remains a big and interesting open
question. In our opinion, the development of fractional calculus depends dramatically on
the development of numerical methods applied to fractional operators. A new perspective
should be added in this area, and it should bypass the difficulties due to memory effect.
We recall that almost all numerical techniques for fractional differential equations rely on
the approximation of fractional differential or integral operators by specific formulas (see
for examples [9, 11, 13, 14] and the references therein); thus, much interest for the future
will be concentrated at this point. Besides, an interesting direction within fractional calcu-
lus, especially for modelling and in the perspective of artificial intelligence, is its discrete
version. Basically, the discrete fractional calculus [32-35] generalises the classical results

of difference equations [36].

Definition 2.4 Lety: N, — Rand 0 < v. Then the v order fractional sum becomes [32, 37]

t—v

ALy(E) = ZK_u(t, $)y(s), a€RteN,,, 4)

where K_,(t,s) = (t —s — 1)"Y/T'(v), and £ is the discrete factorial functional defined by

) _ re+1)
TT(t+1-v)

Definition 2.5 For y(¢) defined on N, and 0 < v,v ¢ N, the Caputo difference reads as
[38, 39]

CA;y(t) = A;(’”“’)A”’y(t), t €Ny, m=[v]+1. (5)
When v = m, we have CAYy(£) := A"y(t).

Here, A™y(t) denotes the mth order forward difference operator (the expression can be

seen for example in [38]).
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Definition 2.6 For x(¢) defined on N, and 0 < v, v ¢ N, the Riemann-Liouville difference
has the following expression [32]:

Alx(t) = A" A" x(t),  t € Nyymey. 6)

3 The experimental data versus the models based on fractional calculus
Fractional calculus has been intensively applied to various types of complex dynamics hav-
ing a different origin of the memory effect. In some cases, the real data exists; thus, the
fractional models have been appropriately tested.

One of the most interesting applications of discrete fractional calculus (see for example
Refs [32-35, 37-39] and the references therein) is related to chaotic maps which play an
important role in the information encryption. For example, the patent [40] proposed a new
fractional chaotic map with more parameters and complicated chaotic behaviour such that
the secret space increases in image encryption. Much more important, this new map fast
generates chaotic series and can be applied to encryption of big data.

Particularly during the last few years, the fractional models for biological systems have
been developed by taking into account the dimensionality issue which always appears in
such formulations. Namely among various possibilities to construct a fractional biolog-
ical model [26, 41], we have to take care of keeping the biological meaning of modified
parameters in the model. The new models of fractional calculus take into account the
causality condition and the thermodynamic principles for prediction of some valuable
consequences. Dealing with real data shows us that there is no single operator describing
the dynamics of complex systems from various disciplines. On the contrary, given real data
selects naturally the best fractional kernel. Generally, from the experimental viewpoint, a
simple fractional operator is required. Using the fractional calculus tool to explore the new
and complicated dynamical systems is one target of the new generation of researchers,
and the examples from space sciences are one huge possible way. For example, the fad-
ing memory concept relating the flux to its gradient for simple materials is modelled by
integro-differential equation as a manifestation of the old Boltzmann linear superposition
function through a memory kernel [42]. Besides, we have to apply correctly a fractional
operator to an appropriate phenomenon; otherwise, the results are incorrect. A typical
example is to apply the Caputo—Fabrizio operator [21, 22, 43, 44] to a linear viscoelasticity
instead of the nonlinear viscoelastic behaviour of materials. On this line of taught, in our
opinion, the replacement of the classical operator with a given operator (fractional or not)
should be tackled with a great care in the future.

Besides, in the theory of modelling it is well-accepted to follow a so-called five-step
method [45], namely:

(a) Ask the question. (b) Identify the modelling approach. (c) Formulate the model.
(d) Solve the model. (e) Answer the initial question [45].

Looking at the dynamics of published papers so far in the area of fractional modelling,
we conclude that not all the above-mentioned five steps are taken into account; therefore,
obeying all five steps should be a priority for the future studies. The question related to the
most suitable kernel [9, 17, 20-23, 25, 27-30, 44, 46—48] for given real data corresponding
to a given complex process is still a difficult task, and it is deeply related to the second and
third steps presented above. In our opinion, various kernels used today by researchers
(some of them related to fractional calculus but some of them not) can be satisfactorily
unified under the umbrella of the large spectra of memory.
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3.1 An example: tumour-immune surveillance mathematical model

In what follows we give a simple example of using several fractional kernels [29]. The clas-
sical model of tumour—immune surveillance system introduced in [49] investigated the
interaction between the population of various tumour cells and immune system inter-
ceded by activated CD8* CTLs and NK cells. Taking into account that fractional deriva-
tives basically comprise memory, it is argumentative to utilise a fractional extension to this
model. Thus, in the classical model all integer derivatives are replaced by their oth order
Mittag-Leffler kernel (ABC) fractional derivative [23] where « € (0, 1). The dimensional-
ity condition on both sides of the fractional model, namely the left- and right-hand sides
possess the same dimension (time)™, implies that the biological parameters having the

1

dimension (time)~' are modified by the power of o, while the other parameters as well as

dimensionless ones remain unchanged [41]. According to these attributes, the generalised
ABC fractional model of tumour—immune surveillance is proposed as follows [29]:

ABSDEL(t) = (ﬂf)“L(t)To(t)(m +qr-1)

+ (ﬂ;,)“L(t)TN(t)(m +¢ = 1) = ugL(®),
ABEDYN(8) = s* = (ufy + (1= pa) (@) To(8) + (1 = 7on) (e )* Tn ()N (2),
ABSDE To(t) = —a*bT3(t) — ()" N(8) + (B7)*L(t) — a*) To(t),
ABSDY Ty (8) = —a®bT7(t) — ((af )*N(£) — a*) T (2) + q7(B])* L(£) To(2), @)
APSDY T (t) = —a®bT(8) = (BY)*L(®) = a*) Tn(2) + pr(ad)*N(®) To(2),
ABEDY T (t) = —a®bT 2, () + a® Ty (8) + mor(ef )X N(8) T1.(2)

+8r(BY) L) Tn(2),

L(0) = Lo, N(0) = No, To(0) = Too, T1(0) = Tn(0) = Tne(0) = O,

where 48SD? represents the fractional ABC operator defined by [23]

ABOCDfx(t):ZIVI_(O;) /0 Ea<—£(t—r)“>5c(t)dr, (8)

E,, denotes the ML function, and M(«) satisfying M(0) = M(1) = 1 is a normalisation func-
tion. In order to prove the capability of ABC Mittag-Leffler approach, a set of real data was
used from [49]. Figures 1-3 compared the real growth of naive tumour cell population
from [49] and the outputs of two fractional models and an integer-order counterpart. In
addition, the absolute and relative errors regarding each model were reported in Table 1.
A particle swarm optimisation algorithm was also employed in order to find the optimal
value of « at each fractional case [50]. The reported results in Figs. 1-3 verify a good
agreement of the ABC model (o = 0.9) and the real data in the whole interval [29]. The
superiority of this ABC model in terms of absolute and relative errors is also confirmed in
Table 1 (see [29]). Therefore, the additional complexity imposed by the ABC fractional cal-
culus approach is justified, for this particular model, by the aforesaid achieved advantages
[29].

4 Classification of fractional operators: “a fata morgana”
One of the intensely debated subjects within fractional calculus is the attempt to classify
fractional operators. Started by Ross in 1975 [17], this complex process of the classification
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Figure 1 The growth of naive tumour cell population derived by the Caputo fractional model with & = 0.952
[29] versus the real data of tumour growth used in [49]
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Figure 2 The growth of naive tumour cell population derived by the classical integer model versus the real
data of tumour growth used in [49] and [29]

of fractional operators passed several periods, and various attempts have been presented
(see for example [20, 25, 46—48] and the references therein). In our opinion, so far, there
has been no consensus achieved on the main criteria that classify the fractional opera-
tors. The experimental facts registered and reported in CERN easily have minimised the
solid mathematical constructions such as string theory and super-symmetry in favour of
standard models based on much simpler concepts and more physical concepts as gauge
invariance. Constructing nice complicated fractional operators may not give the best out-
put always when we create models involving them. Besides, it seems that there is not a
unique fractional operator which can be used to describe all types of processes having dif-
ferent types of memory effects. In our opinion, the classification in the classes of fractional
operators is more reasonable [25] from both experimental and mathematical viewpoints.
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Figure 3 The growth of naive tumour cell population derived by the ABC fractional model with & = 0.9 [29]
versus the real data of tumour growth used in [49]

Table 1 Comparative results of the fractional and integer models versus real data [29]

The model o The absolute error The relative error
Integer 1 4.9501e + 06 0.1164
Caputo 0.952 1.1271e + 06 0.0265
Mittag-Leffler kernel 09 2.9030e + 05 0.0068

Besides, the distinct notions of singular and nonsingular fractional operators with their
specific advantages and disadvantages can be in harmony under the concepts of classes of
operators and the umbrella of the powerful concept of memory.

5 Instead of conclusion

In our opinion, during a period of 325 years of fractional calculus, a critical mass of infor-
mation has been collected from both mathematical and applied viewpoints, and nowadays
it is a suitable moment to make a useful transition.

Despite the fact that numerical methods for fractional differential equations have re-
ported significant contributions (see for example [2—16] and the references therein), still
they did not reach the required level to decide always which fractional calculus model is
more suitable for given real data. We think that one of the keys for success of future the-
oretical and applied viewpoints is to consider the notion of distinct classes of fractional
calculus operators. Showing exactly both the advantages and limitations of certain types
of fractional operators will make this field much stronger in the long range. Harmonis-
ing the point of view that any fractional operators should have a physical, biological, or
economical meaning and should appear naturally in a set of real-world processes versus
the pure mathematical construction of fractional operators without looking to any exper-
imental data, it seems to be a challenging problem for researchers in the area of fractional
calculus.
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