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In this work, we introduce various Darbo-type F£-contractions, and utilizing these contractions, we present some fixed point
theorems. Moreover, we introduce a Darbo-type F£-expanding mapping and prove fixed point theorems under the Darbo-type
F£-expanding mapping. Employing our results, we check the existence of a solution to the nonlinear fractional-order differential
equation under the integral type boundary conditions. For its validity, an appropriate example is given.

1. Introduction and Preliminaries

For the sake of completeness, we provide a brief introduction
and recollect basic notions, definitions, and fundamental
results. In the sequel, we symbolize by ℝ the set of all real
numbers, by ℕ the set of all positive integers, by �M the
closure of M and by coM the convex hull closure of M.
Additionally, Ξ denotes a Banach space BðΞÞ = fΛ ≠ 0 : Λ
is bounded subsets of Ξg, ker £ = fΛ ∈BðΞÞ : £ðΛÞ = 0g the
kernel of function £ : BðΞÞ⟶ ½0,∞Þ and Ω = fΛ : Λ ≠ 0,
convex, bounded, and closed subset of Ξg:

Many researchers have been interested in the fixed point
theory. This theory is branched into two notable areas. One
deals with contractionmappings onmetric spaces. In this area,
the first important result is the Banach contraction principle.
The second deals with continuous operators on convex and
compact subsets of a Banach space. In this area, two important
results are Brouwer’s fixed point theorem and its infinite
dimensional form, Schauder’s fixed point theorem.

Theorem 1. Every continuous mapping from the unit ball of
ℝn into itself has a fixed point.

Theorem 2 (see [1]). Let Λ ∈Ω. Then, a compact continuous
operator ϒ : Λ⟶Λ has a fixed point.

In both theorems, compactness plays a crucial role. To
overcome such hurdle, one of the techniques is to use the
notion of a measure of noncompactness (in short MNC).
The axiomatic definition of an MNC is as below.

Definition 3 (see [2]). A map £: BðΞÞ⟶ ½0,∞Þ is an MNC
in Ξ if for all Λ,Λ1,Λ2 ∈BðΞÞ it satisfies the following
axioms:

(i) ker £ ≠ 0 and relatively compact in Ξ

(ii) Λ1 ⊂Λ2 ⇒ £ðΛ1Þ ≤ £ðΛ2Þ
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(iii) £ð�ΛÞ = £ðΛÞ
(iv) £ðcoΛÞ = £ðΛÞ
(v) £ðηΛ1 + ð1 − ηÞΛ2Þ ≤ η£ðΛ1Þ + ð1 − ηÞ£ðΛ2Þ, ∀η ∈ ½0, 1�
(vi) If fΛng is a sequence of closed sets in BðΞÞsuch

that Λn+1 ⊂Λn, ∀n ∈ℕ, lim
s→+∞

£ðΛnÞ = 0, then Λ∞ =
∩ +∞

n=1Λn ≠ 0:

The Kuratowski MNC [3] is the function £ : BðΞÞ⟶
½0,∞Þ defined by

£ Kð Þ = inf ε > 0 : K ⊂ ∪
n

i=1
S i, S i ⊂ Ξ, diam S ið Þ < ε

n o
, ð1Þ

where diamðSÞ is the diameter of a set S. Using the notion of
an MNC, Darbo [4] published a fixed point result, which
determines the existence of a fixed point.

Theorem 4 (see [4]). LetΛ ∈Ω andϒ : Λ⟶Λ be a contin-
uous function. If there exists k ∈ ½0, 1Þ such that

£ ϒ Λ0ð Þð Þ ≤ k £ Λ0ð Þ, ð2Þ

where Λ0 ⊂Λ and £ is an MNC defined on Ξ. Then, ϒ has a
fixed point in Λ.

It generalizes the well-known Schauder fixed point
result and includes the existence part of the Banach con-
traction principle. Many extensions and generalizations of
the Darbo fixed point result can be noticed in the existing
literature.

The contraction on underlying mappings plays a central
role for finding the fixed point. Inspired from this natural
idea, the Banach contraction has been improved and
extended by several researchers [5–9]. Wardowski [10]
proposed a new contraction, called the ℱ -contraction and
established fixed point theorems.

Definition 5 (see [10]). Let ℱ : ð0,∞Þ⟶ℝ be a map such
that

(F1) ℱ  is nondecreasing
(F2) lim

n→+∞
δn = 0⇔ lim

n→+∞
ℱ  ðδnÞ = −∞, for any sequence

fδng ⊂ ð0,∞Þ
(F3) one can find k ∈ ð0, 1Þ such that  lim

s→0+
δkℱ ðδÞ = 0:

Symbolized by F, the family of all maps ℱ : ð0,∞Þ⟶ℝ
which fulfill the axioms ðF1Þ and ðF2Þ, and by S, the fam-
ily of functions τ : ð0,∞Þ⟶ℝ such that lim

t→s+
infτðtÞ > 0,

∀s ∈ ½0,∞Þ.
Using the specific form of ℱ , we deduce other known

existing contractions. Many articles concerning ℱ -contrac-
tions and its generalizations have come into view (see, e.g.,
[11, 12] and the references cited therein). In particular, Jleli
et al. [13] generalized ℱ -contraction such that ℱ L-contrac-
tion is an established Darbo-type fixed point result.

Definition 6 (see [13]). Let Λ ∈Ω. Then, the mapping ϒ :
Λ⟶Λ is ℱ £-contraction if there exists τ ∈ S and F ∈ F
such that

τ £ Λ0ð Þð Þ +ℱ £ ϒ Λ0ð Þð Þð Þ ≤ℱ £ Λ0ð Þð Þ, ð3Þ

where Λ0 is a subset of Λ, £ðΛ0Þ, £ðTðΛ0ÞÞ > 0, and £ is an
MNC defined in Ξ.

Theorem 7 (see [13]). LetΛ ∈Ω. If the mappingϒ : Λ⟶Λ
is continuous and anℱ £-contraction, thenϒ has a fixed point
in Λ.

Gillespie et al. [14] introduced the concept of expanding
mapping. Gòrnicki [15] introduced the idea of ℱ -expand-
ing mappings and presented some fixed point results. To find
the fixed point of expanding mappings, one needs the follow-
ing lemma.

Lemma 8 (see [15]). For surjective map f : X ⟶X , there
exists a map f∗ : X ⟶X such that f ∘ f∗ : X ⟶X is an
identity map.

This manuscript has two aims. Firstly, we prove various
fixed point theorems: the ℱ £-weak contraction, ℱ £-weak
Suzuki contraction, almost ℱ £-contraction, Hardy-Rogers-
type ℱ £-contraction and Reich-type ℱ £-contraction.
Secondly, we prove fixed point results under the Darbo-
type ℱ £-expanding mapping. We also observe that several
existing results can be concluded from our main results.
Furthermore, we check the existence of a solution to the
nonlinear fractional-order differential equation via integral
type boundary conditions, and for its validity we construct
an example.

2. Generalization of Darbo-Type Results via
F-Contractions

In this section, we introduce various types of ℱ £-contrac-
tions of Darbo type, and then, we prove fixed point results
for mappings satisfying such contractive condition in the
Banach space endowed with an MNC. We first give the
definition of the ℱ £-weak contraction.

Definition 9. Let Λ ∈Ω. Then, the mapping ϒ : Λ⟶Λ is a
weak contraction if there exists τ ∈ S and F ∈ F such that

τ £ Λ1ð Þð Þ +ℱ £ ϒ Λ1ð Þð Þð Þ ≤ℱ Δ Λ1,Λ2ð Þð Þ, ð4Þ

where Λ1 and Λ2 are subsets of Λ, £ðΛ1Þ,  £ðϒ ðΛ1ÞÞ,  £ðϒ
ðΛ2ÞÞ > 0 and £ is an MNC defined in Ξ and

Δ Λ1,Λ2ð Þ =max £ Λ1ð Þ, £ ϒ Λ1ð Þð Þ, £ ϒ Λ2ð Þð Þ, 12 £ ϒ Λ1ð Þ ∪ϒ Λ2ð Þð Þ
� �

:

ð5Þ

In the light of ℱ £-weak contraction, we present the
first result.
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Theorem 10. Let Λ ∈Ω. If the mapping ϒ : Λ⟶Λ is con-
tinuous and anℱ £-weak contraction, thenϒ has a fixed point
in Λ.

Proof. Define a sequence fΛng∞n=0 such that

Λ0 =Λ andΛn = co ϒΛn−1ð Þ, ∀n ∈ℕ: ð6Þ

We need to prove that Λn+1 ⊂Λn andϒΛn ⊂Λn, ∀n ∈ℕ.
For the first inclusion, we use induction. If n = 1, then by (6),
we get Λ0 =Λ and Λ1 = coðϒΛ0Þ ⊂Λ0. Next, for n > 1, we
assume that

Λn ⊂Λn−1: ð7Þ

Then

co ϒ Λnð Þð Þ ⊂ co ϒ Λn−1ð Þð Þ: ð8Þ

Using (6), we get the first inclusion

Λn+1 ⊂Λn: ð9Þ

With the help of inclusion (9), we obtained the second
inclusion as

ϒΛn ⊂ co ϒΛnð Þ =Λn+1 ⊂Λn: ð10Þ

Now, we discuss two cases subject to £. If we can find
an integer m ≥ 0 such that £ðΛmÞ = 0, then Λm is
compact. But since ϒ : Λm ⟶Λm, by Theorem 2, ϒ
has a fixed point in Λm ⊂Λ: Instead, if we take £ðΛnÞ >
0, ∀n ∈ℕ, then we have to testify that Λ∞ ⊂Λn ∈Ω: First,
we need to show that £ðΛnÞ⟶ 0 as n⟶ +∞. From
inclusion (9), we write £ðΛn+1Þ < £ðΛnÞ, that is f£ðΛnÞg
is a decreasing sequence and hence converges to s ∈ℝ
with s ≥ 0. Now, since £ðΛnÞ ∈ ð0,∞Þ and s ∈ ½0,∞Þ, so
by assumption on τ, lim

t→s+
infτðtÞ > 0, we can find r > 0

and n0 ∈ℕ such that τð£ðΛnÞÞ ≥ r, ∀n ≥ n0. Using con-
traction condition (4) with Λ1 =Λn and Λ2 =Λn+1, we
write

τ £ Λnð Þð Þ +ℱ £ Λn+1ð Þð Þ = τ £ Λnð Þð Þ +ℱ £ co ϒ Λnð Þð Þð Þð Þ
= τ £ Λnð Þð Þ +ℱ £ ϒ Λnð Þð Þð Þ
≤ℱ Δ Δn,Δn+1ð Þð Þ,

ð11Þ

where

Δ Λn,Λn+1ð Þ =max £ Λnð Þ, £ ϒ Λnð Þð Þ, £ ϒ Λn+1ð Þð Þ, 12 £ ϒ Λnð Þð
�

∪ϒ Λn+1ð ÞÞ
�

≤max £ Λnð Þ, £ Λnð Þ, £ Λn+1ð Þ, 12 £ Λn ∪Λn+1ð Þ
� �

=max £ Λnð Þ, £ Λnð Þ, £ Λn+1ð Þ, 12 £ Λnð Þ
� �

= £ Λnð Þ:
ð12Þ

Thus, from (11), we obtain

τ £ Λnð Þð Þ +ℱ £ Λn+1ð Þð Þ ≤ℱ £ Λnð Þð Þ: ð13Þ

From here, we write

ℱ £ Λn+1ð Þð Þ ≤ℱ £ Λnð Þð Þ − τ £ Λnð Þð Þ ≤ℱ £ Λnð Þð Þ − r: ð14Þ

Consequently

ℱ £ Λnð Þð Þ ≤ℱ £ Λn−1ð Þð Þ − r, ∀n: ð15Þ

Thus

ℱ £ Λnð Þð Þ ≤ℱ £ Λn−1ð Þð Þ − r ≤ℱ £ Λn−2ð Þð Þ − 2r ≤ℱ £ Λn−3ð Þð Þ − 3r
⋮

≤ℱ £ Λn0ð Þð Þ − n − n0ð Þr, ∀n > n0:

ð16Þ

Clearly, lim
n→+∞

ℱ ð£ðΛnÞÞ = −∞ and using property ðF2Þ,
we can write lim

n→+∞
£ðΛnÞ = 0. Thus, by Definition 3 ðυiÞ,

Λ∞ = ∩ +∞
n=1 ≠ 0 and ϒΛ∞ ⊂Λ∞ as ϒΛn ⊂Λn. Also, since

Λ∞ ⊂Λ n for all n ∈ℕ, so by Definition 3(ii), £ðΛ∞Þ ≤ £
ðΛnÞ, ∀n ∈ℕ. Thus, £ðΛ∞Þ = 0, that is Λ∞ ∈ ker£, and
hence, Λ∞ is bounded. But Λ∞ is closed such that Λ∞
is compact. Therefore, by Theorem 2, ϒ has a fixed point
in Λ∞ ⊂Λ.

For the support of Theorem 10, we construct the
following example.

Example 1. Let Λ = ½−8, 9� be a subset of a Banach space ℝ.
Then, clearly, Λ ∈Ω. Define ϒ : Λ⟶Λ, F : ð0,∞Þ⟶ℝ,
τ : ð0,∞Þ⟶ℝ by ϒðxÞ = 1 − x, τðxÞ + 1/2 and F ðxÞ = lnx,
respectively. One can easily check that ϒ is continuous,
τ ∈ S and F ∈ F. Also, define an MNC, £ : BðΞÞ→ ½0,∞Þ
by £ðΛÞ = diamðΛÞ = sup

x,y∈Λ
kx − yk:
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Now, let Λ1 = ½0, 1� and Λ2 = ½2, 7� be two subsets of
Λ. Then, £ðΛ1Þ = £ðϒ ðΛ1ÞÞ = 1, £ðϒ ðΛ1ÞÞ = 6, £ðϒ ðΛ1Þ ∪
ðΛ1ÞÞ = 7, and hence

Δ Λ1,Λ2ð Þ =max £ Λ1ð Þ, £ ϒ Λ1ð Þð Þ, £ ϒ Λ2ð Þð Þ, 12 £ ϒ Λ1ð Þð
�

∪ϒ Λ2ð ÞÞ
�

=max 1, 1, 6, 72

� �
= 6:

ð17Þ
Thus, from (4), we write

τ £ Λ1ð Þð Þ +ℱ £ ϒ Λ1ð Þð Þð Þ = τ 1ð Þ +ℱ 1ð Þ = 1:5 < In 6ð Þ
=ℱ Δ Λ1:Λ2ð Þð Þ:

ð18Þ
That is ϒ is an ℱ £-weak contraction. Hence, by

Theorem 10, ϒ has a fixed point 1/2 ∈Λ.

From Theorem 10, we can deduce several pivotal results.
We demonstrate some preferable corollaries that cover and
extend several well-known results in the existing literature.
The special case, if we take £ðϒ ðΛnÞÞ > 0, we deduce the
following corollary.

Corollary 11. Let Λ ∈Ω. If the mapping ϒ : Λ⟶Λ is con-
tinuous such that

£ ϒ Λ1ð Þð Þ ≤ e−τ £ Λ1ð Þð ÞΔ Λ1:Λ2ð Þ, ð19Þ

where Λ1 and Λ2 are subsets of Λ, then ϒ has a fixed
point in Λ.

If we take ℱ ðxÞ = lnx + x, x > 0, in Theorem 10, we
deduce the following corollary.

Corollary 12. Let Λ ∈Ω. If the mapping ϒ : Λ⟶Λ is con-
tinuous such that

£ ϒ Λ1ð Þð Þ ≤ eΔ Λ1 ,Λ2ð Þ−τ £ Λ1ð Þ−£ Λ1ð Þð ÞΔ Λ1,Λ2ð Þ, ð20Þ

where Λ1 and Λ2 are subsets of Λ, then ϒ has a fixed
point in Λ.

If we take ℱ ðxÞ = lnðx2 + xÞ, x > 0, in Theorem 10, we
deduce the following corollary.

Corollary 14. Let Λ ∈Ω. If the mapping ϒ : Λ⟶Λ is con-
tinuous such that

£ ϒ Λ1ð Þð Þð Þ2 + £ ϒ Λ1ð Þð Þ ≤ e−τ £ Λ1ð Þð Þ Δ Λ1,Λ2ð Þð Þ2�
+ Δ Λ1,Λ2ð Þ�,

ð21Þ

where Λ1 and Λ2 are subsets of Λ, then ϒ has a fixed
point in Λ.

Definition 13. Let Λ ∈Ω. Then, the mapping ϒ : Λ⟶Λ is
an ℱ £-weak Suzuki contraction if there exist τ ∈ S and F ∈
F such that

τ £ Λ1ð Þð Þ +ℱ £ ϒ Λ1ð Þð Þð Þ ≤ℱ Δ Λ1,Λ2ð Þð Þ, ð22Þ

where Λ1 and Λ2 are subsets of Λ, ðϒðΛ1ÞÞ < 2£ðΛ1Þ, £ðΛ1Þ,
£ðϒ ðΛ1ÞÞ, £ðϒðΛ2ÞÞ > 0, and £ is an MNC defined on Ξ and

Δ Λ1,Λ2ð Þ =max £ Λ1ð Þ, £ ϒ Λ1ð Þð Þ, £ ϒ Λ2ð Þð Þ, 12 £ ϒ Λ1ð Þð
�

∪ϒ Λ2ð ÞÞ
�
:

ð23Þ
In the light of theℱ £-weak Suzuki contraction, we provide

the following result. Since the proof is very easy, we omit it.

Theorem 14. Let Λ ∈Ω. If the map ϒ : Λ⟶Λ is continu-
ous and an ℱ £-weak Suzuki contraction, then ϒ has a fixed
point in Λ.

Definition 15. Let Λ ∈Ω. Then, the mapping ϒ : Λ⟶Λ is
almost an ℱ £-contraction if there exist τ ∈ S and F ∈ F
such that

£ ϒ Nð Þð Þ > 0⇒ τ £ Nð Þð Þ +ℱ £ ϒ Nð Þð Þð Þ
≤ℱ £ Nð Þ + L£ ϒ Nð Þð Þð Þ: ð24Þ

In the light of an almost ℱ -contraction, we present the
following result.

Theorem 16. Let Λ ∈Ω. If the functionϒ : Λ⟶Λ is con-
tinuous and an almost ℱ £-contraction, then ϒ has a fixed
point in Λ.

Proof. Construct a sequence fΛng∞n=0 such that

Λ0 =Λ andΛn = co ϒΛn−1ð Þ, for all n ∈ℕ: ð25Þ

Then, Λn+1 ⊂Λn and ϒΛn ⊂Λn, ∀n ∈N.
If we take an integer m ≥ 0 such that £ðΛmÞ = 0, then Λm

is a compact, and by Theorem 2, we can find a fixed point of
ϒ in Λm ⊂Λ. Let us take £ðΛnÞ > 0, ∀n ∈ℕ. Then, {£ (Λn)}
is a decreasing sequence and hence converges to s ∈ℝ with
s ≥ 0. Now, since £ðΛnÞ ∈ ð0,∞Þ and s ∈ ½0,∞Þ, so by
assumption on τ, lim

t→s+
infτðtÞ > 0, we can find r > 0 and n0

∈ℕ such that τð£ðΛnÞÞ ≥ r, ∀n ≥ n0. Now, assume that

£ ϒ Λnð Þð Þ > 0: ð26Þ

Then, setting N =Λn in (24), we have

τ £ Λnð Þð Þ +ℱ £ Λn+1ð Þð Þ = τ £ Λnð Þð Þ +ℱ £ co ϒ Λn+1ð Þð Þð Þð Þ
= τ £ Λnð Þð Þ +ℱ £ ϒ Λnð Þð Þð Þ
≤ℱ £ Λnð Þ + L £ ϒ Λnð Þð Þð Þ:

ð27Þ
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From here, we write

ℱ £ Λn+1ð Þð Þ ≤ℱ £ Λnð Þ + L£ ϒ Λnð Þð Þð Þ − τ £ Λnð Þð Þ
<ℱ £ Λnð Þ + L£ Λnð Þð Þ − r, for all n:

ð28Þ

Consequently

ℱ £ Λnð Þð Þ <ℱ 1 + Lð Þ£ Λn−1ð Þð Þ − r, for all n: ð29Þ

Thus

ℱ £ Λnð Þð Þ ≤ℱ 1 + Lð Þ£ Λn−1ð Þð Þ − r

≤ℱ 1 + Lð Þ£ Λn−2ð Þð Þ − 2r
≤ℱ 1 + Lð Þ£ Λn−3ð Þð Þ − 3r
≤ℱ 1 + Lð Þ£ Λn0

� �� �
− n − n0ð Þr, ∀n > n0:

ð30Þ

Clearly lim
n→+∞

Fð£ðΛnÞÞ = −∞, andusing theproperty ðF2Þ,
we can write lim

n→+∞
Fð£ðΛnÞÞ = 0.

Following the same steps as in Theorem 10, we can easily
show that ϒ has a fixed point in Λ∞ ⊂Λ.

Definition 17. Let Λ ∈Ω. Then, the mapping ϒ : Λ⟶Λ
is the Hardy-Rogers F£-contraction, if we can find τ ∈ S,
F ∈ F, and A0 ⊂ Ξ such that

£ ϒ Að Þð Þ > 0⇒ τ £ Að Þð Þ +ℱ £ ϒ Að Þð Þð Þ
≤ℱ λ1£ Að Þ + λ2£ A0ð Þ + λ3£ ϒ Að Þð Þð

+ λ4£ ϒ A0ð Þð ÞÞ:
ð31Þ

for all A ⊂Λ, where λ1 + λ2 + λ3 + λ4 ≤ 1 with λ1, λ2, λ3,
λ4 ≥ 0:

Remark 18.

(1) If λ2 = 0, then (31) is a Reich-type F£-contraction

(2) If λ2 = λ3 = λ4 = 0 and λ1 = 1, then the contraction
(31) becomes a Darbo-type F£-contraction.

Theorem 19. Let Λ ∈Ω. If the function ϒ : Λ⟶Λ is con-
tinuous and a Hardy-Rogers-type F£v-contraction, then ϒ
has a fixed point in Λ.

Proof. Construct a sequence such that

Λ0 =Λ andΛn = co ϒΛn−1ð Þ, for all n ∈ℕ: ð32Þ

Then, Λn+1 ⊂Λn and ϒΛn ⊂Λn ∀n ∈ℕ.
Now, we discuss two cases subject to £. If we consider

m as a nonnegative integer with £ðΛmÞ = 0, then Λm is a
compact. But ϒ : Λm ⟶Λm, so by Theorem 2, ϒ has a
fixed point in Λm ⊂Λ: Instead, let us take £ðΛnÞ > 0, ∀n ∈
ℕ. From (9), we write £ðΛn+1Þ < £ðΛnÞ, that is f£ðΛnÞg is a
decreasing sequence and hence converges s ∈ℝ with s ≥ 0.
Now since £ðΛnÞ ∈ ð0,∞Þ and s ∈ ½0,∞Þ, so by assumption

on τ, lim
t→s+

infτð£ðΛnÞÞ > 0, we can find r > 0 and n0 ∈ℕ such

that τð£ðΛnÞÞ ≥ r ∀n ≥ n0. Using (31) with A =Λn and
A0 = Λn+1, we have

τ £ Λnð Þð Þ +ℱ £ Λð n+1
� �

= τ £ Λnð Þð Þ +ℱ £ð Þ �c�o ϒ ΛnÞð Þð Þð Þ
= τ £ Λnð Þð Þ +ℱ £ ϒ Λð n + 1Þ� �� �
≤ℱ λ1£ð Λð nÞ + λ2£ Λn + 1ð Þ

+ λ3£ £ ϒ Λð n

� �� �
+ λ4£ ϒ Λð n + 1ÞÞ� �

<ℱ λ1£ð Λð nÞ + λ2£ Λn + 1ð Þ + λ3£,
ð33Þ

but λ1 + λ2 + λ3 + λ4 ≤ 1 and ℱ is nondecreasing; thus, we
have

T £ Λnð Þð Þ +ℱ £ Λn+1ð Þð Þ ≤ℱ £ Λnð Þð Þ: ð34Þ

The rest of the proof is analogous to that of
Theorem 10.

We provide the following result, the proof is easy, so we
omit it.

Theorem 20. Let Λ ∈Ω. If the function ϒ : Λ⟶Λ is
continuous and a Reich F£-contraction then ϒ has a fixed
point in Λ.

3. Darbo-Type Result via F-Expansion

In this section, we introduce the Darbo-type F-expanding
mapping and establish some fixed point results.

Definition 21. Let Λ ∈Ω. Then the mapping ϒ : Λ⟶Λ is
F£-expanding if there exist τ ∈ S and F ∈ F such that

£ Λ0ð Þ > 0⇒ℱ £ ϒ Λ0ð Þð Þð Þ ≥ℱ £ Λ0ð Þð Þ + τ £ Λ0ð Þð Þ, ð35Þ

where Λ0 ⊂Λ.

In the light of F£-expanding mapping, we present the
following result.

Theorem 22. Let Λ ∈Ω. If the mapping ϒ : Λ⟶Λ is
continuous, surjective, and F£-expanding, then ϒ has a fixed
point in Λ.

Proof. Since ϒ : Λ⟶Λ is surjective, so by Lemma 8, we
can find a function ϒ∗ : Λ⟶Λ such that ϒ ∘ϒ∗ is the
identity function on Λ. Let Λ1 and Λ2 be any subsets of Λ
such that Λ2 =ϒ∗ðΛ1Þ. Assume that £ðΛ2Þ > 0; then on
using (35), we can write

ℱ £ ϒ Λ2ð Þð Þð Þ ≥ℱ £ Λ2ð Þð Þ + τ £ Λ2ð Þð Þ: ð36Þ

Since ϒðΛ2Þ =ϒðϒ∗ðΛ1ÞÞ = ðϒ ∘ϒ∗ÞðΛ1Þ =Λ1, then
(36) becomes
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ℱ £ Λ1ð Þð Þ ≥ℱ £ ϒ∗ Λ1ð Þð Þð Þ + τ £ ϒ∗ Λ1ð Þð Þð Þ: ð37Þ

Now, if u is fixed point of ϒ∗, then ϒu =ϒðϒ∗uÞ = u.
Thus, to show that ϒ has a fixed point, it is sufficient to show
that ϒ∗ has a fixed point. To do this, construct a sequence
such that

Λ0 =Λ andΛn = co ϒ∗Λn−1ð Þ, for all n ∈ℕ: ð38Þ

Then, we can easily show thatΛn+1 ⊂Λn andϒ
∗Λn ⊂Λn.

Next, if we take an integerm ≥ 0with £ðΛmÞ = 0, thenΛm
is compact. So, by Theorem 2,ϒ∗ has a fixed point inΛm ⊂Λ.
Now, let us take £ðΛnÞ > 0, for all n ∈N. We have to prove that
Λ∞ ⊂Λn is a nonempty, bounded, closed, and convex subset
of Ξ. For this, since the sequence f£ðΛnÞg is decreasing, it
converges to s ≥ 0. Now, assume that £ðΛn+1Þ > 0. Then

0 < £ Λn+1ð Þ = £ co ϒ∗ Λnð Þð Þð Þ = £ ϒ∗ Λnð Þð Þ, ð39Þ

that is, £ðϒ∗ðΛnÞÞ ∈ ð0,∞Þ and s ∈ ½0,∞Þ, so by assump-
tion on τ, lim

t→s+
inf τð£ðϒ∗ðΛnÞÞÞ > 0, we can find r > 0

and n0 ∈N such that τð£ðϒ∗ðΛnÞÞÞ ≥ r for all n ≥ n0.
Using (37) with Λ =Λn, we write

τ £ ϒ∗ Λnð Þð Þð Þ +ℱ £ Λn+1ð Þð Þ = τ £ ϒ∗ Λnð Þð Þð Þ +ℱ £ co ϒ∗ Λnð Þð Þð Þð Þ
= τ £ ϒ∗ Λnð Þð Þð Þ +ℱ £ ϒ∗ Λnð Þð Þð Þ
≤ℱ £ Λnð Þð Þ:

ð40Þ

From here, we write

ℱ £ Λn+1ð Þð Þ ≤ℱ £ Λnð Þð Þ − τ £ ϒ∗ Λnð Þð Þð Þ ≤ℱ £ Λnð Þð Þ − r:

ð41Þ

Consequently,

ℱ £ Λnð Þð Þ ≤ℱ £ Λn−1ð Þð Þ − r: ð42Þ

By routine calculation, one can easily obtain

ℱ £ Λnð Þð Þ ≤ℱ £ Λn0ð Þð Þ − n − n0ð Þr, ∀n > n0: ð43Þ

Clearly, lim
n→+∞

ℱ ð£ðΛnÞÞ = −∞ and using the property

ðF2Þ, we can write lim
n→+∞

£ðΛnÞ = 0. Thus, by Definition

3(vi), Λ∞ = ∩ +∞
n=1 is nonempty and ϒ∗Λ∞ ⊂Λ∞ as ϒ∗

Λn ⊂Λn. Also, since Λ∞ ⊂Λn, for all n ∈ℕ, so by Defini-
tion 3(ii), £ðΛ∞Þ ≤ £ðΛnÞ, for alln ∈ℕ. Thus, £ðΛ∞Þ = 0,
and hence, Λ∞ ∈ ker£, that is Λ∞ is bounded. But Λ∞is
closed such that Λ∞ is compact. Therefore, by Theorem
2, ϒ∗ has a fixed point in Λ∞ ⊂Λ. Consequently, ϒ has
a fixed point in Λ∞ ⊂Λ.

From Theorem 22, we can deduce several pivotal results.
We demonstrate some preferable corollaries that cover and
extend several known theorems in the literature. The special

case, if we take FðxÞ = ln x, x > 0, in Theorem 22, we deduce
the following corollary.

Corollary 23. Let Λ ∈Ω and ϒ : Λ⟶Λ be a surjective and
continuous mapping such that

£ ϒ Λð Þð Þ ≥ £ Λð Þeτ £ Λð Þð Þ, for allΛ ⊂Λ:lim ð44Þ

Then ϒ has a fixed point in Λ.

If we take FðxÞ = ln x + x, x > 0, in Theorem 22, we get
the following corollary.

Corollary 24. Let Λ ∈Ω andϒ : Λ⟶Λ be a surjective and
continuous mapping such that

£ ϒ Λð Þð Þ ≥ £ Λð Þe2τ £ Λð Þð Þ−£ ϒ Λð Þð Þ, for allΛ ⊂Λ: ð45Þ

Then, ϒ has a fixed point in Λ.

If we take ℱ ðxÞ = lnðx2 + xÞ, x > 0, in Theorem 22, we
deduce the following corollary.

Corollary 25. Let Λ ∈Ω and ϒ : Λ⟶Λ be a surjective and
continuous mapping such that

£ ϒ Λð Þð Þ £ ϒ Λð Þð Þ + 1ð Þ ≥ £ Λð Þ £ Λð Þ + 1ð Þeτ £ Λð Þð Þ, for allΛ ⊂Λ:

ð46Þ

Then ϒ has a fixed point in the set Λ.

If we take ℱ ðxÞ = arctanð−1/xÞ with x > 0, in Theorem
22, we deduce the following corollary.

Corollary 26. Let Λ ∈Ω and ϒ : Λ⟶Λ be a surjective and
continuous mapping such that

£ ϒ Λð Þð Þ ≥ £ Λð Þ + tanτ £ Λð Þð Þ
1 − tanτ £ Λð Þð Þ:£ Λð Þ , for allΛ ⊂Λ: ð47Þ

Then, ϒ has a fixed point in Λ.

4. Applications

This section deals with some practicing of our fixed point
results. Let ðE, k:kÞ be a Banach space having the zero ele-
ment 0. Let Bða, rÞ be the closed ball with center a and radius
r and Br be the ball Bð0, rÞ. Our aim is to illustrate sufficient
conditions for the existence of a solution of a nonlinear
fractional-order differential equation:

cD℘u tð Þ = ψ t, u tð Þð Þ, t ∈ 0, Δ½ �, Δ ≥ 1, ð48Þ

under the integral type boundary conditions:

p1u 0ð Þ + q1u Δð Þ = I℘ϕ1 Δ, u Δð Þð Þ, ð49Þ

p2u′ 0ð Þ + q2u′ Δð Þ = I℘ϕ2 Δ, u Δð Þð Þ, ð50Þ
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where ℘∈ð1, 2�, cD is the Caputo fractional derivative, ψ,
φ1, φ2 : ½0,△� ×ℝ⟶ℝ are continuous functions, and pk
and qk (k = 1, 2) are positive real numbers.

Lemma 27 (see [16]). For pj ∈ℝ, j = 0, 1, 2,⋯, r − 1, we have

I℘ cD℘h tð Þ½ � = h tð Þ + p0 + p1t + p2t
2 + ::⋯ + pr−1t

r−1: ð51Þ

To proceed further, we convert the nonlinear fractional-
order differential equation (48) to an integral equation. For
this, we prove the following lemma.

Lemma 28. A solution of the fractional-order boundary value
problem (48) is

u tð Þ = I℘ψ t, u tð Þð Þ − q1
p1 + q1

I℘ψ Δ, u Δð Þð Þ + q2
p2 + q2

� q1Δ
p1 + q1ð Þ−t

� �
I℘−1ψ Δ, u Δð Þð Þ + 1

p1 + q1
I℘ψ Δ, u Δð Þð Þ

+ 1
p2 + q2

t −
q1Δ

p1 + q1ð Þ
� �

I℘φ2 Δ, u Δð Þð Þ:

ð52Þ

Proof. First of all, apply the Riemma-Liouville fractional inte-
grable operator I℘ of order ℘ to equation (48), and using
Lemma 27, we can easily deduce that

u tð Þ = C0 + C1 + I℘ψ t, u tð Þð Þ, ð53Þ

and by differentiating (53), we get

u′ tð Þ = C0 + C1t+I℘−1ψ t, u tð Þð Þ: ð54Þ

But uð0Þ = C0, u′ð0Þ = C1, uðΔÞ = C0 + C1Δ + I℘ψðΔ, u
ðΔÞÞ, and u′ðΔÞ = C1 + I℘−1ψðΔ, uðΔÞÞ.

Substituting the values of u ð0Þ and u ðΔÞ in (49), we get

C0 = −
q1Δ

p1 + q1
C1 −

q1
p1 + q1

I℘ψ Δ, u Δð Þð Þ

+ 1
p1 + q1

I℘φ1 Δ, u Δð Þð Þ:
ð55Þ

Similarly, substituting the values of u′ð0Þ and u′ðΔÞ in
(50), we get

C1 = −
q2

p2+q2
I℘−1ψ Δ, u Δð Þð Þ + 1

p2 + q2
I℘ϕ2 Δ, u Δð Þð Þ: ð56Þ

Putting the value of C1 in (55), we deduce

C0 = −
q1q2Δ

p1 + q1ð Þ p2+q2ð Þ I
℘−1ψ Δ, u Δð Þð Þ

−
q1Δ

p1 + q1ð Þ p2 + q2ð Þ I
℘ϕ2 Δ, u Δð Þð Þ

−
q1

p1 + q1
I℘ψ Δ, u Δð Þð Þ + 1

p1 + q1
I℘ϕ2 Δ, u Δð Þð Þ:

ð57Þ

Thus, by switching the values of C0 and C1 in (53) and by
routine calculations, we get equation (52).

Notice that Lemma (49) indicates that the solution of
differential equation (48) is equivalent to the solution of
integral equation (52). Now, we are in a position to present
the existence result.

Theorem 29. Let u, v ∈ Br and ψ, φ1, φ2 : ½0, Δ� ×ℝ⟶ℝ
are continuous mapping such that

ψ t, u tð Þð Þ − ψ t, u tð Þð Þj j ≤ e− 2r+ 1/kð Þð Þ

3Δ℘ ℘Δ + 2ð Þ u − vk k, ð58Þ

ϕ1 t, u tð Þð Þ − ϕ1 t, u tð Þð Þj j ≤ e− 2r+ 1/kð Þð Þ

3Δ℘ u − vk k, ð59Þ

ϕ2 t, u tð Þð Þ − ϕ2 t, u tð Þð Þj j ≤ e− 2r+ 1/kð Þð Þ

3Δ℘+1 u − vk k, ð60Þ

2 + 1
r ℘ð Þ

� �
M1 +M2+M3

� �
Δ℘+1 ≤ r, ð61Þ

where ℘∈ð1, 2�, k > 1, Δ ≥ 1, sup
s∈½0,Δ�

jψðs, uðsÞÞj =M1 <∞,

sup
s∈½0,Δ�

jϕ1ðs, uðsÞÞj =M2 <∞, and sup
s∈½0,Δ�

jjϕ1ðs, uðsÞÞjj =M3 <

∞. Then, there exists a solution of the fractional-order
integral equation (52) in Br. Accordingly, there exists a solu-
tion of the nonlinear fractional-order differential equation
(48) in Br .

Proof. Let Br = fu ∈ C ð½0,T�,ℝÞ: kuk ≤ rg: Then, Br is a
nonempty, closed, bounded, and convex subset of ðE, k:kÞ.
Define τ,F : ð0,∞Þ⟶ℝ by τðxÞ = x + ð1/kÞ with k >1
and FðxÞ = ln x and the operator ϒ : Br → Br by

ϒu tð Þ = I℘ψ t, u tð Þð Þ − q1
p1 + q1

I℘ψ Δ, u Δð Þð Þ − q2
p2 + q2

� q1Δ
p1 + q1

−t
� �

I℘−1ψ Δ, u Δð Þð Þ

= 1
p1 + q1

I℘ϕ1 Δ, u Δð Þð Þ + 1
p2 + q2

� t −
q1Δ

p1 + q1

� �
I℘ϕ2 Δ, u Δð Þð Þ:

ð62Þ
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First, we will show that ϒ : Br⟶ Br is well defined. Let
u ∈ Br, for some r. Then, for all x ∈ ½0, 4�, we have

ϒu tð Þj j ≤ 1
Γ ℘ð Þ

ðt
0
t−sð Þ℘−1 ψ s, u sð Þð Þj jds

+ q1
p1 + q1

1
Γ ℘ð Þ

ðΔ
0
Δ−sð Þ℘−1 ψ s, u sð Þð Þj jds

+ q2
p2 + q2

q1Δ
p1 + q1

−t
				

				 1
Γ ℘−1ð Þ

ðΔ
0
Δ−sð Þ℘−2 ψ s, u sð Þð Þj jds

+ 1
p1 + q1

1
Γ ℘ð Þ

ðΔ
0
Δ−sð Þ℘−1 φ1 s, u sð Þð Þj jds

+ 1
p2 + q2

t −
q1Δ

p1 + q1

				
				 1
Γ ℘ð Þ

ðΔ
0
Δ−sð Þ℘℘−1 φ1 s, u sð Þð Þj jds

≤
ψ s, u sð Þð Þk k
Γ ℘ð Þ

ðt
0
t−sð Þ℘−1ds + ψ s, u sð Þð Þk k

Γ ℘ð Þ
ðΔ
0
Δ−sð Þ℘−1ds

+ ψ s,u sð Þð Þk kΔ
Γ ℘−1ð Þ

ðΔ
0
Δ−sð Þ℘−2ds + φ1 s, u sð Þð Þk k

Γ ℘ð Þ
ðΔ
0
Δ−sð Þ℘−1ds

+ φ2 s, u sð Þð Þk kΔ
Γ ℘ð Þ

ðΔ
0
Δ−sð Þ℘−1ds ≤ M1

Γ ℘ð Þ
t℘

℘ + M1
Γ ℘ð Þ

Δ℘

℘

+ M1Δ

Γ ℘−1ð Þ
Δ℘−1

℘−1 + M2
Γ ℘ð Þ

Δ℘

℘ + M3Δ

Γ ℘ð Þ
Δ℘

℘

≤ 2 + 1
Γ ℘ð Þ

� �
M1 +M2+M3

� �
Δ℘+1 ≤ r:

ð63Þ

That is kϒðuÞk ≤ r for all u ∈ Br , which implies that
ϒðuÞ ∈ Br , and hence, ϒ : Br ⟶ Br is well defined.

Now, we have to show that ϒ : Br ⟶ Br is continuous.
For this, consider

ϒu tð Þ −ϒv tð Þk k
≤

1
Γ ℘ð Þ

ðt
0
t−sð Þ℘−1 ψ s, u sð Þð Þ − ψ s, v sð Þð Þk kds

+ q1
p1 + q1ð ÞΓ ℘ð Þ

ðΔ
0
Δ−sð Þ℘−1 ψ s, u sð Þð Þ − ψ s, v sð Þð Þk kds

+ q2
p2 + q2

q1
p1 + q1

− t











ðΔ
0

Δ−sð Þ℘−2 ψ s, u sð Þð Þ − ψ s,v sð Þð Þk k
Γ ℘−1ð Þ ds

+ 1
p1 + q1ð ÞΓ ℘ð Þ

ðΔ
0
Δ−sð Þ℘−1 ϕ1 s, u sð Þð Þ − ϕ1 s, v sð Þð Þk kds

+ 1
p2 + q2

t −
q1Δ

p1 + q1











ðΔ
0

Δ−sð Þ℘−2 ϕ2 s, u sð Þð Þ − ϕ2 s, v sð Þð Þk k
Γ ℘ð Þ ds

≤
ψ s, u sð Þð Þ − ψ s,v sð Þð Þk kΔ℘

Γ ℘+1ð Þ + ψ s, u sð Þð Þ − ψ s,v sð Þð Þk kΔ℘

Γ ℘+1ð Þ

+ ψ s, u sð Þð Þ − ψ s,v sð Þð Þk kΔ℘+1

Γ ℘ð Þ + ϕ1 s, u sð Þð Þ − ϕ1 s,v sð Þð Þk kΔ℘

Γ ℘+1ð Þ

+ φ2 s, u sð Þð Þ − ϕ2 s,v sð Þð Þk kΔ℘+1

Γ ℘+1ð Þ
≤ Δ℘+1 φ2 s, u sð Þð Þ − ϕ2 s, v sð Þð Þk k:

ð64Þ

Since ψ, φ1, and φ2 are continuous, so for ∈1 = 1/Δ℘

ð℘Δ + 2Þ, ∈2 = 1/Δ℘, ∈3 = 1/Δ℘+1 > 0, there exist δ1, δ2, δ3 >
0 such that

ψ s, u sð Þð Þ − ψ s, v sð Þð Þk k < ∈1
3 , whenever  u − vk k < δ1,

ϕ1 s, u sð Þð Þ − ϕ1 s, v sð Þð Þk k < ∈2
3 , whenever  u − vk k < δ2,

ϕ2 s, u sð Þð Þ − ϕ2 s, v sð Þð Þk k < ∈3
3 , whenever  u − vk k < δ3:

ð65Þ

If ∈ =minf∈1, ∈2, ∈3g and δ =min fδ1, δ2, δ3g, then we
conclude that kϒvðtÞϒυðtÞk < ∈, whenever ku − vk < δ.

Hence, ϒ : Br ⟶ Br is continuous. Next, we have to
show that ϒ : Br ⟶ Br is an F£-weak contraction. Let Λ1
and Λ2 be any two subsets of Br and u, v ∈Λ1. Then, by con-
ditions (58), (59), and (60), we have

diam ϒΛ1ð Þ = ϒu tð Þ −ϒv tð Þk k
≤ Δ℘ ℘Δ + 2ð Þ ψ s, u sð Þð Þ − ψ s, v sð Þð Þk k

+ Δ℘ φ1 s, u sð Þð Þ − φ1 s, v sð Þð Þk k
+ Δ℘+1 φ2 s, u sð Þð Þ − φ2 s, v sð Þð Þk k

≤ e− 2r+1/kð Þ u − vk k
= e − diam Λ1ð Þ + 1

k

� �
diam Λ1ð Þ

≤ e− diam Λ1ð Þð +1/k max diam Λ1ð Þ,f
diam ϒ Λ1ð Þð Þ, diam ϒ Λ2ð Þð Þ,
diam ϒ Λ1ð Þð Þ ∪ ϒ Λ2ð Þð Þg:

ð66Þ

From here, we write

£ ϒΛ1ð Þ = e− £ Λ1ð Þ+1/kð Þmax £ Λ1ð Þ, £ ϒ Λ1ð Þð Þ, £ ϒ Λ2ð Þð Þ, 12 £ ϒΛ1ð Þ
�

∪ ϒ Λ2ð Þð Þ
�
:

ð67Þ

Consequently,

In £ ϒΛ1ð Þð Þ ≤ − £ Λ1ð Þ + 1
k

� �
+ In Δ Λ1,Λ2ð Þð Þ, ð68Þ

which implies that

τ £ Λ1ð Þð Þ +ℱ £ ϒΛ1ð Þð Þ ≤ℱ Δ Λ1,Λ2ð Þð Þ: ð69Þ

That isϒ : Br ⟶ Br is an F£-weak contraction. Thus, by
Theorem 10, ϒ has a fixed point in Br . Consequently,
equation (52) has a solution in Br .

To illustrate the existence result (Theorem 29), we
present an example.

8 Journal of Function Spaces



Example 2. Consider the nonlinear fractional-order differen-
tial equation

cD3/4u tð Þ = e−t−2sin u tð Þð Þ
t + 7ð Þ3 , t ∈ 0, 3½ �,

2u 0ð Þ + 3u 3ð Þ =
ð3
0

3 − sð Þ1/2cos u sð Þð Þ
Γ3/2 s + 4ð Þ4 ds,

1
3 u

′ 0ð Þ + 1
2 u

′ 3ð Þ =
ð3
0

3 − sð Þ1/2e− u sð Þ+6ð Þ

Γ3/2 ds,

8>>>>>>>>><
>>>>>>>>>:

ð70Þ

where cD is the Caputo fractional-order derivative and ψ,
φ1, φ2 : ½0, 3� ×ℝ⟶ℝ are continuous functions defined as

ψ t, u tð Þð Þ = e−t−2sin u tð Þð Þ
t + 7ð Þ3 , ϕ1 t, u tð Þð Þ

= cos u tð Þð Þ
t + 4ð Þ4 , and ϕ2 t, u tð Þð Þe− u tð Þ+6ð Þ:

ð71Þ

Now, we have to verify the conditions of Theorem 29. Let
Λ1 ⊂ B1 and u, v ∈Λ1; then, fork = 10, t ∈ ½0, 3�, Δ = 3, and
℘ = 3/2, we first show condition (58) of Theorem 29. To do
this, we have

ψ t, u tð Þð Þ − ψ t, v tð Þð Þk k = e−t−2

t + 7ð Þ3 sin u tð Þð Þ − sin v tð Þð Þk k

≤
e−2− 1/10ð Þ

3 × 3 3/2ð Þ 3/2ð Þ × 3 + 2ð Þ u − vk k

= e− 2r+ 1/kð Þð Þ

3Δ℘ ℘Δ + 2ð Þ u − vk k:

ð72Þ

Next, to show condition (59) of Theorem 29, we have

ϕ1 t, u tð Þð Þ − ϕ2 t, v tð Þð Þk k = cos u tð Þð Þ
t + 4ð Þ4 −

cos v tð Þð Þ
t + 4ð Þ4












≤
1

t + 4ð Þ4 u − vk k

≤
e−2− 1/10ð Þ

3 × 33/2 u − vk k

= e− 2r+ 1/kð Þð Þ

3Δ℘ u − vk k:

ð73Þ

Also, to show condition (60) of Theorem 29, we have

ϕ2 t, u tð Þð Þ − ϕ2 t, v tð Þð Þk k = e− u tð Þ+6ð Þ − e− v tð Þ+6ð Þ



 




≤ e−6 u‐vk k ≤ e−2− 1/10ð Þ

3 × 35/2 u‐vk k

= e−2r+ 1/kð Þ

3Δ℘+1 u‐vk k:
ð74Þ

Finally, we have to verify condition (75) of Theorem 29.
For this, since M1 < 0:0003945,M2 < 0:003906, andM3 ≈
0:0024787, we get

2 + 1
Γ ℘ð Þ

� �
M1 +M2+M3

� �
Δ℘+1 < 0:117977 < 1 = r:

ð75Þ

Thus, all the conditions of Theorem 29 are satisfied.
Hence the nonlinear fractional-order differential equation
(70) has a solution in B1.

5. Conclusion

Through measure of noncampactness, various new F-con-
traction and F-expanding mappings have been presented.
In the Banach spaces, fixed point results were established,
from which several existing results can be extracted. For
the accuracy of our results, we have checked the existence
of a solution to the nonlinear fractional-order differential
equation under the integral-type boundary conditions with
an example.
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