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Abstract: In this paper, a type of complex algebraic differential equations (CADEs) is considered
formulating by

α[ϕ(z)ϕ′′(z) + (ϕ′(z))2] + amϕ
m(z) + am−1ϕ

m−1(z) + ... + a1ϕ(z) + a0 = 0.

The conformal analysis (angle-preserving) of the CADEs is investigated. We present sufficient
conditions to obtain analytic solutions of the CADEs. We show that these solutions are subordinated to
analytic convex functions in terms of ez. Moreover, we investigate the connection estimates (coefficient
bounds) of CADEs by employing the majorization method. We achieve that the coefficients bound are
optimized by Bernoulli numbers.
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1. Introduction

An algebraic differential equation is a differential equation that can be formulated by consequence
with differential algebra. There are different directions to study this class involving complex domains.
These studies are considered the second-order homogeneous linear differential equation [1],
meropmorphic solution by using Painlevé analysis [2], univalent symmetric solution by applying a
special case of Painlevé analysis [3], fractional calculus of CADEs [4–6], Nevanlinna method, for
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normal classes, and algebraic differential equations [7], irregular and regular singular solutions, by
utilizing special functions such as Zeta function [8], numerical solution [9] and quantum studies [10].

The geometric behavior of classes of CADEs is studied in different views. Phong [11] presented a
solution of a class of CADEs driven by string theories. The class is also motivating from the view of
non-Kahler geometry and the theory of non-linear partial differential equations. Brodsky [12]
analyzed a class of CADEs by utilizing the concept of Bourbaki geometric theory with applications in
multi-agent system. Seilera and Seib [13] employed the differential geometric theory to recognize the
solution of a class of CADEs. Fenyes [14] introduced a complete analysis of solution of a class of
CADEs using the quasiconformal geometry. Kravchenko et al. [15] studied the analytic solution by
using the geometry behavior of Liouville transformation. More studies of analytic solutions of
CADEs can be located in [16–18].

Here, we proceed to study a class of CADEs geometrically. Our tools are based on some concepts
from the geometric function theory and univalent function theory. For an analytic function ϕ which
defined in the open unit disk ∪ = {z ∈ C : |z| < 1}, we formulate the following CADE as follows:

α[ϕ(z)ϕ′′(z) + (ϕ′(z))2] + amϕ
m(z) + am−1ϕ

m−1(z) + ... + a1ϕ(z) + a0 = 0.

Our aim is to present sufficient conditions to obtain its analytic solutions. We show that these solutions
are subordinated to analytic convex functions in terms of ez. Moreover, we investigate the coefficient
bounds of CADE by employing the majorization method. We achieve that the coefficients bound are
optimized by Bernoulli numbers.

2. Materials and method

A special class of CADEs is studied in [2] taking the structure

α[ϕ(z)ϕ′′(z) + (ϕ′(z))2] + Λm
ϕ (z) = 0, z ∈ C, (2.1)

where α and aı ∈ C, ı = 0, ...,m are constants such that

Λm
ϕ (z) := amϕ

m(z) + am−1ϕ
m−1(z) + ... + a1ϕ(z) + a0.

Here, we rearrange (2.1) and investigate the geometric properties by including it in some classes of
normalized analytic functions in ∪. Then the solution is majorized by employing special function in
∪. Eq (2.1) implies the homogeneous form when α , 0(

zϕ′(z)
ϕ(z)

) (
zϕ′′(z)
ϕ′(z)

+
zϕ′(z)
ϕ(z)

)
= 0, z ∈ ∪. (2.2)

Fenyes [14] studied a special case of Eq (2.1) as follows: (ϕ′(z))2 = q/2, where q indicates the
potential energy, by using the Liouville transformation. The same technique is used by Vladislav et
al [15] to analyze the equation ϕ′′(z) + cϕ(z) = 0.

To study Eq (2.2) geometrically, we need the next concepts.

Definition 2.1. An analytic function ϕ is subordinated to an analytic function ψ, written ϕ ≺ ψ, if
occurs an analytic function h with |h(z)| ≤ |z| such that ϕ = (ψ(h)) (see [19]). The Ma-Minda classes
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S ∗(ρ) and K(ρ) of starlike and convex functions respectively indicated by
(

zϕ′(z)
ϕ(z)

)
≺ ρ(z) and(

1 +
zϕ′′(z)
ϕ′(z)

)
≺ ρ(z), where ρ has a positive real part in ∪, ρ(0) = 1, |ρ′(0)| > 1 and maps ∪ onto a

starlike-domain with respect to one and symmetric based on the real axis.

Our study is indicated by using the above inequality to define the following special class.

Definition 2.2. A function of normalized expansion ϕ(z) = z +
∑∞

n=2 ϕnzn, z ∈ ∪ is called in the class
M(ρ) if and only if

P(z) :=
(
zϕ′(z)
ϕ(z)

) (
zϕ′′(z)
ϕ′(z)

+
zϕ′(z)
ϕ(z)

)
≺ ρ(z). (2.3)(

z ∈ ∪, ρ(0) = 1, |ρ′(0)| > 1
)

It is clear that P(0) = 1. In the sequel, we shall consider a starlike function with positive real part
such as ez and a convex function (univalent)

ρe(z) =
z

ez − 1
= 1 −

z
2

+
z2

12
−

z4

720
+ ...

as well as

%e(z) := 1/ρe(z) = 1 +
z
2

+
z2

6
+

z3

24
+

z4

120
+ ...

is convex univalent in ∪ (see [19], P415). Note that the coefficients are converging to the Bernoulli
numbers. Moreover, the real part of the function %e(z) = (ez − 1)/z satisfies the inequality

<

(
eηz − 1
ηz

)
≥

1
2
, 0 < η ≤ 1.793.. .

Hence,<
(
eηz − 1
ηz

)
≥

1
ρe(−1)

= 1
2 .

Our computation is based on analytic technique of Caratheodory functions which are used in [20].
This is the first step. The second step is to majorize Λm

ϕ (z) by a special type of ρ(z), z ∈ ∪ denoted by
Λm
ϕ (z) � ρ(z).Note that two functions are under majorization if and only if |λ | ≤ |ρ | for all  = 1, 2, ... ,

where λ  and ρ  are the coefficients of Λm
ϕ (z) and ρ(z) respectively. In this case, we illustrate sufficient

conditions of the coefficient bounds of Λm
ϕ (z), for different values of m = 0, 1, .., using a Caratheodory

function.
Majorization-subordination theory creates by Biernacki who exposed in 1936 that if f (z) is

subordinate in ∪ to F(z) (F(z) is the normalized function in ∪). In the following works, Goluzin, Tao
Shah, Lewandowski and MacGregor studied numerous connected problems, but continuously under
the condition that the dominant function F(z) is |z| < 0.12. In 1951, Goluzin presented that if f (z) is
majorized by a univalent function F(z), then f ′(z) is majorized by F′(z) in |z| < 0.12. He conjectured
that majorization would continuously arise for |z| < 3–

√
8 and this was shown by Tao Shah in 1958.

Later Campbell proved the same result for a parametric class of univalent function (see [21]).

3. Results

In this place, we illustrate our computational results.
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Theorem 3.1. Let the function ϕ ∈ ∧ achieving the inequality

1 + γ

(
z P′(z)
[P(z)]k

)
≺ z +

√
z2 + 1, k = 0, 1, 2,

where P(z) =
(

zϕ′(z)
ϕ(z)

) (
zϕ′′(z)
ϕ′(z) +

zϕ′(z)
ϕ(z)

)
. Then

P(z) ≺ ρe(z) =
z

ez − 1
, z ∈ ∪,

when γ ≥ maxγk,

•

min γ0 =
−((e − 1)(−2 +

√
2 + log(2) − log(1 +

√
2)))

(e − 2)
≈ 1.8516..

and
max γ0 = (e − 1)(

√
2 + log(2) + log(

√
2 − 1)) ≈ 2.106..

•

min γ1 =
(2 −

√
2 − log(2) + log(1 +

√
2))

log(e − 1)
≈ 1.5..

and

max γ1 =
(−
√

(2) − log(2) − log(
√

(2) − 1))
(log(e − 1) − 1)

≈ 2.839. .

•

min γ2 =
2 −
√

2 + log(1/2 + 1/
√

2)
(e − 2)

≈ 1.077..

and
max γ2 = e(

√
2 + log(2) − log(1 +

√
2)) ≈ 3.33.. .

Proof. Case I: k = 0⇒ 1 + γ (z P′(z)) ≺ z +
√

z2 + 1.
Define a function Γγ : ∪ → C admitting the structure

Γγ(z) = 1 +
1
γ

(
z +

√
z2 + 1 − log(1 +

√
z2 + 1) − 1 + log(2)

)
.

Clearly, Γγ(z) is analytic in ∪ satisfying Γγ(0) = 1 and it is a solution of the differential equation

1 + γ
(
z Γ′γ(z)

)
= z +

√
z2 + 1, z ∈ ∪. (3.1)

Consequently, we have O(z) := γ
(
z Γ′γ(z)

)
= z +

√
z2 + 1−1 is starlike in ∪. Then for H(z) := O(z) + 1,

we conclude that

<

(
zO′(z)
O(z)

)
= <

(
zH′(z)
O(z)

)
> 0.

Then Miller-Mocanu Lemma (see [19], P132) implies that

1 + γ
(
z P′(z)

)
≺ 1 + γzΓ′γ(z)⇒ P(z) ≺ Γγ(z).
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To complete this case, we only request to show that Γγ(z) ≺ ρe(z). Obviously, the function Γγ(z) is
increasing in the interval (−1, 1) that is achieving the inequality

Γγ(−1) ≤ Γγ(1).

Since the function ρe(z) satisfies the inequality for real ϑ,

1
e − 1

≤ <(ρe(z)) ≈ 1 −
cos(ϑ)

2
+

∞∑
n=1

β2n cos(2nϑ)
(2n)!

≤
e

e − 1

then the following inequality holds

1
e − 1

≤ Γγ(−1) ≤ Γγ(1) ≤
e

e − 1

if γ achieves the upper and lower bounds (see Fig1-first row)

min γ0 =
−((e − 1)(−2 +

√
2 + log(2) − log(1 +

√
2)))

(e − 2)
≈ 1.8516..

and
max γ0 = (e − 1)(

√
2 + log(2) + log(

√
2 − 1)) ≈ 2.106.. .

This leads to the subordination inequalities

Γγ(z) ≺
z

ez − 1
⇒ P(z) ≺

z
ez − 1

, z ∈ ∪.

Case II: k = 1⇒ 1 + γ
(

z P′(z)
P(z)

)
≺ z +

√
z2 + 1.

Define a function Πγ : ∪ → C formulating the structure

Πγ(z) = exp
(
1
γ

(
z +

√
z2 + 1 − log(1 +

√
z2 + 1) − 1 + log(2)

))
.

Clearly, Πγ(z) is analytic in ∪ satisfying Πγ(0) = 1 and it is a solution of the differential equation

1 + γ

(z Π′γ(z)

Πγ(z)

)
= z +

√
z2 + 1, z ∈ ∪. (3.2)

By using O(z) = z +
√

z2 + 1 − 1, which is starlike in ∪ and H(z) = O(z) + 1, we get

<

(
zO′(z)
O(z)

)
= <

(
zH′(z)
O(z)

)
> 0, z ∈ ∪.

Then again, according to Miller-Mocanu Lemma, we have

1 + γ

(
z P′(z)
P(z)

)
≺ 1 + γ

(zΠ′γ(z)

Πγ(z)

)
⇒ P(z) ≺ Πγ(z).
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Accordingly, the next inequality carries

1
e − 1

≤ Πγ(−1) ≤ Πγ(1) ≤
e

e − 1
if γ admits the upper and lower bounds (see Figure 1-second row)

min γ1 =
(2 −

√
2 − log(2) + log(1 +

√
2))

log(e − 1)
≈ 1.5..

and

max γ1 =
(−
√

(2) − log(2) − log(
√

(2) − 1))
(log(e − 1) − 1)

≈ 2.839. .

This yields to the subordination inequalities

Πγ(z) ≺
z

ez − 1
⇒ P(z) ≺

z
ez − 1

, z ∈ ∪.

Case III: k = 2⇒ 1 + γ
(

z P′(z)
P2(z)

)
≺ z +

√
z2 + 1.

Define a function Θγ : ∪ → C formulating the structure

Θγ(z) =

(
1 −

1
γ

(
z +

√
z2 + 1 − log(1 +

√
z2 + 1) − 1 + log(2)

))−1

.

Clearly, Θγ(z) is analytic in ∪ satisfying Θγ(0) = 1 and it is a solution of the differential equation

1 + γ

(z Θ′γ(z)

Θγ(z)

)
= z +

√
z2 + 1, z ∈ ∪. (3.3)

By using O(z) = z +
√

z2 + 1 − 1, which is starlike in ∪ and H(z) = O(z) + 1, we get

<

(
zO′(z)
O(z)

)
= <

(
zH′(z)
O(z)

)
> 0, z ∈ ∪.

Then again, according to Miller-Mocanu Lemma, we have

1 + γ

(
z P′(z)
P2(z)

)
≺ 1 + γ

(zΘ′γ(z)

Θ2
γ(z)

)
⇒ P(z) ≺ Θγ(z).

Accordingly, we have
1

e − 1
≤ Θγ(−1) ≤ Θγ(1) ≤

e
e − 1

if γ2 admits the upper and lower bounds (see Figure 1-third row)

min γ2 =
2 −
√

2 + log(1/2 + 1/
√

2)
(e − 2)

≈ 1.077..

and
max γ2 = e(

√
2 + log(2) − log(1 +

√
2)) ≈ 3.33.. .

This brings the subordination inequalities

Θγ(z) ≺
z

ez − 1
⇒ P(z) ≺

z
ez − 1

, z ∈ ∪.

�
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Figure 1. The first row represents the min and max of γ0 and the second row indicates γ1,
while the third is γ2.
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Next result studies the subordination with respect to the function %e(z) = ez−1
z , z ∈ ∪.

Theorem 3.2. Let the the assumptions of Theorem 3.1 hold. Then

P(z) ≺ %e(z) =
ez − 1

z
, z ∈ ∪

when γ ≥ maxγk,

•

min γ0 =
(
√

2 + log(2) + log(
√

2 − 1))
(e − 2)

≈ 1.706..

and
max γ0 = −e(−2 +

√
2 + log(2) − log(1 +

√
(2))) ≈ 2.10399.. .

•

min γ1 =
(−2 +

√
2 + log(2) + log(

√
2 − 1))

(log(e − 1) − 1)
≈ 1.70..

and
max γ1 = (

√
2 + log(2) + log(

√
2 − 1))/ log(e − 1) ≈ 2.2.. .

•

min γ2 = −(e − 1)(−2 +
√

2 + log(2) − log(1 +
√

2)) ≈ 1.329..

and

max γ2 =
((e − 1)(

√
2 + log(2) − log(1 +

√
2)))

(e − 2)
≈ 2.932.. .

Proof. Consider the convex univalent function %e(z) = ez−1
z . It is clear that %(0) = 1 with a positive real

part. Moreover it satisfies the inequality

e − 1
e
≤ <(%e(z)) ≤ e − 1, z ∈ ∪.

By the proof of Theorem 3.1, we have the following inequality

e − 1
e
≤ Γγ(−1) ≤ Γγ(1) ≤ e − 1

if γ has the upper and lower bounds (see Figure 2-first row)

min γ0 =
(
√

2 + log(2) + log(
√

2 − 1))
(e − 2)

≈ 1.706..

and
max γ0 = −e(−2 +

√
2 + log(2) − log(1 +

√
(2))) ≈ 2.10399.. .

This leads to the subordination inequalities (see Figure 2-second row)

Γγ(z) ≺
ez − 1

z
⇒ P(z) ≺

ez − 1
z

, z ∈ ∪.
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Similarly, we have

min γ1 =
(−2 +

√
2 + log(2) + log(

√
2 − 1))

(log(e − 1) − 1)
≈ 1.70..

and

max γ1 = (
√

2 + log(2) + log(
√

2 − 1))/ log(e − 1) ≈ 2.2.. .

This yields to the subordination inequalities

Πγ(z) ≺
ez − 1

z
⇒ P(z) ≺

ez − 1
z

, z ∈ ∪.

Finally, we have the upper and lower bounds (see Figure 2-third row)

min γ2 = −(e − 1)(−2 +
√

2 + log(2) − log(1 +
√

2)) ≈ 1.329..

and

max γ2 =
((e − 1)(

√
2 + log(2) − log(1 +

√
2)))

(e − 2)
≈ 2.932.. .

This brings the subordination inequalities

Θγ(z) ≺
ez − 1

z
⇒ P(z) ≺

ez − 1
z

, z ∈ ∪.
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Figure 2. The first row represents the min and max of γ0 and the second row indicates γ1,
while the third is γ2.

�

4. Discussion

We proceed to include the term Λm
ϕ (z) = amϕ

m(z) + am−1ϕ
m−1(z) + ... + a1ϕ(z) + a0 for some m to

study the behavior of solutions of Eq (2.1). Dividing Eq (2.1) by α , 0, we have

[ϕ(z)ϕ′′(z) + (ϕ′(z))2] = −
Λm
ϕ (z)

α
, z ∈ C, (4.1)

We have the following result

Theorem 4.1. Consider the CADEs (4.1), with α = −1 and a0 = 1. If ϕ ∈ M(ρ) is a convex univalent
function in ∪ satisfying the condition of Theorem 3.1 then the constant connections aı achieving the

AIMS Mathematics Volume 6, Issue 1, 806–820.
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following values

a1 = −
1
2
, a2 =

7
12
, a3 = −

8
12
, a4 =

74
100

, a5 = −
79

100
. (4.2)

Proof. From Eq (4.1) together with Theorem 3.1, we have Λm
ϕ (z) ≺ ρe(z). Since ϕ is convex univalent

in ∪ then it takes the extreme function structure ϕ(z) = z/(1 − z) = z + z2 + ... . Therefore, we have

Λ0
ϕ(z) = 1

Λ1
ϕ(z) = 1 + a1z + a1z2 + a1z3 + a1z4 + a1z5 + O(z6)

Λ2
ϕ(z) = 1 + a1z + (a1 + a2)z2 + (a1 + 2a2)z3 + (a1 + 3a2)z4 + (a1 + 4a2)z5 + O(z6)

Λ3
ϕ(z) = 1 + a1z + (a1 + a2)z2 + (a1 + 2a2 + a3)z3 + (a1 + 3(a2 + a3))z4 + (a1 + 4a2 + 6a3)z5 + O(z6)

Λ4
ϕ(z) = 1 + a1z + (a1 + a2)z2 + (a1 + 2a2 + a3)z3 + (a1 + 3a2 + 3a3 + a4)z4

+ (a1 + 4a2 + 6a3 + 4a4)z5 + O(z6)
Λ5
ϕ(z) = 1 + a1z + (a1 + a2)z2 + (a1 + 2a2 + a3)z3 + (a1 + 3a2 + 3a3 + a4)z4

+ (a1 + 4a2 + 6a3 + 4a4 + a5)z5 + O(z6)
Λ6
ϕ(z) = 1 + a1z + (a1 + a2)z2 + (a1 + 2a2 + a3)z3 + (a1 + 3a2 + 3a3 + a4)z4

+ (a1 + 4a2 + 6a3 + 4a4 + a5)z5 + O(z6)
...

In addition, we have

ρe(z) =
z

ez − 1
=

∞∑
n=0

Bnzn

n!
,

where Bn is the Bernoulli numbers satisfying the inequality

|Bn| � 4
√
πn

( n
πe

)2n
, B2n+1 = 0,

(
B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42

)
.

Compering the coefficients of Λm
ϕ (z) and ρe(z), we have

a1 =
B1

1!
= −

1
2

a2 = −a1 +
B2

2!
=

7
12

a3 = −a1 − 2a2 +
B3

3!
= −

8
12

a4 = −a1 − 3a2 − 3a3 +
B4

4!
=

74
100

a5 = −a1 − 4a2 − 6a3 − 4a4 +
B5

5!
= −

79
100

.

�
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Next result indicates the value of constant coefficients of Λm
ϕ when ϕ is starlike in ∪.

Theorem 4.2. Consider the CADE (4.1), with α = −1 and a0 = 1. If ϕ ∈ M(ρ) is a starlike function
in ∪ satisfying the condition of Theorem 3.1 then the constant connections aı achieving the following
values

a1 = −
1
2
, a2 =

13
12
, a3 = −

28
10
, a4 =

795
100

, a5 = −24. (4.3)

Proof. Obviously, from the assumptions, we have Λm
ϕ (z) ≺ ρe(z). Since ϕ is starlike in ∪ then it admits

the extreme function structure ϕ(z) = z/(1 − z)2 = z + 2z2 + ... . Therefore, we have

Λ0
ϕ(z) = 1

Λ1
ϕ(z) = 1 + a1z + 2a1z2 + 3a1z3 + 4a1z4 + 5a1z5 + O(z6)

Λ2
ϕ(z) = 1 + a1z + (2a1 + a2)z2 + (3a1 + 4a2)z3 + (4a1 + 10a2)z4 + 5(a1 + 4a2)z5 + O(z6)

Λ3
ϕ(z) = 1 + a1z + (2a1 + a2)z2 + (3a1 + 4a2 + a3)z3 + (4a1 + 10a2 + 6a3)z4

+ (5a1 + 20a2 + 21a3)z5 + O(z6)
Λ4
ϕ(z) = 1 + a1z + (2a1 + a2)z2 + (3a1 + 4a2 + a3)z3 + (4a1 + 10a2 + 6a3 + a4)z4

+ (5a1 + 20a2 + 21a3 + 8a4)z5 + O(z6)
Λ5
ϕ(z) = 1 + a1z + (2a1 + a2)z2 + (3a1 + 4a2 + a3)z3 + (4a1 + 10a2 + 6a3 + a4)z4

+ (5a1 + 20a2 + 21a3 + 8a4 + a5)z5 + O(z6)
Λ6
ϕ(z) = 1 + a1z + (2a1 + a2)z2 + (3a1 + 4a2 + a3)z3 + (4a1 + 10a2 + 6a3 + a4)z4

+ (5a1 + 20a2 + 21a3 + 8a4 + a5)z5 + O(z6)
...

Compering the coefficients of Λm
ϕ (z) and ρe(z), we have

a1 =
B1

1!
= −

1
2

a2 = −2a1 +
B2

2!
=

13
12

a3 = −3a1 − 4a2 +
B3

3!
= −

28
10

a4 = −4a1 − 10a2 − 6a3 +
B4

4!
=

795
100

a5 = −5a1 − 20a2 − 21a3 − 8a4 +
B5

5!
= −24.

�

Remark 4.3.

• Note that Theorems 4.1 and 4.2 show that Λm
ϕ (z) accumulates at m = 5, which leads to the

expansion structure (see Figure 3)

Λ5
z/(1−z) = 1 −

z
2

+
z2

12
−

z4

100
+ O(z6)
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Figure 3. Λ5
z/(1−z) and Λ5

z/(1−z)2 respectively.

and

Λ5
z/(1−z)2 = 1 −

z
2

+
8z2

100
−

2 z4

100
+ O(z6).

• One can generalize Theorems 4.1 and 4.2 in terms of α for all values. In this case, we obtain the
constant coefficients Aı = aı

−α
provided α , 0

A1 = −
1
2
, A2 =

7
12
, A3 = −

8
12
, A4 =

74
100

, A5 = −
79

100

and
A1 = −

1
2
, A2 =

13
12
, A3 = −

28
10
, A4 =

795
100

, A5 = −24,

respectively.
• Results in [2] indicate that for n = 4, the coefficients satisfy A4 , 0 by using Painlevé analysis,

which did not apply in case n ≥ 5. While, the majorization-subordination analysis indicates that
for n ≥ 5, the coefficients are converged by Bernoulli numbers.

5. Conclusions

A class of non-linear complex algebraic differential equations (CADEs) is investigated in view
of geometric function theory. We defined a class of normalized functions including the structure of
CADEs. Based on the subordination inequality, we introduced the values of constant coefficients.
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As proceeding works in this direction, one can generalize Eq (2.1) in terms of differential operators
including fractional differential and convolution operator in the open unit disk. Or can be realized by a
quantum calculus.
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