

A COMPARISON OF NOSQL DATABASE SYSTEMS: A STUDY ON

MONGODB, APACHE HBASE, AND APACHE CASSANDRA

ALI HUSSEIN HAMMOOD

JUNE 2016

A COMPARISON OF NOSQL DATABASE SYSTEMS: A STUDY ON

MONGODB, APACHE HBASE, AND APACHE CASSANDRA

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

ALI HUSSEIN HAMMOOD

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF

COMPUTER ENGINEERING

JUNE 2016

 iii

 iv

ABSTRACT

A COMPARISON OF NOSQL DATABASE SYSTEMS: A STUDY ON

MONGODB, APACHE HBASE, AND APACHE CASSANDRA

Ali Hussein Hammood

M.Sc., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Murat SARAN

June 2016, 51 pages

Due to their many useful features, database management systems have been used

widely with relational data for over 20 years. However, such systems are not able to

handle massive and complex data efficiently. New systems known as NoSQL

database management systems have appeared to deal with massive and complex data

that provide fast and high performance. In this thesis, we discussed and tested three

kinds of NoSQL database system in order to reveal their capabilities and how they

respond in different operations. For this purpose, we set up a novel testing

environment for each workload and examine the responses for the three systems. The

results of this study show the weaknesses and strengths of each database system used

in the study. Due to the different architectures of each database that we tested, we

have seen different responses for each with changed workload operations. In our

work, we used the Yahoo Cloud Serving Benchmark (YCSB), which is a framework

designed by Yahoo to test database performance. According to the results obtained,

we can conclude that MongoDB performed very well with low throughput, but not as

well with high throughput. Cassandra and HBase performed very well under heavy

loads due to their optimized designs. In the read operation, HBase has poor

performance as compared to other systems tested.

 v

ÖZ

NOSQL VERİTABANI SİSTEMLERİNİN KARŞILAŞTIRILMASI:

MONGODB, APACHE HBASE VE APACHE CASSANDRA ÜZERİNE BİR

ÇALIŞMA

Ali Hussein HAMMOOD

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Yrd. Doç. Dr. Murat SARAN

Haziran 2016, 51 sayfa

Sahip oldukları birçok yararlı özellik nedeniyle, veritabanı yönetim sistemleri 20 yılı

aşkın bir süredir ilişkisel veri ile yaygın olarak kullanılmaktadır. Ancak, bu tür

sistemlerle büyük ve karmaşık verileri verimli olarak işlemek mümkün değildir.

NoSQL veritabanı yönetim sistemleri olarak bilinen yeni sistemler hızlı ve yüksek

performans sağlayarak büyük ve karmaşık veriler ile başa çıkmak için geliştirilmiştir.

Bu tezde, NoSQL veritabanı sistemlerimden yaygın olarak kullanılan sistemlerin

yeteneklerini ve farklı operasyonlarda nasıl tepki verdiklerini ortaya çıkarmak için

detaylı testler yapılmıştır. Bu amaçla, birçok farklı iş yükü tanımlanmış ve bir test

ortamı kurulmuştur. Bu çalışmanın sonuçları çalışmada kullanılan her bir veritabanı

sisteminin zayıf ve güçlü yönlerini ortaya koymaktadır. Test edilen her bir veritabanı

sisteminin sahip oldukları farklı mimarileri nedeniyle değiştirilen iş yükü

operasyonları ile her biri için farklı tepkiler gözlemlenmiştir. Çalışmada, veritabanı

performansını test etmek için Yahoo tarafından tasarlanan bir kıyaslama çerçeve

uygulaması olan Yahoo Cloud (YCSB) kullanılmıştır. Elde edilen sonuçlara göre,

MongoDB düşük yükler ile çok iyi performans göstermiştir. Ancak, Cassandra ve

HBase optimize tasarımları sayesinde ağır yükler altında çok iyi performans

göstermiştir. Okuma işleminde ise, HBase test edilen diğer sistemlere kıyasla düşük

bir performansa sahiptir.

 vi

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Dr. Murat Saran of the Computer

Engineering Department at Cankaya University, without his helpful advice, valuable

comments and guidance this thesis could not be completed. His door was always

open for me whenever I need his help. I want to thank my family for their support.

Finally, I would like to thanks my friends, teachers for every thing.

 vii

Table of Contents

STATEMENT OF NON PLAGIARISM.. iii

ABSTRACT.. iv

ÖZ…………………...……………………………………………………………... v

ACKNOWLEDGEMENTS………………………………………………………... vi

TABLE OF CONTENTS…………………………………………………………... vii

LIST OF FIGURES………………………………………………………………... X

LIST OF TABLES……………………….………………………………………… Xi

CHAPTERS:

1. Introduction .. 1

 1.1 Aim of the study .. 2

 1.2 Significance of the study ... 2

 1.3 Big Data .. 2

 1.4 Cloud Computing .. 4

 1.5 related work ... 5

 1.6 Thesis Structure ... 7

 2. Background .. 8

 2.1 Types of NoSQL data stores .. 8

 2.2 Scaling ... 8

 2.2.1 Sharding .. 9

 2.2.2 Replication .. 9

 2.3 NoSQL Data store foundations ... 10

 2.3.1 Consistency, Availability, and Partition Tolerance(CAP)

Theorem .. 10

 2.3.2 BASE ... 12

 2.3.3 The Model of consistency ... 12

3. NoSQL Database Management systems... 13

 viii

 3.1 Mongo DB .. 13

 3.1.1 Architecture ... 13

 3.1.2 Data Model .. 14

 3.1.3 Query Model ... 15

 3.1.4 Mongo DB Features .. 16

 3.1.5 Replication ... 17

 3.1.6 Sharding ... 18

 3.1.7 Failure Handling .. 19

 3.2 Apache Cassandra .. 20

 3.2.1 Architecture .. 20

 3.2.1.1 Key Space.. 21

 3.2.1.2 SSTables, Mem tables and Commit log 21

 3.2.1.3 Hinted Handoff.. 22

 3.2.1.4 Compaction .. 22

 3.2.1.5 Bloom Filter ... 23

 3.2.1.6 SEDA ... 23

 3.2.2 Data Model ... 23

 3.2.3 Cassandra Features ... 25

 3.2.4 Fault Tolerance ... 25

 3.3 Apache HBase .. 26

 3.3.1 HBase Architecture .. 26

 3.3.2 HBase Data Model .. 29

 3.3.3 HBase Storage Mechanism ... 31

 3.3.4 Main Operation ... 31

 3.3.4.1 Read... 31

 3.3.4.2 write... 32

 3.3.4.3 Delete .. 32

 ix

 3.3.5 Hbase Replication .. 32

 3.3.6 Fault Tolerance .. 32

4. Test Environment and configuration .. 34

 4.1 Cluster Features .. 34

 4.2 Yahoo cloud serving benchmark ... 34

 4.3 Mongo DB configuration .. 36

 4.4 Apache Cassandra ... 37

 4.5 Testing on virtual machine ... 38

 4.6 Apache HBase .. 39

5. Results .. 40

 5.1 Load Phase ... 41

 5.2 Read and Update .. 42

 5.3 Read Mostly .. 44

 5.4 Read Only Operation .. 45

 5.5 Insert Mostly Operation .. 47

6. Conclusions ... 50

 6.1 Future Work .. 50

 REFERENCES……………………………………………………………R1

 x

LIST OF FIGURES

FIGURES

Figure (1.1) Different data set size .. 5

Figure (1.2) Nodes effect on performances ... 6

Figure (2.1) Sharding .. 9

Figure (2.2) CAP Theorem [13] .. 10

Figure (3.1) MongoDB document as JSON .. 14

Figure (3.2) MongoDB connector for BI [43]. ... 16

Figure (3.3) Replica set ... 18

Figure (3.4) Sharding Infrastructure [44]. ... 19

Figure (3.5) Writing in Cassandra ... 22

Figure (3.6) Types of data supported by Cassandra [45] .. 24

Figure (3.7) Read repair in Cassandra ... 25

Figure (3.8) HBase architecture .. 27

Figure (3.9) HBase region split ... 28

Figure (4.1) YCSB architecture .. 36

Figure (4.2) Replica set ... 37

Figure (4.3) Cassandra configuration .. 38

Figure (4.4) HBase configuration.. 39

Figure (5.1) Load Phase (1 million records) ... 41

Figure (5.2) Read and Update ... 42

Figure (5.3) read mostly .. 44

Figure (5.4) 100% Read .. 46

Figure (5.5) Insert mostly .. 48

 xi

LIST OF TABLES

Tables

Table (3.1) A column family .. 30

Table (5.1) Cassandra Read-Update ... 43

Table (5.2) MongoDB Read-Update .. 43

Table (5.3) HBase Read-Update... 43

Table (5.4) Cassandra (Read 95%-Insert 5%) .. 44

Table (5.5) MongoDB (Read 95%-Insert 5%) ... 45

Table (5.6) HBase (Read 95%-Insert 5%) .. 45

Table (5.7) Cassandra (100% Read) ... 46

Table (5.8) MongoDB (100% Read) .. 47

Table (5.9) HBase (100% Read) .. 47

Table (5.10) Cassandra (Inset mostly).. 48

Table (5.11) MongoDB (Inset mostly) ... 49

Table (5.12) HBase (Inset mostly) ... 49

 1

CHAPTER 1

INTRODUCTION

The rapid increase of data sources nowadays produces a massive data that needs to

be managed. A few decades before, companies start to manage data by introducing

relational data base management systems (RDBM). In 2009 a new era of data base

management systems started when NoSQL database systems appeared. Many

foundations claimed that their database managements systems better than the others.

In this study, we have made a comparison between three NoSQL database

management systems (MongoDB, Hbase and Cassandra) in terms of read, write,

update, and load performances by using the latest release of the Yahoo Cloud

Serving Benchmark (YCSB-0.5.0) application during our practical work. Before

couple weeks a new version of Yahoo cloud serving benchmark released (YCSB-

0.7.0). Yahoo Cloud Serving Benchmark supports the latest version of MongoDB

(3.2), Apache Cassandra (2.0.4) and Apache Hbase (1.0.2). These versions have

been used in this study. NoSQL database systems are designed in such a way to

provide scalability in the horizontal direction. Most NoSQL databases have been

designed to store data structures that are either simple or more similar to those of

object-oriented programming languages compared to relational data structures [1].

NoSQL database systems have many advantages over relational database systems.

Examples of these advantages include:

1. NoSQL implementation being easy;

2. Data replication to multiple nodes (therefore identical and fault-tolerant) and

its ability to be partitioned;

3. Once the data is written, at least one node will hold the data which will then

be replicated to others;

4. No schema being required, thereby making it easy to distribute; and

5. NoSQL database systems being open source.

 2

1.1 Aim of the study

In recent years, we have seen the appearance of new types of database known as

NoSQL databases. The term NoSQL was first coined in 1988 to name a relational

database that did not have an SQL (Structured Query Language) interface [2]. In this

thesis, we test the most widely used NoSQL database management systems, namely

MongoDB, Cassandra, and HBase [32]. We examine the performance of each

system from different perspectives by applying different workloads via the Yahoo

Cloud Serving Benchmark (YCSB). The performance of each system differs due to

the differences in their respective data storing mechanisms. The results of this study

show the weaknesses and strengths of each database system used in the study. We set

up a testing environment for each workload and examine the responses for the three

systems.

1.2 Significance of the study

Nowadays, there are more than 150 different NoSQL databases with different

characteristics [3]. Due to this variation, it is not easy for IT managers to select the

perfect database that meets their requirements. The results of this study will help IT

decision makers with regard to understanding the characteristics of NoSQL

databases. In addition, the results will guide them while selecting a suitable NoSQL

database. Although many studies have introduced comparisons between NoSQL

databases, in this study, we have used the latest versions of NoSQL database systems

supported by the latest release of the Yahoo Cloud Serving Benchmark (YCSB-

0.5.0). In this study, we have highlighted the most widely used NoSQL databases:

MongoDB (3.2), Apache HBase (1.0.2), Apache Cassandra (2.0.4). Although they

carry out the same function (managing data), the data handling methodology for each

differs.

1.3 Big Data

Big data can be defined as the capability of managing a huge volume of data within

the right time and proper speed [4]. Big data may be defined as very huge and

complex collections of datasets which cannot be managed using relational database

management systems (RDBMs). New data are generated every day from different

 3

sources including pictures, social media, videos, etc. Due to this rapid growth of

data, processing these data using on-hand database management systems becomes

very difficult. Three characteristics to describe big data are as follows:

• Volume: The quantity of data stored and generated.

• Velocity: How fast that data is generated and processed.

• Variety: The nature and various types of data.

One of the solutions that have been proposed to overcome the fast growth of data has

been applying better hardware; however, this approach has not been sufficient as the

hardware enhancement reached a point where the growth of data volume outpaces

computer resources [5]. Now, big data comes in three forms:

1. Structured data: The term structured data refers to the fact that the format of the

data and the length are known. Examples of structured data include emails, phone

numbers, IDs, names, addresses, etc. There are two sources that provide structured

data: data generated by human intervention such as gaming data and input data.

The second source is the data generated by machines such as sensor data, web log

data and financial data.

2. Unstructured data: The data that do not have specific formats or known lengths.

These are found everywhere and are used widely. The sources of these

unstructured data are human-generated data such as website content, mobile data

and social media. The data generated by machines are the second source of

unstructured data, which can be found as radar data, sonar data and satellite data.

3. Semi structured data: This kind of data combines structured and unstructured data.

Dealing with this degree of data complexity is not so easy. Tall data and wide

records lead to long running queries; therefore, new methods need to appear in

order to overcome this challenge and manage huge data.

 4

1.4 Cloud computing

Cloud computing is simply computing that involves a large number of computers

connected through a communication network, such as the Internet [6]. Cloud

computing has been pushed as a rentable IT infrastructure, providing the benefits of

elasticity, low upfront cost, and low time to market [7]. According to these features,

the deployment of applications has been enabled, which would not have been

possible in enterprise infrastructure settings. The ease of use of cloud computing has

made it the standard for distributed management systems. The need for database

advancement has increased especially with the rapid growth of data in the web

world. NoSQL database systems have fulfilled those needs with their high scalability

and the simplicity of their programming models. Cloud computing comprises many

technologies and fundamental concepts. In order to construct a model for on-demand

access to a shared pool of computing resources which can be configured, many

building blocks synchronize. We will mention some of these blocks briefly.

• Virtualization of Computing Resources

Cloud computing differs from virtualization with many definitions suitable for

this concept, which means the way to create not a physical but a virtual version of

a resource or device. For example, we can create storage devices, networks,

operating systems, etc. Cloud computing has some features we must mention,

virtual resources are used by cloud computing, and cloud computing also

determines allocation and usage [9]. Of the many examples of virtualization in

cloud computing, we can mention Amazon as one notable example.

• Scalable File Storage

The urgent need for Scalable File Storage has appeared with data growth to store

large numbers of files. The Amazon file storage system S3 and Google File

System (GFS) are good examples.

• Existing Web Technologies

This is simply a distributed application that is a part of a cloud computing system.

There are many web standards such as HTTP, HTML and DHTML. In addition to

 5

these, there are some other web services also play an important role in evolving

the basic building blocks of cloud-based applications such as JSON, REST, and

SOAP [8].

1.5 Related work

Many papers, researches, blogs, comments proposed about the evaluation of NoSQL

database systems to discuss several aspects such as its benefits, and find the suitable

NoSQL database system that meet the requirement of a project. Several NoSQL

databases compared in [33]. The author in this thesis compared mongo dB,

Cassandra, HBase, and Riak from different perspectives. The author used Yahoo

cloud serving benchmark (ycsb) to test the performances of these four systems using

the same test environment and applying different workloads on these systems. The

author conclude that each system has a different response when applying a workload

due to the differences in designs. In [34] another study was proposed to compare four

NoSQL database systems and their performances and these systems are Cassandra,

Mongo dB, and HBase using Yahoo cloud serving benchmark and by applying to the

types of each data set, large and small data set to see the different when the data set

fit the memory (small data set), and the second case when the size of data set is very

large, figure (1.1) shows system response for workload A (will be explained in

chapter -4) the database systems.

Figure (1.1) Different data set size

 6

The author found that Cassandra performs better with large data set, the throughput

is the highest with lowest average latency than the other systems. MySQL

performances well with small data set. In addition, the author thought that there is no

good or bad database system, it depends on your need whether this system is meet

your requirement or not. HBase performed well in general but not that good in

update, Cassandra has great throughput with latency cost, Mongo dB perform well

with small data sets. Although HBase and Cassandra better than Mongo dB in term

of throughput and input, Mongo dB has a better read and update than Cassandra and

HBase. The team of end point in [35] performed a series of tests on several NoSQL

database systems based on the number of nodes. they increase the number of nodes

to double in each test starting with 2 nodes up to 32 nodes. they notice that the

performances change with the increase of nodes number. Each system shows

different response for each number of node and for each workload as we can see in

the figures below [35].

Figure (1.2) Nodes effect on performances

We can recognize that Cassandra throughput (operation /sec) increase more than the

other systems when the number of nodes increase, which means the number of nodes

effect on the systems performances. In [36] the authors compared the relational and

non-relational data base systems of 14 different NoSQL Databases for different

 7

perspectives such as their data models, query possibilities, concurrency control,

partitioning and replication opportunities. They come up with a conclusion that

NoSQL databases are better for operations that are very fast and simple for very

large datasets than relational database systems. The study in [37], focused on the

advantages of use of NoSQL technology by evaluating and analyzing the throughput

of several database systems in terms of execution time, and show the scalability

advantages of NoSQL databases.

1.6 Thesis Structure

This thesis consists five chapters. The second Chapter is talking about a background

of how database systems developed recently and the techniques used to handle and

manage the data. In chapter 3 we discussed in details the NoSQL data base systems

that we used in our study. Chapter 4 view and discuss the results that we got while

chapter 5 talks about the conclusion and the future work.

 8

CHAPTER 2

BACKGROUND

The intention of this chapter is to explain the types of NoSQL databases and the

fundamental concepts related to NoSQL databases, such as the MapReduce pattern,

which is used in some NoSQL databases. We also focus on scaling, replication and

sharding.

2.1 Types of NoSQL Data Stores

In general, NoSQL databases can be classified into three main types: Documents

(document-oriented database), key-value, and Extensible record data stores.

1. Documents data stores: Also known as a document-oriented database, this

program is used to retrieve, manage and store information. The data is semi-

structured data. It is considered a subclass of key-value; however, they differ in

how they process data. The name documents data comes from the manner of

storing. Data are stored in documents as lists in JSON format. MongoDB, Couch

dB are examples of documents data.

2. Key-value data store: This is a data store which works by matching key and value.

"Its data model follows a famous memcached distributed in-memory cache "[9].

3. Extensible Record data stores: This stores tables of extensible records. It consists

of rows and columns which can be shared by being divided over nodes. HBase is

an example of this type of data store.

2.2 Scaling

Scalability can be achieved using two technologies: sharding and replication.

Scalability for databases can be done in three different ways: read operation, write

operation and the volume of database.

 9

2.2.1 Sharding

The term sharding can be defined as the process of splitting data into many shards

and distributing them over nodes. In other words, it is the breaking up of big data

into many small databases so as to manage them more easily.

Figure (2.1) Sharding

2.2.2 Replication

Replication can be achieved by copying each piece of data across several servers. In

other words, each piece of data can be found on multiple servers. There are two

methods to implement replication:

• Master-slave replication: The idea of this form is to set one node as a master

which handles writes, and a slave which is synchronized with the master and

carries out actions such as read.

• Peer-to-peer replication: This provides the ability to write to any node and

synchronize data across nodes. Master-slave replication decreases the possibility

of update conflicts, while peer-to-peer replication prevents loading all writes onto

a single server and creating a single point of failure. Nowadays, a system may use

either technique or both techniques.

 10

2.3 NoSQL data store foundation

NoSQL databases have three foundational principles: BASE property, Consistency

Model, and CAP Theorem [10], which are discussed in this section.

2.3.1 Consistency Availability and Partition Tolerance (CAP) Theorem

Eric Brewer introduced the CAP Theorem in 2000 [11]. In 2002, the CAP Theorem

was proved by Gilbert and Lynch [12]. This theorem assumes that any distributed

system contains three basic properties:

• Consistency: Within a cluster, if we read or write from/to any node, the data will

be the same across the cluster.

• Availability: We are able to access the cluster even if a node goes down.

• Partition Tolerance: If a partition (communications break) between two nodes, the

cluster continues to function.

Figure (2.2) CAP Theorem [13]

For any distributed system it is impossible to satisfy all the properties

simultaneously. Partition tolerance must be available in every distributed system;

 11

otherwise, this system is not a distributed system. Therefore, any distributed system

will have two properties at most, namely partition tolerance and one of availability or

consistency (but not both).

Data store design comes in three varieties:

 CA systems: As mentioned previously, any distributed system should have a

partition tolerance property; therefore, it is correct to describe it as a

distributed system. Because of this consistency and availability without

partition tolerance, it will not make the system distributed. Examples of this

kind (CA) of system include relational database systems which have low

scalability, HDFS Name Node, Vertica and Aster Data. These systems are

suitable when system load is low.

 CP systems: Consistency and partition tolerance exist in these systems;

however, with no availability. Therefore, if one of the nodes in a cluster goes

down, there will be no access to the cluster. Good examples of this kind of

system include Hbase and Big Table, both of which can be programmed

easily. Data consistency can be achieved in a scalable way. According to

many people, MongoDB can be considered to be a CP. A recent blog post

disproved this popular thought and shows that the MongoDB behave does not

always follow CP system [14].

 AP systems: Because of the availability nodes remain online even if they

cannot communicate with each other and will resync data once the partition is

resolved, but no guarantee that all nodes will have the same data. This type is

not easy to program but provides high scalability, such as Cassandra,

Couch DB, and Simple DB. They are good for low-latency applications.

2.3.2 BASE

BASE property stands for (Basically Available, Soft state, Eventual consistency).

BASE is considered to be the first prime requirement for system reliability.

‘Basically Available’ means that the system cannot guarantee the availability of the

data as regards the CAP Theorem. It is possible that the system status changes from

 12

time to time, and that’s could happen even if there is no input of data due to eventual

consistency and that’s called soft state. Finally, ‘Eventual Consistency’ means that if

there is no given input to the system, with time the system eventually becomes

consistent. Amazon and Apache Cassandra are examples of such systems. In these

systems, the priority over consistency is given. In terms of the CAP Theorem, these

systems are AP systems.

2.3.3 The Model of Consistency

Clients and servers have different aspects in terms of consistency. Werner Vogels

described the three types of client-side consistency by [15]:

• Strong consistency: We can describe consistency as being strong if we perform a

read operation it should returns the last written values.

• Eventual Consistency: If an update is in progress, every node will update its data

but not necessarily at the same time; eventually, every node will have the same

data.

• Weak consistency: Here, we cannot guarantee returning the same value during the

subsequent access to the database system.

NoSQL Data stores provide some or even total consistency. HBase, Big Table is

considered to have strongly consistent data stores; however, Apache Cassandra is

considered to be consistent.

 13

CHAPTER 3

NOSQL DATABASE MANAGEMENT SYSTEMS

This chapter introduces the NoSQL database systems that we used in this study:

MongoDB (3.2), Apache Cassandra (2.0.4), Apache HBase (1.0.2) with detailed

explanations for each system. For a good comparison, different aspects are discussed,

including the architecture, which clarifies how the system is designed. The data

models explain how the database stores and manages data and queries models in

which the surveyed databases differ the most.

3.1 MongoDB

Nowadays, MongoDB is one of the most widely used NoSQL databases. MongoDB

is a schema less document-oriented database developed by 10gen and an open source

community [16]. It is open source, written in C++, schema less and document-

oriented. MongoDB has a structured document query mechanism and it is used to

store large files, such as images, videos, etc.

3.1.1 Architecture

The word mongo comes from the word “humongous.” In terms of features,

MongoDB considers scalable and high performance NoSQL databases. MongoDB is

designed in a way that introduces the flexibility that satisfies the evolution of

applications. It stores data in real time with high querying capabilities. MongoDB is

used for online data and also in applicable industries. To store data, MongoDB uses

memory-mapped files, which are files with data. The operating system places such

files in memory. These kinds of files enable the operating system virtual memory

manager where it stores parts of the database in memory or on the hard disk. Due to

the storage mechanism, MongoDB loses the ability of control when data is written to

the hard disk. MongoDB comes with a different package. Mongod, Mongo and

Mongos represent the main processes of MongoDB package [17]. Mongod is the

 14

primary daemon process for the MongoDB system. It is responsible for handling data

requests, managing data access and furthermore it provides background data

management. Mongo represents the client or the interactive shell. It can be used to

update, query data and perform administrative tasks. Mongos is a routing service

used rarely/sparingly for (MongoDB shard). It deals with queries and it determines

the location of data within a sharded cluster. A “collection” can be defined as a group

documents [18]. It resembles tables in RDBMS. Documents within the same

collection may have different fields, but usually the documents within the same

collection are of similar purpose.

3.1.2 Data Model

MongoDB stores data in documents as binary JSON (BSON) objects as shown in

Figure (3.1). To avoid collision and to manage documents speedily, there is a unique

key “_id” in a document within a collection. These keys have a number of features,

such as:

 Repeated keys not being allowed in MongoDB.

 A null character used only to determine the end of the key, which is why it is

not possible to use the null to generate keys.

 The dot (“.”) and dollar sign (“$”) are used in definite scenarios.

Figure (3.1) MongoDB document as JSON

 15

MongoDB is case and type sensitive. The example below describes this feature for

two different documents.

{“Name”: “ali”}

{“name”: “ali”}

MongoDB has the ability to store different shapes of documents within the same

collection.

3.1.3 Query Model

MongoDB is bundled with several types of queries. The query model of MongoDB

allows queries over all documents inside a collection, including embedded objects

and arrays [19]. Depending on the parameters used, queries return specific fields of a

document or a whole document. There are a number of features of the query model

to query specific results:

• Key-value query: The primary key is used often to query a document.

• Comparators: These are used to query documents in a specific range such as

greater than (>), greater than or equal to (>=), less than (<), and less than or

equal to (<=).

• Conditional and logical operations: The and operation represents the

logical operation that is supported for the conditional operations (equal, not

equal, exist, not exist).

• Aggregation queries: min, max, count, etc.

• Group by: it does the same as the function Group by that exist in SQL

• Sorting

• Map reduce queries: Used to process large volumes of datasets.

 16

3.1.4 MongoDB Features

MongoDB it is a high performance database system. It is a powerful and flexible

document oriented database. Moreover, it is an open source database. Data is stored

in documents and collections instead of tables, which allows the process of

representing complex relationships more easily. MongoDB is a scalable database

with rich secondary indexes including geospatial and TTL indexes [20]. MongoDB is

easy to configure and can store very large data sizes without any difficulties, scheme-

less. In cases of failure, it is easy to administer and overcome such problems. Version

3.2 of MongoDB comes with a storage engine which is memory mapped engine.

There are five new capabilities available in the latest version as explained below

[21]:

• New connector for BI (Business Intelligence) and Visualization Tools:

This enables users to visualize their MongoDB Enterprise data using

existing relational business intelligence tools such as Tableau. The aim is to

connect these tools to a datacenter and find data in tabular form. This is not

an easy task when working with MongoDB. The purpose of creating a

MongoDB connector for BI components is to connect the MongoDB server

with Business Intelligent tools without storing any data. The new connector

for BI works as shown in the figure below:

Figure (3.2) MongoDB connector for BI [43].

• Encryption for data at rest: Security is one of the great concerns for firms

today. With encryption for data at rest, organizations can address their

stringent security requirements.

 17

• Document Validation: The latest version of MongoDB supports document

validation, which eases the burden for companies during the process of

verifying data types.

• Dynamic Lookups: For modeling data, lookups introduce astounding

flexibility, which is part of the aggregation framework.

• Schema Visualization: In order to have a good understanding of data

structure, MongoDB (3.2) supports a new graphical interface, code named

mongoScout, which is designed to carry out several operations such as

analyzing collections in order to visualize the availability of fields and the

cardinality of their values [21].

3.1.5 Replication

A replica set in MongoDB is a group of mongod processes that maintain the same

data set [22]. MongoDB supports replica set configuration, which is basically similar

to Master-Slave, but not exactly identical. The different is that the replica set has an

automatic failover mechanism in case the primary node becomes unavailable. If any

connection problems occur between the primary and the secondary nodes, one of the

secondary nodes will become the primary. Because of this mechanism, a replica set

provides redundancy and availability. A replica set can be expressed as a cluster of

nodes of size N. A replica set cannot have more than one primary node, which is the

only node that can accept writing operations. Whenever the client start sending data

to the primary replica, this data will be copied and passed to the secondary replica

nodes. Figure (3.3) shows the mechanism of replication.

 18

Figure (3.3) Replica set

Arbiter is a replica set member which is used to add a vote in case of choosing

primary replica. Arbiter cannot hold any data and cannot be a primary replica.

Heartbeat is used to check the live state of the nodes.

3.1.7 Sharding

MongoDB introduces a sharding process which can be defined as the process of

storing data on several machines, which is a great advantage with the rapid increase

of data. A single machine that is used to store data may not be a good choice due to

the low throughput during the read/write processes. Sharding overcomes this

problem by using horizontal scaling. The MongoDB cluster has three components:

shard nodes, configuration servers and routing services (mongos). Each shard

contains a replica set and the shards are used to store actual data. Increasing the

number of nodes within each shard leads to increasing redundancy and availability.

Figure (3.4) clarifies sharding architecture in MongoDB.

 19

Figure (3.4) Sharding Infrastructure [44].

Configuration servers (mongod) are used to hold metadata which contain a mapping

for the actual data in the shards. Routing servers use metadata to route operations to

particular shards.

MongoDB distributes data, or shards, at the collection level. Sharding partitions a

collection’s data with the shard key [23]. The first step to shard a collection can be

carried out with a sharding key. A shard key is similar to indexing. A shard key is

divided into chunks evenly across the shard by MongoDB. Each chunk contains

several documents in order. The main benefit of chunks is balancing the shards. If a

shard size grows larger than the other shards, some contents of the chunk will be

migrated to other smaller shards in order to rebalance the sizes of the shards. If a new

node is added or removed from the cluster, the chunks will redistribute the data

across the cluster.

3.1.7 Failure Handling

MongoDB introduces an automated failover, thereby making it more reliable.

Therefore, if one MongoDB node crashes, the data may be lost or corrupted and even

if the crashed node comes back to work correctly, the data still needs maintenance in

order to find the corrupted data and repair them. A node crash may occur for

 20

different reasons such as hardware problems, connection problems, etc. Here, the

most important benefit of replication appears. If problems occur with one of the

shards node and there is replica for that node, the replica will overcome the crashed

node until it works again. The worst case scenario occurs when all nodes within a

shard are broken. MongoDB then will not be able to execute any operation on the

data in this shard. The same situation occurs when one of the configuration servers

fails. MongoDB will also lose the ability to split and merge data between shards.

3.2 Apache Cassandra

Cassandra is one of the NoSQL database family written in Java. It is a distributed

system that introduces high scalability and a fault-tolerant data store. Cassandra was

originally developed by Facebook for the purpose of handling their inbox search

feature that enables users to search through their Facebook inbox [24]. It is an open

source project released in 2008. In 2010, it became a top-level Apache project. The

main purpose of developing Cassandra was to meet storage requirements for the

Index Search Problem [25].

3.2.1 Architecture

In most database systems deployed over several nodes, there exists a master-slave

relationship between these nodes. The main tasks of the master are to distribute and

manage data. Slaves synchronize their data to the master. If something fails with the

master node, the setup of the master-slave might have a reverse influence. Cassandra

is designed in a way to overcome these obstacles. The architecture of Cassandra is

known as peer-to-peer, so every node in the cluster plays an identical role. There is

no master in the Cassandra architecture which represents a point of failure. The data

are split among all the nodes within the cluster. Due to peer-to-peer networking, the

performance of the database improves. We can state the common features of nodes in

the Cassandra architecture thus:

• The nodes within a cluster perform the same operations.

• Each node responds to read/write requests even if the data is not located on this

particular node.

 21

• Cassandra supports failover, so if any node in the cluster goes down, read/write

operations can be served from other nodes in the cluster.

There are several supportive constructs for Cassandra. We discuss them as follows:

3.2.1.1 Key Space

Cassandra preserves an internal keyspace that is used to keep metadata about the

cluster to assist in all types of operations [26]. Metadata is stored by the system of

the keyspace locally for each node in addition to hinted handoff information.

Metadata includes [26]:

• The node’s token

• The cluster name;

• Keyspace and schema definitions;

• Information about data migration; and

• The bootstrapping knowledge related to every node.

3.2.1.2 SSTables, Memtables and Commit Logs

Cassandra’s durability achieved with the assistant of commit logs, so if a writing

operation is in progress, it will be immediately captured by the commit logs which

are introducing a crash-recovery mechanism. A write operation will not be

considered successful until it is written to the commit log. The advantage of a

commit log appears when a write operation fails the in-memory store. However, it is

still possible to recover that data. After the data is written to the commit log, it is

written to MemTable, which is designed in such way to flush the values to disk in a

file called SSTable when the number of values stored in the MemTable reaches the

threshold; then a new MemTable will be created. (See Figure (3.5))

 22

Figure (3.5) Writing in Cassandra

For each memTable, there is a bit flag to determine whether it needs flushing. To

determine how many copies for each piece of data in the system we can simply do it

by setting the replication factor to the required copies number. It is not based on the

number of nodes in the cluster. The replication assists Cassandra to achieve high

scalability and durability. Consistency in Cassandra comes with different levels that

can be set. It is maintained by the quorum. The consistency level determines the

number of replicas on which to write and which must succeed before returning an

acknowledgment to the client application [27]. These levels are (0, 1, ANY,

QUORUM and ALL) [26]. A quorum of replicas is a majority of replicas, or it can

be represented as [(Replica Number/2) + 1]. An index file is used to reduce the

number of seek instructions to find data in a specific row key, which stores no actual

data.

3.2.1.3 Hinted handoff

The need to this special feature of Cassandra appears when one of the nodes goes

down. To avoid data loss which is stored in that node, the remaining nodes in the

ring will acquire that data and keep it temporarily. As soon as the node goes back to

the ring, the data will be recollected and be sent back to that node. This means that

we can ensure the availability of the ring.

3.2.1.4 Compaction

Compaction can be defined as the process of emptying space by merging large

accumulated data files occupying that space. The purpose of performing such an

operation is to merge SSTables. The keys are moved, columns are combined and

tombstones are neglected [26]. If a delete operation is performed, the record will not

 23

be deleted immediately; it will be treated as an update operation. Cassandra will

mark this record with a tombstone instead of totally deleting this record. This

procedure will reduce the size and it can be stored in the RAM instead of on disk.

We can control the level of compaction by changing the value of the flag.

3.2.1.5 Bloom Filter

Bloom Filter was invented in 1970 by Burton bloom. It is a probabilistic data

structure that is used to tell us whether or not data for any particular row exists in the

SSTable using a fast, non-deterministic algorithm. It plays an important role

especially with large volumes of data as a booster. It is considered to be a cache

memory which allows quick searches.

3.2.1.6 SEDA

Staged Event-Driven Architecture (SEDA) is intended to support massive

concurrency demands and simplify the construction of well-conditioned services

[28]. Cassandra uses this model in order to divide different operations into several

stages with the events and various thread pools relevant with every stage. "SEDA

stages are composed of three components: event queue, an event handler, and an

associated thread pool "[26].

3.2.2 Data model

Cassandra is a distributed system used to distribute data in multi-dimensional tables.

These tables are indexed by keys and contain rows without specific sizes. The

manner in which the cluster acts does not differ from a database server. Many

instances are available in each database server and any instance is in charge of

several of databases. The shape of the Cassandra cluster is a ring. Clusters are

containers for keyspaces. A Cassandra keyspace is identical to the keyspace in a

relational database, so every keyspace needs to have a name and a set of attributes

which describes the behavior of the keyspace. A key space has three features:

 24

• Replication factor

Replication factor means the number of nodes that will store a row of data. For

example, if we set the replication factor to 3, then this copy of rows will be stored

in 3 nodes. The replication factor is a very important factor to attain a high level of

consistency.

• Replica statement strategy

Cassandra supports three different strategies which show how replicas are placed

in the ring. These strategies are the Simple Strategy (formerly known as the Rack

Unaware Strategy), the Network Topology Strategy (formerly known as the Rack-

Aware Strategy), and the Network Topology Strategy (formerly known as the

Datacenter-Shard Strategy).

• Column family

The column family is a container that contains rows. It is similar to a table in

relational database systems. Each row contains an ordered column. The structure of

the data can be represented by a column family. A key space can have one or many

column families. Each

column family comprises three features: name, value and time stamp. Validator is the

name of a data type for column values. The data type for the column name is called a

comparator. As can be seen in Figure (3.6), Cassandra deals with vast types of data.

Figure (3.6) Types of data supported by Cassandra [45]

 25

3.2.3 Cassandra Features

Cassandra is considered a key value store. It is open source with high availability. In

comparison to other relational management database systems, Cassandra does not

need the matching of a column within a row. Due to Cassandra’s decentralized

architecture, any node can respond to requests, thereby enabling Cassandra to avoid

single node failure.

Figure (3.7) Read repair in Cassandra

The gossip protocol makes the nodes able to communicate with each other [29],

gossip protocol used to send and receive information every second across the cluster.

The consistency of Cassandra can be set in order to strike a balance between

availability versus data accuracy. Cassandra is considered to be an AP according to

the CAP Theorem. "Cassandra has integration point support for other software such

as Apache Hive [30], Apache Pig [31], and MapReduce.

3.2.4 Fault Tolerance

As mentioned previously, the architecture of Cassandra is a peer-to-peer ring shape.

Every node in the ring is identical. The data between the nodes are distributed

evenly. If the replication factor is N, the data will be distributed among N nodes

where N represents the replication factor. The system responsible for electing a

leader of the cluster is called the zookeeper. After a leader is selected, N – 1 node

 26

will get keys. If one of the nodes goes down, other nodes within the cluster will

receive the data belonging to the failed node. When the failed node comes back to

the ring again, the data belonging to it will be moved back to it from the other nodes.

If the leader node goes down, then another node will be elected as leader. Reasons

for failure may include hardware failure, bugs, power cuts or natural disasters.

3.3 Apache HBase

HBase is one of the NoSQL database systems. It is an open source distributed system

which provides scalability and is fault tolerant, which is a way of storing a large

volume of spares of data that are run on top of HDFS (Hadoop distributed file

system). It is well for sparing data sets which are popular in many cases of big data

use. Unlike relational database systems, HBase provides fault tolerance. HBase does

not support a structured query language like SQL. HBase is written in Java. HBase

comprises a set of tables which are stored in HDFS. Similarly, to a traditional

database, each table consists of rows and columns. Each row has a row key which

identifies rows uniquely. These keys do not have a specific data type.

3.3.1 HBase Architecture

HBase architecture is composed of three main layers (See Figure 3.8).

Figure (3.8) HBase architecture

 27

1. Server layer

This layer comprises two components:

 Master server

In order to run HBase on top of HDFS, HBase must utilize the master’s

architecture which contains a master node and slave nodes. The master node

is responsible for making decisions and managing one or many slaves; but it

is not responsible for sorting and retrieving data, so it is lightly loaded.

Master server is performed just like HMaster [38]. The master server has an

external interface used to interact with region servers, clients and other

utilities. In addition to the previous jobs that the master server does, it is used

to manage and control data balancing across region servers. Zookeeper is

used to communicate between the master and clients. If the master server

goes down, the cluster will still be working; however, it is better to restart the

master because it is also responsible for maintaining the current state of the

distributed systems.

 Region server

A region can be considered a primary unit of scalability and load balancing.

When the client creates a table, each region will be assigned to each table and

the created table will be used to store and retrieve data. In some cases, when

the data are very big, the table grows and passes the configurable limits. In

contrast to other database management systems, HBase supports auto-

sharding, which means automatic scalability will take place for the table that

passes the configurable limits. The split region is also known as the daughter

region [38]. Each region is served by one region server. Figure (3.9) shows

the splitting.

 28

Figure (3.9) HBase region split

2. Storage layer

This layer has two component file systems and a coordination service.

 File system

The file system used by HBase is usually HDFS because it is designed to deal

with huge datasets and provide access to data. In addition, HDFS can store

and retrieve files safely due to the robust and scalable mechanism that it

provides. By using HDFS, data availability will not be affected even if the

storage server is offline because HDFS performs well with data replication

between nodes.

 Coordination service

The foundation of Apache HBase has released a service for distributed applications.

Zookeeper is an open source coordination service that provides an interface-like file

system. It presents name server, synchronization, configuration management and

 29

more. "The coordination and communication of states between the master server and

the region server is handled by Zookeeper". Zookeeper guarantee that no more than

one master runs at a time in HBase and it is used for saving the bootstrap locations

for region discovery [38].

3. Client layer

The client layer represents the user interface to communicate with the HBase

installation using its client library. The client talks to the Zookeeper to obtain

some details about the "- ROOT-" table, which gives references to ". META."

tables that provide all the regions to serve rows. Whenever the client finds a

matching for the ". META." region in the "- ROOT-" table, the client check

the ". META." table to fetch the right user table region. If the region server

goes down, then the client repeats the whole procedure.

3.3.2 HBase data model

HBase is designed to deal with semi-structured data which may vary in data type,

field size and columns. The flexibility of the layout in HBase makes data partitioning

easier and data distribution across the cluster more flexible. Key-values are used to

store data items. Because keys and values together are formatted as byte array; the

user can store different data types. For instance, HBase used in Facebook in order to

store chatting and texting [39]. Different logical components have been used to build

the data model in HBase, such as the following:

1. Tables

The data in HBase is stored and organized in tables. These tables are

comprised of rows that are stored in different parts, called regions, which are

served by one region server. Each table has a name comprising a set of

characters.

 30

2. Rows

A row comprises one or more column. Each row is identified by a key called

a row-key. A row-key within a table is unique.

3. Column family

A column family is a group of rows. When a table is created, the user should

define a column family while creating the table.

Table (3.1) A column family [4]

We can see two column families in this table. The first is the customer name

and the second column family is the contact info.

1. Column qualifier

It is for indicating columns. The qualifier might be any random byte array.

Unlike row keys, a column family does not have any data type.

2. Cell

Each cell comprises three components together. These components include a

row key, a column family, and a column qualifier.

 31

3. Timestamp

The timestamp is responsible for versioning data. A cell may have several

versions. The last version will be seen first because the versions are in

descending order. The default number of the cell versions is set to 3.

3.3.3 HBase storage mechanism

There are many ambiguous aspects in the mechanism of data storage in HBase,

which we need to clarify." HBase storage design is based on Log-Structured-Merge

Trees (LSM Trees) "[40]. The log file is used to store incoming data; then, in an in

memory update, it is stored with the last modification of the log-files. The in memory

store is very useful for fast searches. The in-memory store has a fixed size, so

whenever it is full, another store file is created in the disc and all the new updates

that are stored in the in memory will be flushed to the new store file. The purpose of

using the HFile class is to implement the actual storage of files. These files are also

called store files, which are used mainly to store HBase data efficiently.

3.3.4 HBase main operations

HBase, like any other data base management system, manages data with several

operations. In this section, we briefly discuss the four main operations performed by

HBase, namely read, write, delete and search.

3.3.4.1 Read

In HBase, the read operation is performed in two stages. When the client requests a

specific row, the first stage of searching to obtain the query row is performed in the

in-memory in order to exclude unwanted rows. If the row does not exist in the in-

memory, a second stage of searching will be performed on the HFiles starting from

the newest to the oldest stored data. These two stages of searching can be done using

a timestamp and bloom filter in order to eliminate all undesired rows.

 32

3.3.4.2 Write

The write operation begins when the client performs a put command. The data will

be written to the Write Ahead Log (WAL), after which the data will be written to

MemStore, which is a buffer used previously for writing with 64 MB. when the

MemStore is saturated, the information will be flushed to a new HFile on HDFS

continuously. Each region may contain many HFiles. The huge number of HFiles

will slow down the system during the searching process. In other words, the latency

of the read process will increase, which is why HBase combines several HFiles in

order to reduce the latency through a process called compaction. The compaction

comes in two versions: major compaction and minor compaction. Major compaction

merges all HFiles into one single file while minor compaction deals with a small

number of HFiles that are merged to one file.

3.3.4.3 Delete

When the client sends a request to delete specific data, that data actually will not be

deleted directly. Tombstone marker is used to point a delete marker to that data. If a

fetch request sends to the same data, it cannot be retrieved. A complete deletion of

the marker data will occur in the next schedule of the major compaction.

3.3.5 HBase Replication

HBase, like many NoSQL database systems, supports a replication feature which can

be considered a method of data recovery in order to avoid disasters of losing data.

Replication means copying the data between HBase deployments. We can state

several advantages of replication. For example, as mentioned earlier, replication is

considered to be a way to recover the data when something goes wrong. Replication

occurs to provide higher data availability. In addition, it easily copies and edits from

a web-facing cluster to a MapReduce cluster that will process old and new data and

ship back the results automatically [38].

3.3.6 Fault Tolerance

The main aspect of HBase’s design is fault tolerance. HBase can easily deal with

network connection problems or server failures to survive the message loss. One of

 33

the jobs that master server handles, when a region server goes down, is the

assignment of new server regions instead of the collapsed region server being served.

There is also a master backup if the primary master dies. Since Zookeeper itself is

also considered to be fault tolerant, it is used to declare the failed regions.

 34

CHAPTER 4

TEST ENVIRONMENT

In this section, we discussed how we set test environment and the configuration for

each database. We also highlighted the last release (now newer version is available

YCSB-0.7.0) of the Yahoo Cloud Serving Benchmark (YCSB-0.5.0) with its

workloads used in this study. The clusters for three NoSQL database systems are also

discussed.

4.1 Cluster features

In this study, we used 5 computers with 4 GB RAM, Intel Core i3 processor with

3.33*4 GHz processor speed and 100 GB of ephemeral storage in each unit. Ubuntu

14.0.4 LTS (64-bit) was installed on each unit.

4.2 Yahoo Cloud Serving Benchmark (YCSB)

The YCSB is an open source software package used to measure performance of, and

make a comparison of, several types of NoSQL database systems. The YCSB is a

framework designed by yahoo, it is an open source benchmarking used to compare

the performance of distributed NoSQL data stores such as Cassandra, HBase, and

PNUTS [41]. The first benchmark was designed in 2010 to simplify the performance

comparisons of cloud data stores. The YCSB performs several types of operations,

such as creation, deletion, updating and reading. The YCSB comes with six standard

workloads which mix different scenarios, such as read, write, update, and search.

These workloads give us a good rounded picture about the performance of the

database systems. There is also a second workload which can be generated by the

client to highlight another aspect not covered by the core workloads. To run a

workload, there are several main steps that every client should follow:

 35

1. Install the database system

To install a NoSQL database system, the client should realize that every

system has a different way to be installed. There are some common steps

between these systems, such as creating the key spaces, tables, and buckets to

store the data.

2. Select suitable workloads

Based on user requirements and to test a specific aspect of a database system,

an appropriate workload must be selected.

3. Select the appropriate DB interface layer. For example, ….

4. Set the appropriate runtime parameters

To run a workload correctly, several parameters should be set to obtain

reasonable results, such as the number of threads to handle the amount of

load offered against the database, setting the throughput (operations per

second), and the status to control the time of running.

5. Load the data

The user can load the data to the database by executing the command:

./bin/ycsb load basic -P workloads/workloada

This command loads the core workload A.

6. Finally, run the workload

 36

Figure (4.1) YCSB architecture

4.3 MongoDB Configuration

The last version of MongoDB, 3.2, was obtained and installed after installing the last

release of Java 8. We set the settings and the configurations according the manual on

the MongoDB website. We set up the replica set across 5 nodes and used the replica

set to provide a good availability. That’s could be done by replicating data in the

nodes. A replica set comprises one primary server and several secondary servers. It

may contain 12 secondary servers. The steps to setup the replica sets are as follows:

1. Create a directory file in each node to store the data:

mkdir <PATH>/node1

Repeat it for the other nodes.

2. Start mongod by:

. /mongod --replSet mo --port 27017 --dbpath <PATH>/node1

Repeat for the other nodes.

3. Configure the replica set:

config = {_id: ‘mo’, members: [

{_id: 0, host: ‘localhost:27017’}

 37

where mo: is the name of the replica set.

Localhost: the IP address for all nodes within the replica set.

2017: represents the port for each node.

4. Initiate the replica set:

rs.initiate(config)

Figure (4.2) Replica set

4.4 Apache Cassandra

Apache Cassandra is an open source project designed by the Apache Foundation.

Although there are several versions of Cassandra that have been released, the

version that YCSB-0.5.0 supports is Cassandra 2.0.17. We set the configuration of

Cassandra according to our requirements, by setting the following parameters in the

Cassadra.yaml file:

1. Create three folders (data, commitlog, saved cashes) and set their locations in

Cassandra.yaml

2. Set initial token = 0

3. According to the structure of Cassandra, we selected two seeds for each local

node as its neighbors (See Figure (4.3)).

 38

4. Set the listening address according to the local IP address of the nodes.

5. Set the rpc-address to the value: 0.0.0.0.

6. Change the simple snitch to Rack inferring snitch.

7. Remove the # from the broadcast-rpc-address.

This was repeated for the remaining nodes.

Figure (4.3) Cassandra confıguration

4.5 Testing on Virtual Machines

Due to the rapid evaluation of Cassandra, many users attempt to benchmark

Cassandra. However, they need to pay attention to several issues in order to obtain

the correct results, which show the power of this system. We have tested Cassandra

by using a powerful server with (RAM 88 GB) to see whether or not we can obtain

reasonable results. We deployed five nodes, and unlike MongoDB and HBase,

unfortunately, Cassandra results for several tests with different features for the

virtual machines were unsatisfying, the throughput is very low and the average

latency is very high which is against Casandra features. In real cluster as we will see

in chapter 5, the throughput must be very high comparing with the throughput in

virtual machines, and the average latency must be low.

 39

4.6 Apache HBase

According to the ability of YCSB, we installed HBase-1.0.2 which is the latest

release of HBase supported by YCSB. HBase is open source and runs on top of

Hadoop 2.6.3. Our cluster contains five nodes with HBase installed on each, as

shown in Figure (4.4). Furthermore, there are several parameters that we had set. The

HBase regions were pre-split following the recommended split strategy provided on

the HBase site [42] and [33].

Figure (4.4) HBase confıguration

 40

CHAPTER 5

RESULTS

In this chapter, we present the benchmark results of three NoSQL database systems

(MongoDB, Cassandra and HBase) against each other using a test framework

created by Yahoo called the Yahoo Cloud Serving Benchmark (YCSB). Due to the

many different factors between the three systems, such as the design, data model,

data distribution across the cluster, etc., the performance of these systems will not be

identical. YCSB shows the differences between these systems. The YCSB has been

created to evaluate database systems in several scenarios. It has six inbuilt core

workloads to simulate different operations related to database systems, such as read,

write and update. These workloads are as follows:

 Workload-A (Update heavy workload): This workload is 50 percent of read

and another 50 percent of write.

 Workload-B (Read mostly workload): This workload mixes 95 percent reads

and 5 percent write.

 Workload-C (Read only): In this workload, it is a 100 percent read.

 Workload-D (Read latest workload): In this workload, the last inserted

records are more famous.

 Workload-E (Short range): In this workload the query is for a short range of

values instead of particular record.

 Workload-F (Read-Modify-Write): The client in this workload reads a

record, modifies it and finally writes it.

The data used in this experiment was created by the YCSB. These data are illustrated

as records stored in a table. The YCSB provides flexibility to control the record size,

number of records, and even the number of fields. In our experiments, we used 1

million records each of size 1 kb. Each record consisted of 10 fields: the size of each

record was 100 bytes. Due to the small size of the RAM in each node of the clusters

 41

that we used, we were unable to increase the number of records to more than 10

million. Another important point to be mentioned is with regard to the influence of

the processing speed of the nodes, which also has a direct effect on the performance

of the database systems. There are several parameters that need to be set with

appropriate values.

5.1 Load Phase

In each database system, we loaded a million records. From Figure (5.1), which

shows the throughput versus average latency, it is easy to observe that Cassandra is

the winner among the three systems in terms of throughput. Cassandra passed 19000

operations per second (as high throughput is desired). This high performance is due

to Cassandra’s data update occurring in memory, while these data are

simultaneously written to disk. In terms of average latency, HBase has the lowest

average latency (as low average latency is desired). This means that HBase performs

well with heavy loads. Although MongoDB comes in the last place in this

comparison, but comparing with the results in [33], the MongoDB foundation has

improved it is product. The average latency is better than other releases of

MongoDB.

Figure (5.1) Load Phase (1 million records)

 42

5.2 Read and Update

As mentioned previously, workload A is a heavy update scenario. In this part, we

highlight the update operation. From Figure (5.2), which shows throughput versus

average latency, it is clear that HBase performs best based on throughput and

average latency due to its write optimized design, in which its latency is lower than

0.5 ms. Cassandra also performed very well in comparison to MongoDB. MongoDB

showed poor performance and we were unable to obtain higher throughput or a

latency increase while we increased the target of the throughput (–t).

Figure (5.2) Read and Update

Tables (1,2,3) show the values of each database curve in figure (5.2)

 43

Cassandra Read-update

Average Latency Throughput

2.330732 396.4024

2.31764 591.9594

2.934253 785.7589

2.8396 1168.162

3.11852 1729.242

3.904011 2455.283

Table (5.1)

MongoDB Read-update

Average Latency Throughput

2.48355 399.392

4.52793 797.0096

6.142658 995.5102

8.1165 1392.176

9.81749 1571.265

10.824936 1827.518

Table (5.2)

HBase- Read-update

Average Latency Throughput

0.23526 396.362

0.23673 578.436

0.35986 994.563

0.37864 1587.542

0.39686 2185.745

0.43425 2984.248

Table (5.3)

 44

5.3 Read mostly

Workload B has 95% read and the reminder for the update. MongoDB performs best

with lowest latency which increase with the increase of the target throughput, due to

its support of memory mapped caching. Cassandra also performed well because of

its key-row caching. Although the throughput of HBase is still high, the latency of

HBase is the highest, as shown in Figure (5.3).

Figure (5.3) read mostly

Tables (4,5,6) show the values used in figure (5.3)

Cassandra (Read 95%-insert 5%)

Average Latency Throughput

3.426968 396.3349

3.9829282 785.6206

3.88002 977.6423

6.29791 1543.517

6.5293314 1729.161

8.918973 2094.372

Table (5.4)

 45

MongoDB(Read 95%-insert 5%)

Average Latency Throughput

1.353671 399.3227

1.96302 598.5479

2.467718 797.499

3.786381 1194.244

6.514965 1787.469

8.795143 2180.216

Table (5.5)

HBase(Read 95%-insert 5%)

Average Latency Throughput

6.723 399.751

7.315 798.458

7.82 1178.254

8.712 1584.547

10.687 2178.214

11.701 2387.985

Table (5.6)

5.4 Read Only Operation

This workload has a 100% read operation. As we can see in Figure (5.4), Cassandra

and MongoDB performed better than HBase in terms of latency. At the beginning,

MongoDB performed even better than Cassandra, but with the increase of the

throughput, we see that the average latency also increased. At some point, the latency

of MongoDB became higher than the latency of Cassandra. Cassandra shows that it

works better with high throughput than the other databases in this workload.

 46

Figure (5.4) 100% Read

Tables (5.7,5.8,5.9) show the values used in figure (5.4)

Cassandra Read only

Average Latency Throughput

3.268094 297.9297

3.472531 494.1043

3.65133 881.859

4.03937 1262.556

4.5293314 1475.326

5.117724 1729.047

Table (5.7)

 47

MongoDB Read only

Average Latency Throughput

1.409158 299.644

1.43743 498.982

2.3296 896.5152

3.76742 1193.845

5.72205 1588.915

6.544128 1785.905

Table (5.8)

HBase Read only

Average Latency Throughput

5.376 299.751

6.418 597.264

7.921 998.51

9.01 1298.289

9.254 1492.43

10.512 1794.23

Table (5.9)

5.5 Insert mostly Operation

We have set two parameters for this workload. We set the insert ratio to 90% and

10% read, and we focused on insert operations. Figure (5.5) shows how the database

systems respond to this workload. Obviously HBase and Cassandra perform the best

in comparison to MongoDB in terms of latency. The state latency is less than 1 ms. in

contrast to MongoDB, the latency of which increases while increasing the throughput

target. Cassandra and HBase also have the highest throughput.

 48

Figure (5.5) Insert mostly

Tables (5.10,5.11,5.12) below show the values which represent each curve in figure

(5.5).

Cassandra-Insert mostly

Average Latency Throughput

0.50127 399.397

1.0320527 598.6124

0.82245 995.98

0.717604 1392.02

1.095473 1588.38

1.120561 2807.356

Table (5.10)

 49

MongoDB- Insert mostly

Average Latency Throughput

2.80764 396.366

3.06553 591.84

3.85364 977.568

4.90574 1150.2

8.06184 1485.54

8.68458 1687.574

Table (5.11)

HBase - Insert mostly

Average Latency Throughput

0.43526 396.362

0.43673 578.436

0.45986 994.563

0.47864 1587.542

0.39686 1895.324

0.53425 2489.985

Table (5.12)

 50

CHAPTER 6

CONCLUSIONS

In the last two-decades, relational database management systems (RDBMs) were the

choice for many companies. Nowadays, data increase rapidly from many sources and

in different forms, such as structured, semi-structured and unstructured. Because of

the scaling obstacle that RDBM faces, the use of RDBMs is not sufficient with huge

and complex data. Therefore, a need for new technology has appeared. NoSQL has

overcome the scaling problem and it can deal with large volumes of data easily. In

the world of big data, there are no good or bad database systems. Every database

system has features which might meet a user’s needs. In this thesis, we discussed and

tested three kinds of NoSQL database system in order to reveal their capabilities and

how they respond in different operations. Due to the architecture and design of each

database that we tested, we have seen a different response for each with each

operation. In our work, we used the Yahoo Cloud Serving Benchmark (YCSB),

which is a framework designed by Yahoo to test database performance. According to

the results obtained, we can conclude that MongoDB performed very well with low

throughput, but not as well with high throughput. Cassandra and HBase performed

very well under heavy loads due to their optimized designs. In the read operation,

HBase has poor performance as we saw. If we compare the results that we obtained

with the results in [33], we can conclude that the foundations that created these three

database systems had improved their products. The latency for them is lower than

before for all operations, especially in MongoDB.

Future work

Due the strong competition between the foundations, new improvements always

present by these foundations to their products. We are plaining to use the next release

of yahoo cloud serving benchmark and compare the latest versions of different

NoSQL database systems. We will also test the performance of relational database

 51

management system (RDBM) to present a comparative study with the NoSQL

database management systems.

 R1

REFERENCES

1. Christof Strauch; Prof. Walter Kriha (2009): NoSQL database, university of

Hochschule der Medien, Stuttgart

2. Lith A, Mattson J (2013), Investigating storage solutions for large data: A

comparison of well performing and scalable data storage solutions for real

time extraction and batch insertion of data. Dissertation, Chalmers University

of Technology.

3. “NoSQL databases,” [Online]. Available: nosql-database.org. [Accessed 10 2

2016].

4. "Big data for dummies", Dr. Fern Halper, Marcia Kaufman, Judith Hurwitz,

Alan Nugent 2013.

5. “Challenges and Opportunities with Big Data”. CRA.org. Retrieved Jan 2016.

6. Mariana Carroll, Paula Kotzé, Alta van der Merwe. 2012. Securing Virtual

and Cloud.

7. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski,

A., Lee, G., Patterson, D. A., Rabkin, A.,Stoica, I., and Zaharia, M. A View

of Cloud Computing. Commun. ACM 53, 4 (2010), 50-58.

8. Velte, T., Velte, A., and Elsenpeter, R. Cloud Computing, A Practical

Approach, 1 ed. McGraw-Hill, Inc., New York, NY, USA, 2010.

9. Burrows, M. The Chubby Lock Service for Loosely-Coupled Distributed

Systems.

10. Wang, G., and Tang, J. The NoSQL Principles and Basic Application of

Cassandra Model. In Proceedings of the 2012 International Conference on

Computer Science and Service System (Washington, DC, USA, 2012), CSSS

'12, IEEE Computer Society, pp. 1332-1335.

11. Brewer, E. A. Towards Robust Distributed Systems (abstract). In Proceedings

of the Nineteenth Annual ACM Symposium on Principles of Distributed

Computing, July 16-19, 2000, Portland, Oregon, USA. (2000), p. 7.

 R2

12. Gilbert, S., and Lynch, N. A. Brewer's Conjecture and the Feasibility of

Consistent, Available, Partition-Tolerant Web Services. SIGACT News 33, 2

(2002), 51-59.

13. CAP Theorem. http://www.abramsimon.com/cap-theorem/

(Accessed:05/05/2015).

14. Call me maybe: MongoDB. https://aphyr.com/posts/284-call-me-maybe-

mongodb (Accessed: 05/05/2015).

15. Vogels, W. Eventually Consistent. Commun. ACM 52, 1 (2009),40-44.

16. 10gen.com: Home - MongoDB. http://mongodb.org/, 2009. [Online; accessed

on 17-November-2015].

17. Chodorow, K., and Dirolf, M. MongoDB - The Definitive Guide: Powerful

and Scalable Data Storage. O'Reilly, 2010.

18. Mongo DB Documentation Project. http://docs.mongodb.org/v2.6/

 MongoDB-manual.pdf (Accessed: 12/05/2015).

19. 10gen.com: Querying - MongoDB. http://www.mongodb.org/display/

 DOCS/Querying, 2009. [Online; accessed 17-November-2015].

20. Mongo DB Inc. http://www.mongodb.com/ (Accessed: 02/03/2015).

21. MongoDB Previews New Features at Global User Conference, MongoDB

World, retirived from https://www.mongodb.com/press/new-features-at-

global-user-conference on Januaray 2016.

22. Mongo DB Inc. retrieved from https://docs.mongodb.org/manual/replication/

on / (Accessed: September, 27,2015).

23. MongoDB Inc. retrieved from https://docs.mongodb.org/manual/

core/sharding-introduction/ on / (Accessed: September, 24,2015).

24. “Facebook’s Cassandra paper, annotated and compared to Apache Cassandra

2.0”. DataStax.com. Retrieved April 2014.

25. Lakshman, A., and Malik, P. Cassandra: A Decentralized Structured Storage

System. Operating Systems Review 44, 2 (2010), 35-40.

26. Hewitt, E. Cassandra - The Definitive Guide: Distributed Data at Web Scale.

Springer, 2011.

27. Teddyma, Learn Cassandra retrieved from

https://teddyma.gitbooks.io/learncassandra/content/replication/turnable_consi

stency.html on November, 14, 2015

 R3

28. Welsh, M., Culler, D. E., and Brewer, E. A. SEDA: An Architecture for

Well-Conditioned, Scalable Internet Services. In SOSP (2001), pp. 230-243.

29. Ganesh, A. J., Kermarrec, A., and Massoulie, L. Peer-to-Peer Membership

Management for Gossip-Based Protocols. IEEE Trans. Computers 52, 2

(2003), 139-149.

30. Apache Hive TM. https://hive.apache.org/ (Accessed: 02/03/2015)

31. Welcome to Apache Pig! https://pig.apache.org/ (Accessed: 02/03/2015).

32. Wei Tan (2014). NoSQL Data Stores in Internet-scale Computing. Tutorial at

IEEE ICWS, June 27, 2014, Alaska, USA. Retrieved

from http://researcher.watson.ibm.com/researcher/files/us-wtan/NoSQL-

Tutorial-ICWS-2014-public-WeiTan.pdf on February 26, 2016.

33. Kuldeep Singh. 2015. Survey of NoSQL Database Engines for Big Data,

Aalto University.

34. Christopher Jay Choi. 2014:A STUDY AND COMPARISON OF NOSQL

DATABASES, CALIFORNIA STATE UNIVERSITY, NORTHRIDGE.

35. Benchmarking Top NoSQL Databases, Apache Cassandra, Couchbase,

HBase, and MongoDB, retrieved from http://www.endpoint.com/ on

January, 16, 2016.

36. Hecht, R. and Jablinski, S. 2011. NoSQL Evaluation A Use Case Oriented

Survey. Proceedings International Conference on Cloud and Service

Computing, pp. 12-14.

37. Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R.:

Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st

ACM Symposium on Cloud Computing (SoCC '10). ACM, New York, NY,

USA, 143-154, 2010.

38. George, L. HBase - The Definitive Guide: Random Access to Your Planet-

Size Data. O'Reilly, 2011.

R4

39. Aiyer, A. S., Bautin, M., Chen, G. J., Damania, P., Khemani, P.,

Muthukkaruppan, K., Ranganathan, K., Spiegelberg, N.,Tang, L., and

Vaidya, M. Storage Infrastructure Behind Facebook Messages: Using HBase

at Scale. IEEE Data Eng. Bull. 35, 2 (2012), 4-13.

40. O'Neil, P. E., Cheng, E., Gawlick, D., and O'Neil, E. J. The Log{Structured

Merge-Tree (LSM-Tree). Acta Inf. 33, 4 (1996), 351-385.

41. Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon,

P., Jacobsen, H., Puz, N., Weaver, D., and Yerneni, R. PNUTS.

42. “Create Split Strategy for YCSB Benchmark”. Apache.org Retrieved March

2013.

43. MongoDB Connector for Business Intelligence Retrieved from

https://docs.mongodb.org/bi-connector on February, 3,2016

44. Setup Mongo DB with sharding infrastructure retrieved from

http://wayneye.com/Blog/Setup_MongoDB_With_Sharding_Infrastructure

on January, 4, 2016.

45. Introduction to Column Family with Cassandra retrieved from

http://www.edureka.co/blog/introduction-to-cassandra-column-family/on

September, 23,2015.

