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Abstract. In this article, we study generalized fractional derivatives that con-

tain kernels depending on a function on the space of absolute continuous func-
tions. We generalize the Laplace transform in order to be applicable for the

generalized fractional integrals and derivatives and apply this transform to

solve some ordinary differential equations in the frame of the fractional deriva-
tives under discussion.

1. Introduction. The fractional calculus studies the integration and differentia-
tion of real or complex orders and thus it is a generalization of the usual calculus.
Despite of the fact that this calculus is old, it has gained popularity in the few
decades because of the interesting results obtained when this calculus was applied
to model some real world problems [25, 19, 24, 22, 13, 21]. What makes fractional
calculus special is the fact that there are various fractional operators. So that, any
scientist working on modelling real world phenomena can choose the operator that
fits the model the best.

The classical method to obtain fractional operators depended on iterating an
integral to find the nth order integral and then exchange n by any number. After
then, the corresponding derivatives are defined (see for example [20, 17, 18, 14, 12,
15, 16]). Applications on such derivatives can be seen in [10, 11, 1, 2, 5, 6] and the
references therein. Purposing a better models for real world problems, scientists
obtained new fractional operators with nonlocal and nonsingular kernels using the
limiting process with the asistance of the Dirac delta function. For such operators,
we refer to [9, 8, 29, 3, 4]. Other types of new fractional derivatives can be found
in [26, 27, 28, 23]
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In this paper, we study first some properties of the generalized fractional op-
erators and then consider a corresponding Laplace transform which will be called
generalized Laplace transform through this work. Before we start, let us recall some
definitions from the fractional calculus [25, 19]. Let g(t) be a strictly increasing func-
tion with continuous derivative g′ on the interval (a, b). The left Riemann-Liouville
fractional integral of f with respect to the function g of order α,<(α) > 0 is defined
by

( aI
α
g f)(t) =

1

Γ(α)

∫ t

a

(
g(t)− g(u)

)α−1
f(u)g′(u)du. (1)

It is obvious that when g(t) = t, (1) is the classical Riemann-Liouville fractional
integral and when g(t) = ln t, (1) is the Hadamarad fractional integral [25, 19, 24].
Hence (1) can be treated as the generalized Riemann-Liouville fractional integral.
The left Riemann-Liouville fractional derivative of a function f of order α,<(α) ≥ 0
with respect to g is given as

( aD
α
g f)(t) =

( 1

g′(t)

d

dt

)n
( aI

n−α
g f)(t)

=

(
1

g′(t)
d
dt

)n
Γ(n− α)

∫ t

a

(
g(t)− g(u)

)n−α−1
f(u)g′(u)du, (2)

where n = [<(α)] + 1, g(i) 6= 0, i = 2, . . . , n . It can be easily noticed that when
g(t) = t, (2) is the classical Riemann-Liouville fractional derivative and when
g(t) = ln t, (2) is the Hadamarad fractional integral [25, 19, 24]. In [7] and [26],
Caputo and Hilfer fractional derivatives of functions with respect to another func-
tions were defined on the set of continuous functions on some interval [a, b]. Below,
we will present the definitions of these derivatives on the set of absolute continuous
functions. But, before that we need the following definitions.

Definition 1.1. Let g ∈ Cn[a, b] such that g′(t) > 0 on [a, b]. Then

ACng [a, b] =
{
f : [a, b]→ C and f [n−1] ∈ AC[a, b], f [n−1] =

( 1

g′(t)

d

dt

)n−1
f
}
.

Definition 1.2.

Cε,g[a, b] =
{
f : (a, b]→ R such that

(
g(t)− g(a)

)ε
f(t) ∈ C[a, b]

}
,

where C0,g[a, b] = C[a, b].

Definition 1.3.

Cnε,g[a, b] =
{
f : (a, b]→ R such that f [n−1] ∈ C[a, b] and f [n] ∈ Cε,g[a, b]

}
,

where Cn0,g[a, b] = Cn[a, b].

2. Auxiliary results.

Lemma 2.1. [25] Let <(α) > 0 and <(β) > 0, then

aI
α
g

(
g(x)− g(a)

)β−1
(t) =

Γ(β)

Γ(β + α)

(
g(t)− g(a)

)β+α−1
. (3)

Lemma 2.2. [25] Let <(α) ≥ 0 and <(β) > 0, then

aD
α
g

(
g(x)− g(a)

)β−1
(t) =

Γ(β)

Γ(β − α)

(
g(t)− g(a)

)β−α−1
. (4)
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Lemma 2.3. Let g ∈ Cn[a, b] such that g′(t) > 0 on [a, b]. Then f ∈ ACng if and
only if it can be written as

f(t) =
1

(n− 1)!

∫ t

a

(
g(t)− g(s)

)n−1
f [n](s)g′(s)ds+

n−1∑
k=0

f [k](a)

k!

(
g(t)− g(a)

)k
. (5)

Proof. To prove necessity, let f ∈ ACng [a, b]. Then, by Definition 1.1, f [n−1] ∈
AC[a, b]. Thus, there exists a function ψ ∈ L1[a, b], such that

f [n−1](t) = Cn−1 +

∫ t

a

ψ(s)ds. (6)

Upon multiplying both sides of g′(t) and then integration, equation (6) becomes

f [n−2](t) = Cn−1

(
g(t)− g(a)

)
+ Cn−2 +

∫ t

a

g′(τ)

∫ τ

a

ψ(s)dsdτ. (7)

Changing the order of integration in the double integral on the right hand side of
(7) and then integrating once gives

f [n−2](t) = Cn−1

(
g(t)− g(a)

)
+ Cn−2 +

∫ t

a

(
g(t)− g(s)

)
ψ(s)ds. (8)

Performing the same procedure we reach at

f(t) =

n−1∑
k=0

ck

(
g(t)− g(a)

)k
k!

+

∫ t

a

(
g(t)− g(s)

)n−1
(n− 1)!

ψ(s)ds. (9)

It is obvious that ck = f [k](a+), k = 0, . . . , n−1. If one differentiates (6) and divides
by g′(t), one finds that ψ(s) = g′(s)f [n](s). To prove the sufficiency, it enough to

apply the operator
( 1

g′(t)

d

dt

)n−1
to the left and right hand sides of (9).

The following theorem gives the fractional derivative of a function with respect
to another function in an absolutely continuous function type space.

Theorem 2.4. Let <(α) > 0, n = [<(α)]+1 and f ∈ ACng [a, b]. Then the fractional
derivative of f with respect to g exists almost everywhere and(

aD
α
g f
)

(t) =
1

Γ(n− α)

∫ t

a

(
g(t)− g(s)

)n−α−1
f [n](s)g′(s)ds

+

n−1∑
k=0

f [k](a+)

Γ(k − α+ 1)

(
g(t)− g(a)

)k−α
. (10)

Proof. Performing aD
α
g to both sides of (5) and using Lemma 2.2, one obtains

aD
α
g f(t) =

(
1

g′(t)
d
dt

)n
(n− 1)!Γ(n− α)

[ ∫ t

a

∫ s

a

(
g(t)− g(τ)

)n−α−1(
g(τ)− g(s)

)n−1
× f [n](s)g′(s)g′(τ)dsdτ

]
+

n−1∑
k=0

f [k](a+)

Γ(k − α+ 1)

(
g(t)− g(a)

)k−α
. (11)
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If one reverses the order of integration in Equation (11), one gets

aD
α
g f(t) =

(
1

g′(t)
d
dt

)n
(n− 1)!Γ(n− α)

[ ∫ t

a

∫ t

s

(
g(t)− g(τ)

)n−α−1(
g(τ)− g(s)

)n−1
× f [n](s)g′(τ)g′(s)dτds

]
+

n−1∑
k=0

f [k](a+)

Γ(k − α+ 1)

(
g(t)− g(a)

)k−α
. (12)

Setting u =
g(τ)− g(s)

g(t)− g(s)
, Equation (12) becomes

aD
α
g f(t) =

(
1

g′(t)
d
dt

)n
(n− 1)!Γ(n− α)

[ ∫ t

a

(
g(t)− g(s)

)2n−α−1
f [n](s)g′(s)ds

]
×

∫ 1

0

(1− u)n−α−1un−1du+

n−1∑
k=0

f [k](a+)

Γ(k − α+ 1)

(
g(t)− g(a)

)k−α
. (13)

Using the properties of the Beta and Gamma functions, one obtains

aD
α
g f(t) =

(
1

g′(t)
d
dt

)n
(n− 1)!Γ(2n− α)

[ ∫ t

a

(
g(t)− g(s)

)2n−α−1
f [n](s)g′(s)ds

]
+

n−1∑
k=0

f [k](a+)

Γ(k − α− 1)

(
g(t)− g(a)

)k−α
. (14)

The result is obtained by applying the operator
( 1

g′(t)

d

dt

)n
to the integral.

Remark 1. Equation (10) can be written as(
aD

α
g f
)

(t) =
(
aI
n−α
g f [n]

)
(t) +

n−1∑
k=0

f [k](a+)

Γ(k − α+ 1)

(
g(t)− g(a)

)k−α
(15)

and thus, one can define the Caputo fractional derivative of a function with respect
to another function as(

C
aD

α
g f
)

(t) =
(
aD

α
g f
)

(t)−
n−1∑
k=0

f [k](a+)

Γ(k − α+ 1)

(
g(t)− g(a)

)k−α
= aD

α
g

(
f(s)−

n−1∑
k=0

f [k](a+)

k!

(
g(s)− g(a)

)k)
(t). (16)

Theorem 2.5. Let α > m,m ∈ N. Then,( 1

g′(t)

d

dt

)m
aI
α
g f(t) = aI

α−m
g f(t). (17)

Proof.

( 1

g′(t)

d

dt

)m
aI
α
g f(t) =

(
1

g′(t)
d
dt

)m
Γ(α)

∫ t

a

(
g(t)− g(s)

)α−1
f(s)g′(s)ds.

The result is then obtained by applying the operator
1

g′(t)

d

dt
m-times to the integral

on the right hand side.
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Corollary 1. Let α > β,m− 1 < β < m,m ∈ N. Then,

aD
β
g aI

α
g f(t) = aI

α−β
g f(t). (18)

In particular,

aD
α
g aI

α
g f(t) = f(t). (19)

Proof.

aD
β
g aI

α
g f(t) =

( 1

g′(t)

d

dt

)m
aI
m−β
g aI

α
g f(t)

=
( 1

g′(t)

d

dt

)m
aI
α+m−β
g f(t) = aI

α−β
g f(t),

where the semigroup property of integrals in Lemma 2.26 in [19] is used.

Theorem 2.6. Let <(α) > 0, n = −[−<(α)], f ∈ L[a, b] and aI
α
g f ∈ ACng [a.b].

Then (
aI
α
g aD

α
g

)
f(t) = f(t)−

n∑
k=1

aI
k−α
g f(a+)

Γ(α− k + 1)

(
g(t)− g(a))α−k. (20)

Proof.(
aI
α
g aD

α
g

)
f(t) =

1

Γ(α)

∫ t

a

(
g(t)− g(s)

)α−1[( 1

g′(s)

d

ds

)n
aI
n−α
g f

]
(s)g′(s)ds

=
( 1

g′(t)

d

dt

){ 1

Γ(α+ 1)

∫ t

a

(
g(t)− g(s)

)α[( 1

g′(s)

d

ds

)n
aI
n−α
g f

]
(s)g′(s)ds

}
=
( 1

g′(t)

d

dt

){ 1

Γ(α+ 1)

∫ t

a

(
g(t)− g(s)

)α d
ds

[( 1

g′(s)

d

ds

)n−1
aI
n−α
g f

]
(s)ds

}
.

Now, performing the integration by parts n times, we obtain(
aI
α
g aD

α
g

)
f(t) =

( 1

g′(t)

d

dt

){ 1

Γ(α− n+ 1)

∫ t

a

(
g(t)− g(s)

)α−n
× aI

n−α
g f(s)g′(s)ds−

n∑
k=1

aI
k−α
g f(a+)

Γ(α+ 2− k)

(
g(t)− g(a)

)α−k+1}
=

( 1

g′(t)

d

dt

){
aI
α−n+1
g aI

n−α
g f(t)

−
n∑
k=1

aI
k−α
g f(a+)

Γ(α+ 2− k)

(
g(t)− g(a)

)α−k+1}
=

( 1

g′(t)

d

dt

){
aI

1
gf(t)−

n∑
k=1

aI
k−α
g f(a+)

Γ(α+ 2− k)

(
g(t)− g(a)

)α−k+1}
= f(t)−

n∑
k=1

aI
k−α
g f(a+)

Γ(α+ 2− k)

( 1

g′(t)

d

dt

)(
g(t)− g(a)

)α−k+1

= f(t)−
n∑
k=1

aI
k−α
g f(a+)

Γ(α− k + 1)

(
g(t)− g(a))α−k.
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3. The generalized Laplace transform. In this section, we present the defini-
tion of the generalized Laplace transform and state some of its properties.

Definition 3.1. Let f, g : [a,∞) → R be real valued functions such that g(t) is
continuous and g′(t) > 0 on [0,∞). The generalized Laplace transform of f is
defined by

Lg{f(t)}(s) =

∫ ∞
a

e−s(g(t)−g(a))f(t)g′(t)dt, (21)

for all values of s, the integral is valid.

In the following theorem we represent the relation between the generalized
Laplace transform and the classical one.

Theorem 3.2. Let f, g : [a,∞) → R be real valued functions such that g(t) is
continuous and g′(t) > 0 on [0,∞) and such that the generalized Laplace transform
of f exists. Then

Lg{f(t)}(s) = L{f
(
g−1(t+ g(a))

)
}(s), (22)

where L{f} is the usual Laplace transform of f .

Proof. The proof is straight forward if one use the change of variable u = g(t)−g(a)
in (22).

Definition 3.3. A function f : [0,∞) → R is said to be of g(t)-exponential order
if there exist non-negative constants M, c, T such that |f(t)| ≤Mecg(t) for t ≥ T .

Now, we present the conditions for the existence of the generalized Laplace trans-
form of a function.

Theorem 3.4. If f : [a,∞) → R is a piecewise continuous function and is of
g(t)-exponential order, then its generalized-Laplace transform exists for s > c.

Proof. The proof is straight forward.

Below we present the linearity property.

Theorem 3.5. If the the generalized Laplace transform of f1 : [a,∞) → R exists
for s > c1 and the generalized Laplace transform of f2 : [a,∞) → R exists for
s > c2. Then, for any constants a1 and a2, the generalized Laplace transform of
a1f1 + a2f2, where a1 and a2 are constant, exists and

Lg{a1f1(t) + a2f2(t)}(s) = a1Lg{f(t)}(s) + a2Lg{f2(t)}(s), for s > max{c1, c2}.
(23)

The generalized Laplace transforms of some elementary functions were given in
the following lemma.

Lemma 3.6. 1. Lg{1}(s) =
1

s
, s > 0.

2. Lg{(g(t)− g(a))β}(s) =
Γ(β)

sβ
, <(β) > 0, s > 0.

3. Lg{eλg(t)}(s) =
eλg(a)

s− λ
, s > λ.

Proof. The proof is executed by using the relation (22).
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The generalized Laplace transforms of the generalized derivatives of integer order
are presented below.

Theorem 3.7. Let the function f(t) ∈ Cg[a, T ] and of g(t)- exponential order such

that f [1](t) is piecewise continuous over every finite interval [a, T ]. Then generalized
Laplace transform of f [1](t) exists,

Lg{f [1](t)}(s) = sLg{f(t)}(s)− f(a). (24)

Proof. Let a < t1, t2, ...., tn < T be the points in the interval [a, T ] where f [1] is
discontinuous. Then we have∫ T

a

e−s(g(t)−g(a))f [1](t)g′(t)dt =

∫ T

a

e−s(g(t)−g(a))f ′(t)dt

=

∫ t1

a

e−s(g(t)−g(a))f ′(t)dt

+

n−1∑
i=1

∫ ti+1

ti

e−s(g(t)−g(a))f ′(t)dt

+

∫ T

tn

e−s(g(t)−g(a))f ′(t)dt.

Integrating by parts gives∫ T

a

e−s(g(t)−g(a))f [1](t)g′(t)dt = e−s(g(t)−g(a))f(t)
∣∣∣t1
a

+

n−1∑
i=1

e−s(g(t)−g(a))f(t)
∣∣∣ti+1

ti

+ e−s(g(t)−g(a))f(t)
∣∣∣T
tn

+ s
[ ∫ t1

0

e−s(g(t)−g(a))f(t)g′(t)dt

+

n−1∑
i=1

∫ ti+1

ti

e−s(g(t)−g(a))f(t)f(t)g′(t)dt

+

∫ T

tn

e−s(g(t)−g(a))f(t)g′(t)dt
]
.

Going one step further, we obtain∫ T

a

e−s(g(t)−g(a))f [1](t)g′(t)dt = e−s(g(T )−g(a))f(T )− f(0)

+ s

∫ T

0

e−s(g(t)−g(a))f(t)g′(t)dt. (25)

The result is obtained by taking the limit as T → ∞ of both sides of equation
(25).

Theorem 3.7 can be generalized as follows.

Corollary 2. Let f ∈ Cn−1g [a, t) such that f [i], i = 0, 1, 2, ..., n−1 are g-exponential

order. Let f [n] be a piecewise continuous function on the interval [a, T ]. Then, the
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generalized Laplace transform of f [n](t) exists and

Lg{f [n](t)}(s) = snLg{f(t)}(s)−
n−1∑
k=0

sn−k−1(f [k])(a). (26)

Proof. The proof can be done by mathematical induction.

To be able to find the generalized Laplace transforms of the generalized fractional
operators , we need to define the generalized convolution integral.

Definition 3.8. Let f and h be two functions which are piecewise continuous at
each interval [0, T ] and of exponential order. We define the generalized convolution
of f and h by

(f ∗g h)(t) =

∫ t

a

f(τ)h
(
g−1(g(t) + g(a)− g(τ))

)
g′(τ)dτ. (27)

The generalized convolution of two functions is commutative.

Lemma 3.9. Let f and h be two functions which are piecewise continuous at each
interval [a, T ] and of exponential order. Then

f ∗g g = h ∗g f. (28)

Proof. The proof can be easily stated once the change of variable u = g−1(g(t) +
g(a)− g(τ)) is utilized.

Below we present the ρ-Laplace transform of the ρ-convolution integral.

Theorem 3.10. Let f and h be two functions which are piecewise continuous at
each interval [a, T ] and of exponential order. Then

Lg{f ∗g h} = Lg{f}Lg{h}. (29)

Proof.

Lg{f}Lg{h} =

∫ ∞
a

e−s(g(t)−g(a))f(t)g′(t)dt

∫ ∞
a

e−s(g(u)−g(a))h(u)g′(u)du

=

∫ ∞
a

∫ ∞
a

e−s(g(t)+g(u)−2g(a))f(t)h(u)g′(t)g′(u)dtdu

Now, setting choosing τ satisfying g(τ) = g(t) + g(u)− g(a), we get

Lg{f}Lg{h} =

∫ ∞
0

∫ ∞
u

e−s(g(τ)−g(a))f
(
g−1(g(τ)− g(u) + g(a))

)
×

h(u)g′(τ)g′(u)dτdu

=

∫ ∞
a

e−s(g(τ)−g(a))
[ ∫ τ

a

f
(
g−1(g(τ)− g(u) + g(a))

)
×

h(u)g′(u)du
]
g′(τ)dτ

= Lg{f ∗g h}.

Now, we can find the generalized Laplace transform of the generalized fractional
operators.
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4. The generalized Laplace transforms of the generalized fractional in-
tegrals and derivatives. In the following theorem, we present the generalized
Laplace transform of the left generalized fractional integral starting at a.

Theorem 4.1. Let α > 0 and f be a piecewise continuous function on each interval
[a, t] and of g(t)-exponential order. Then

Lg{( aI
α,ρf)(t)} =

Lg{f(t)}
sα

. (30)

Proof. The proof can be done using the definition of the generalized fractional
integral (1), Theorem 3.5, Theorem 3.10 and Lemma 3.6. Actually,

Lg{( aIαg f)(t)}(s) =
1

Γ(α)
Lg{(g(t)− g(a))α−1 ∗g f(t)}(s)

=
1

Γ(α)

Γ(α)

sα
Lg{f(t)}

=
Lg{f(t)}

sα
.

Now we can present the generalized Laplace transform of the left generalized
fractional derivative.

Corollary 3. Let α > 0 and f ∈ ACng [a, b] for any b > a, g ∈ Cn[a, b] such that

g′(t) > 0 and aI
n−k−α,ρf, k = 0, 1, ..., n− 1 be of g(t)-exponential order. Then

Lρ{( aD
α
g f)(t)}(s) = sαLg{f(t)} −

n−1∑
k=0

sn−k−1
(
aI
n−k−α
g f

)
(a+). (31)

Proof.

Lg{( aDα
g f)(t)}(s) = Lg{

(
aI
n−αf

)[n]
(t)}

= snLg{ aIn−αg f)(t)} −
n−1∑
k=0

sn−k−1
((

a
In−αg

)[k]
f
)

(a+)

= sn
Lg{f(t)}
sn−α

−
n−1∑
k=0

sn−k−1
((

aI
n−α

)[k]
f
)

(a+)

= sαLg{f(t)} −
n−1∑
k=0

sn−k−1
((

aI
n−α

)[k]
f
)

(a+).

Now, the proof is completed by using Theorem 2.5.

The following corollary states the generalized Laplace transform of the left gen-
eralized Caputo fractional derivative.

Corollary 4. Let α > 0 and f ∈ ACnγ [a, b] for any b > a and f [k], k = 0, 1, ..., n be
of g(t)-exponential order. Then

Lg{( C
aD

α
g f)(t)}(s) = sα

[
Lg{f(t)} −

n−1∑
k=0

s−k−1(f [k])(a+)
]
. (32)
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Proof.

Lg{( CaDα
g f)(t)}(s) = Lg{( aIn−αg f [n])(t)}

= sα−nLg{f [n])(t)}

= sα−n
[
snLg{f(t)}(s)−

n−1∑
k=0

sn−k−1(f [k])(a+)
]

= sα
[
Lg{f(t)} −

n−1∑
k=0

s−k−1(f [k])(a+)
]
.

The Mittag-Leffler functions have important roles in the theory of fractional
calculus [25, 19, 24]. The Mittag-Leffler function is given by [25, 19, 24]

Eα(z) =

∞∑
k=o

zk

Γ(kα+ 1)
, z ∈ C,<(α) > 0. (33)

The Mittag-Leffler function involving two parameters is given by [25, 19, 24]

Eα,β(z) =

∞∑
k=o

zk

Γ(kα+ β)
, z ∈ C,<(α) > 0,<(β) > 0. (34)

In the following lemma, we present the generalized Laplace transforms of some
specified Mittag-Leffler functions.

Lemma 4.2. Let <(α) > 0 and
∣∣∣ λsα ∣∣∣ < 1. Then

Lg
{
Eα

(
λ(g(t)− g(a))α

)}
=

sα−1

sα − λ
, (35)

and

Lg{(g(t)− g(a))β−1Eα,β

(
λ(g(t)− g(a))α

)}
=

sα−β

sα − λ
. (36)

Proof.

Lg
{
Eα

(
λ(g(t)− g(a))α

)}
=

∞∑
k=0

λk

Γ(kα+ 1)
Lg{(g(t)− g(a))kα}

=

∞∑
k=0

λk

Γ(kα+ 1)

Γ(kα+ 1)

skα+1

=
1

s

∞∑
k=0

( λ
sα

)k
=

sα−1

sα − λ
.

This was the proof of (35). Now,

Lg{(g(t)− g(a))β−1Eα,β

(
λ(g(t)− g(a))α

)}
=

∞∑
k=0

λkLg{(g(t)− g(a))kα+β−1}
Γ(kα+ β)

=

∞∑
k=0

λk

Γ(kα+ β)

Γ(kα+ β)

skα+β



GENERALIZED FRACTIONAL DERIVATIVES AND LAPLACE TRANSFORM 719

=
1

sβ

∞∑
k=0

( λ
sα

)k
=

1

sβ
1

1− λ
sα

=
sα−β

sα − λ
.

This proves (36).

5. Solution of some generalized fractional differential equations by the
generalized Laplace transforms. In this section, we are considering two Cauchy
problems in the frame of the generalized Riemann-Liouville fractional derivatives
and the generalized Caputo fractional derivative.

Theorem 5.1. The Cauchy problem

aD
α
g y(t)− λy(t) = f(t), t > a, 0 < α ≤ 1, λ ∈ R,

( aI
1−α
g y)(a+) = c, c ∈ R, (37)

has the solution

y(t) = c(g(t)− g(a))α−1Eα,α

(
λ(g(t)− g(a))α

)
+

∫ t

a

(g(t)− g(τ))α−1Eα,α

(
λ(g(t)− g(τ))α

)
f(τ)g′(τ)dτ. (38)

Proof. Applying the generalized Laplace transform to both sides of the equation
(37) and then using Corollary 3 with n = 1, one gets

L{y(t)} = c
1

sα − λ
+

1

sα − λ
Lg{f(t)}

= cLg
{

(g(t)− g(a))α−1Eα,α

(
λ(g(t)− g(a))α

)}
+ Lg

{
(g(t)− g(a))α−1Eα,α

(
λ(g(t)− g(a))α

)}
Lg{f(t)}

= Lρ
{
c(g(t)− g(a))α−1Eα,α

(
λ(g(t)− g(a))α

)
+ (g(t)− g(a))α−1Eα,α

(
λ(g(t)− g(a))α

)
∗g f(t)

}
.

Hence we obtain,

y(t) = c(g(t)− g(a))α−1Eα,α

(
λ(g(t)− g(a))α

)
+ (g(t)− g(a))α−1Eα,α

(
λ(g(t)− g(a))α

)
∗g f(t)

= c(g(t)− g(a))α−1Eα,α

(
λ(g(t)− g(a))α

)
+

∫ t

a

(g(t)− g(τ))α−1Eα,α

(
λ(g(t)− g(τ))α

)
f(τ)g′(τ)dτ.

Remark 2. If g(t) = t, the solution (38) coincides with the solution given in
equation (4.1.14) in [19] and if g(t) = log t, (38) coincides with equation (4.1.99) in
[19].



720 FAHD JARAD AND THABET ABDELJAWAD

Next, we consider a Cauchy problem in the frame of generalized Caputo fractional
derivatives.

Theorem 5.2. The Cauchy problem

C
aD

α
g y(t)− λy(t) = f(t), t > a, 0 < α ≤ 1, λ ∈ R,

y(a+) = c, c ∈ R, (39)

has the solution

y(t) = cEα

(
λ(g(t)−g(a))α

)
+

∫ t

a

(g(t)−g(τ))α−1Eα,α

(
λ(g(t)−g(τ))α

)
f(τ)g′(τ)dτ.

(40)

Proof. Applying the generalized Laplace transform to both sides of the equation
(39) and then using Corollary 4 with n = 1, one gets

Lg{y(t)} = c
sα−1

sα − λ
+

1

sα − λ
Lg{f(t)}

= c Lg
{
Eα

(
λ(g(t)− g(a))α

)}
+ Lg

{
(g(t)− g(a))α−1Eα,α

(
λ(g(t)− g(a))α

)}
Lg{f(t)}

= Lg
{
cEα

(
λ(g(t)− g(a))α

)
+ (g(t)− g(a))α−1Eα,α

(
λ(g(t)− g(a))α

)
∗g f(t)

}
Therefore,

y(t) = cEα

(
λ(g(t)− g(a))α

)
+ (g(t)− g(a))α−1Eα,α

(
λ(g(t)− g(a))α

)
∗g f(t)

= cEα

(
λ(g(t)− g(a))α

)
+

∫ t

a

(g(t)− g(τ))α−1Eα,α

(
λ(g(t)− g(τ))α

)
f(τ)g′(τ)dτ.

Remark 3. If g(t) = t, (40) coincides with (4.1.66) in [19].

6. Conclusion. The classical Laplace transform played an important role to solve
classical differential equations with integer orders and fractional Riemann-Liouville
and Caputo derivatives. The integral and the derivatives utilized in those equations
are classical. When the integrals and derivatives are general, the need of a more
general integral transform arises. For the sake of this, we employed a modified
Laplace transform that can used to solve differential equation involving a wider
class of derivatives and their fractional versions. We studied the basic theory of
the Laplace transform under consideration and proved its convolution theorem to
find the Laplace transform of the generalized fractional integrals and derivatives.
After obtaining the generalized Laplace transforms for certain weighted Mittag-
Leffler functions, we were able to solve nonhomogeneous linear fractional dynamic
equations in the frame of generalized fractional Riemann-Liouville and Caputo type
operators. We have shown that the solution representations are expressible by
means of the Mittag-Leffler functions and coincide with the results found in the
literature for special cases of g(t).
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The generalized Laplace transform which we have discussed will serve as an effec-
tive tool to solve dynamical systems depending on generalized fractional operators,
whose kernel is singular. The question arises here is the possibility of developing a
new integral transform that can be easily applied to solve dynamical systems in the
frame of fractional operators with nonsingular kernels [8], [3], [4].

REFERENCES

[1] T. Abdeljawad, D. Baleanu and F. Jarad, Existence and uniqueness theorem for a class of

delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys.,

49 (2008), 083507, 11pp.
[2] T. Abdeljawad, F. Jarad and D. Baleanu, On the existence and the uniqueness theorem for

fractional differential equations with bounded delay within Caputo derivatives, Sci. China

Ser. A: Math, 51 (2008), 1775–1786.
[3] T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal

fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10

(2017, 1098–1107.
[4] T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with

discrete exponential kernels, Adv. Difference Equ., 2017 (2017), Paper No. 78, 9 pp.
[5] Y. Adjabi, F. Jarad, D. Baleanu and T. Abdeljawad, On Cauchy problems with Caputo-

Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661–681.

[6] Y. Adjabi, F. Jarad and T. Abdeljawad, On generalized fractional operators and a Gronwall
type inequality with applications, Filomat , 31 (2017), 5457–5473.

[7] R. Almeida, A Caputo fractional derivative of a function with respect to another function,

Commun. Nonl. Sci. Numer. Simult., 44 (2017), 460–481.
[8] A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular

kernel, Thermal Sci., 20 (2016), 757–763.

[9] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel,
Progr. Fract. Differ. Appl., 1 (2015), 73–85.

[10] V. Daftardar-Gejji and H. Jaffari, Analysis of a system of nonautonomous fractional differen-

tial equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026–1033.
[11] D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential

equation, J. Math. Anal. Appl., 204 (1996), 609–625.
[12] Y. Y. Gambo, F. Jarad, T. Abdeljawad and D. Baleanu, On Caputo modification of the

Hadamard fractional derivative, Adv. Difference Equ., 2014 (2014), 12pp.

[13] R. Hilfer, Applications of Fractional Calculus in Physics, Word Scientific, Singapore, 2000.
[14] F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard frac-

tional derivative, Adv. Difference Equ., 2012 (2012), 8pp.
[15] F. Jarad, T. Abdeljawad and D. Baleanu, On the generalized fractional derivatives and their

Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619.
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