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The system of unsteady gas-flow of 4-D is solved successfully by alter the possi-
bility of an algorithm based on collocation points and 4-D Haar wavelet method. 
Empirical rates of convergence of the Haar wavelet method are calculated which 
agree with theoretical results. To exhibit the efficiency of the strategy, the numeri-
cal solutions which are acquired utilizing the recommended strategy demonstrate 
that numerical solutions are in a decent fortuitous event with the exact solutions.
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Introduction

Haar wavelets are the most basic ones which are defined by an investigative articu-
lation. Because of their straightforwardness, the Haar wavelet method (HWM) is extremely 
powerful instruments for approximating arrangements of PDE. The wavelets are utilized as a 
scientific device for taking care of many classes of equations in biology, physics, fluid mechan-
ics, and chemical reactions. This technique comprises of diminishing the issue to a lot of arith-
metical conditions by growing the term which has the greatest subsidiary, given in the condition 
as Haar wavelets with obscure coefficients. 

The solution of the system of 4-D unsteady gas-flow problem under the reasonable 
initial condition is an essential field of study. The solutions of the unsteady gas-flow are con-
templated in writing and are explained by the different strategies [1-6]. A standout amongst the 
most amazing strategies to decide solutions for non-linear PDE is the HWM [7-12]. Hence, 
utilizing this technique over and over and with the assistance of closeness factors, we can lessen 
the arrangement of PDE to an arrangement of ODE, which is by and large non-linear. Now and 
again, it is conceivable to fathom these ODE to decide the estimate arrangements; non-ethe-
less, much of the time the ODE must be illuminated numerically. Utilizations of this technique 
for temperamental 1-D issues might be found in [13]. In [14] they built up a new homotopy 
perturbation strategy (NHPM) to get arrangements of the frameworks of non-linear partial dif-
ferential equations (NPDE). In [15] they proposed another homotopy analysis scheme to obtain 
solutions of the systems of NPDE. In [16] scheme of reduced differential transform method 
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(RDTM) is used to the systems of NPDE and there are many methods for solving systems of 
partial differential equations [17-24].

In this paper, we extend the Haar wavelets scheme to solve the unsteady gas-flow in 
4-D then, analysis of the increase or decrease velocity components throughout the increment of 
the adiabatic index.

Model formulation of the problem

The governing equations describing the unsteady gas-flow in 4-D are formulat-
ed from the general Navier-Stokes equations and Raja et al. work [25] on the following 
form:+
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where x, y, z are the space co-ordinates,  t – the time, P – the pressure, ρ – the density, γ  – the 
adiabatic index and L, M, and N the velocity components in the x-, y-, and z-directions, respec-
tively. 

There are a few endeavors to explain frameworks of NPDE. 

Haar wavelet method

Haar wavelet is a successful instrument to tackle many issues emerging in numerous 
regions of sciences. Usually, the Haar wavelets are defined for the interval x ∈ [0, 1] however 
in general case x ∈ [a, b] one can divide the interval into m equal subintervals each of width  
Δx = (b – a)/m. The Haar wavelets family {hi(x)} is defined as a gathering of symmetrical 
square waves with greatness ± in some intervals and zero elsewhere:
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The integerdenote the wavelet level, an m = 2 j where  j = 0, 1, 2,..., J, denote the wave-
let level, and k = 0, 1, 2,..., m – 1 is denote the translation parameter. Resolution level is known as 
the integer J. The index i established according to the formula i = m + k + 1. In case of the values 
m = 1, k = 0, we own i = 2. The value of i is i = 2M = 2J + 1. So, the integrable function f(x) char-
acterized on [0, 1) as a finite sum: 
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To solve PDE of any order, we need the following integrals:  
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Using eqs. (2), (4), and (5) we have:
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The quasilinearization process [26] is a popularize Newton-Raphson method for func-
tional equations which converges quadratically to the exact solution. 

Consider the non-linear mth order differential equation:

( ) ( ) ( ) ( ) ( )1, , , ,mmL v x f v x v x v x x−
′ = … 

where n is the order of the differentiation, stratifying the quasilinearization technique to the 
previous equation yields:
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a linear differential equation and can be solved periodically, where vi(x) is known and one 
can utilize it to gain vi(x) for i = 0,1..., with the initial conditions and boundary conditions at  
(i + 1)th iteration. 

Modification of Haar wavelet scheme

We describe a new modification of the HWM for solving systems of NPDE equa-
tions with help of the initial and boundary conditions and the results are displayed graphically 
for different value of the adiabatic index. It is known that any integrable function:
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We can be expressed as W2M × 2M(yz) = H2M(y)HT
2M (z).The aforementioned series termi-

nate at finite terms if L(x, y, z, t), M(x, y, z, t), N(x, y, z, t), and Q(x, y, z, t) are piecewise constant 
functions or can be approximated as piecewise constant functions during each subinterval, then 
L(x, y, z, t), M(x, y, z, t), N(x, y, z, t), and Q(x, y, z, t) will be terminated at finite terms, i. e:
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where the coefficients A2M ×2M, B2M ×2M, C2M ×2M, D2M ×2M, and the Haar function vectors HT
2M   (y), 

H2M (z) are defined: 
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We apply the modified HWM to solve the 4-D system of NPDE (1) with the initial 
and boundary conditions:
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where the previous functions are got from the exact solution in [2] and 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,  
0 ≤ z ≤ 1, and 0 ≤ t ≤ 1.

First, we consider the first equation of system (1), with the initial and boundary condi-
tions (16). We assume that L⋅′*• (x, y, z, t) can be expanded in terms of Haar wavelets as:
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where dot, prime, star and closed circle mean differentiation with respect to t, x, y, and z, re-
spectively.

We integrate (21) one time with respect to t on [0, t], then one time with respect to x 
on [0. x], one time with respect to y on [0, y], and finally one time with respect to z on [0, z].

 These, respectively, yield:
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Now, individual differentiation of (25) with respect to t, x, y, and z, separately, yield:
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There are a few conceivable outcomes for treating the non-linearity in eq. (1). But, 
here the quasi-linearization procedure [26] is utilized to handle the non-linearity in eq. (1). The 
system of (1) trailed by the quasi-linearization prompts to:
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Now, discretizing the result (30) by x → xl, y → yl, z → zl, t → tl, and using  
eqs. (26)-(29) and discretizing using the collocation points xl = yl = zl = tl = (l – 0.5)/2M,  
l = 1..2M yield a non-linear system of algebraic equations, with the initial and boundary condi-
tions and the wavelets coefficients ai,j,k,s, bi,j,k,s, ci,j,k,s, di,j,k,s, and ei,j,k,s, can be successively calcu-
lated for all i, j, k, and s. Further, putting the computed wavelets coefficients ai,j,k,s, bi,j,k,s, ci,j,k,s, 
di,j,k,s, and ei,j,k,s into eqs. (11)-(15), we can successively calculate the approximate solutions at 
different times.

Discussion of the results

We present the numerical solutions of the system of unsteady gas-flow in 4-D (1), The 
analytical solutions are taken from [2] as:
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3 4 4 3 3 4 4 3
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γγ
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In figs. 1-3 show representations of velocity component profiles (L, M, and N), re-
spectively, indicating a decay in velocity during time increment and an increase with a spatial 
direction x, y, and increment, respectively. The largest velocity component was achieved by M 
and N while the largest increase with a spatial variable was achieved by L. 
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Figure 3 illustrates velocity profile N showing effect of velocity value with increasing 
the time. In fig. 4,  showing effect of with increasing x.  Figure 5 showing the effect adiabatic index 
and this is just as it exists in reference [2]. 
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Figure 1. Comparison of the velocity 
component (L) at C3 = C4 = 1 at y = 0 by HWM 
and the analytical solutions in [2]  
(for color image see journal web site)

Figure 2. Comparison of the velocity 
component (M) plot at C3 = C4 = 1 at y = 0 by 
HWM and the analytical solutions in [2] 
(for color image see journal web site)

Figure 3. Comparison of the velocity 
component (N) plot at C3 = C4 = 1 at y = 0 by 
HWM and the analytical solutions in [2]  
(for color image see journal web site)

Figure 4. Comparison of the density 
compilation at C5 = 1 by HWM and the dual 
vector combination analytical solutions in [2] 
(for color image see journal web site)

Figure 5. Comparison of the 
pressure compilation at  
C1 = C2 = C3 = C4 = C5  = 1 at   
γ = 1.13, γ = 1.34, γ = 1.68 by  
HWM and the analytical  
solutions in [2]  
(for color image see journal web site)
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In tab. 1 show the comparison of approximate solutions of the 4-D system of the un-
steady gas-flow (1) obtained by using the modified HWM with the analytical solutions in [2] at 
(x, y, z) = (1, 1, 1).

Table 1. Comparison between the approximate solutions using 
HWM at M = 4 and the analytical solutions in [2]

t Absolute  
errors of L

Absolute  
errors of M

Absolute  
errors of N 

Absolute  
errors of P

Absolute  
errors of ρ

0.1 2.16 ⋅ 10–6 6.322 ⋅ 10–6 1.201 ⋅ 10–6 3.025 ⋅ 10–6 3.321 ⋅ 10–6

0.2 1.065 ⋅ 10–6 5.102 ⋅ 10–6 4.302 ⋅ 10–6 4.156 ⋅ 10–6 6.254 ⋅ 10–6

0.3 3.102 ⋅ 10–6 4.021 ⋅ 10–6 4.142 ⋅ 10–6 2.216 ⋅ 10–6   4.358 ⋅ 10–6

0.4 4.015 ⋅ 10–6 3.250 ⋅ 10–6 3.306 ⋅ 10–6 1.541 ⋅ 10–6 6.024 ⋅ 10–6

0.5 3.025 ⋅ 10–6 4.203 ⋅ 10–6 1.512 ⋅ 10–6 1.487 ⋅ 10–6 4.254 ⋅ 10–6

0.6 2.96 ⋅ 10–6 3.021 ⋅ 10–6 6.325 ⋅ 10–6 6.241 ⋅ 10–6 3.652 ⋅ 10–6

0.7 3.21 ⋅ 10–6 2.302 ⋅ 10–6 1.241 ⋅ 10–6 4.212 ⋅ 10–6 3.201 ⋅ 10–6

0.8 1.36 ⋅ 10–5 6.215 ⋅ 10–5 2.021 ⋅ 10–5 5.275 ⋅ 10–5 4.021 ⋅ 10–5

0.9 2.25 ⋅ 10–5 4.302 ⋅ 10–5 6.045 ⋅ 10–5 3.214 ⋅ 10–5 2.541 ⋅ 10–5

Conclusion

In the perspective on aforementioned numerical precedents, it is presumed that 4-D 
Haar wavelet technique are progressively solid and precise scientific device for settling the 
unsteady gas-flow in 4-D. For getting the vital accuracy, the quantity of estimation focuses 
might be expanded. This technique is totally another plan to unravel the unsteady gas-flow in 
4-D. It is a joined methodology and a novel intermingling hypothesis is introduced. It is a stable 
numerical technique and its strength has been appeared. Setting up the calculation is simple and 
straight forward. The merit of this strategy is that the maximum absolute errors are diminished 
by expanding the quantity of collocation points. The proposed plan yields better exactness in 
examination with the other numerical techniques which are exhibited in [14, 15] accessible in 
the writing. Calculation can be stretched out to comprehend other frameworks of higher dimen-
sional issues in various regions of physical and numerical sciences.
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