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ABSTRACT 

 

FRACTIONAL CAPUTO-BRIZIO DERIVATIVE WITH APPLICATIONS 

 

KAREEM, Ahmed 

M.Sc., Department of Mathematics and Computer Science  

Supervisor: Assist. Prof. Dr. Dumitru BALEANU 

 

December 2015, 59 pages 

 

In this thesis, I pointed out three very recent applications of the new established 

fractional Caputo-Fabrizio derivative and I discussed its related properties and theorems. 

The associated fractional integral was displayed and the Laplace transform of the 

Riemann-Liouville and Caputo fractional differential operators was presented.   
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ÖZ 

FRACTIONAL CAPUTO-FABRIZIO TÜREVİ VE UYGULAMALARI 

 

KAREEM, Ahmed 

Yüksek Lisans,  Matematik-Bilgisayar Anabilim Dalı 

Tez Yöneticisi: Yrd. Doç. Dr. Dumitru BALEANU 

 

Aralık 2015, 59 sayfa 

Bu tezde,  yeni  geliştirilen Fractional Caputo-Fabrizio  türevinin  üç yeni uygulaması 

ele alınmış ve bu türevin  özellikleri  ile  teoremleri tartışılmıştır. İlgili Fractional 

integrali, Riemann-Liouville Laplace    dönüşümü  ve Caputo Fractional türev  operatörü  

gösterilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

The fractional calculus deals with integrals and derivatives of real or even complex 

order [1-20]. It is a generalization of the classical calculus and therefore preserves 

some of the basic properties. As an intensively developing field if offers tremendous 

new features for research [21-36].  The fractional calculus also finds applications in 

different fields of science, including theory of fractals, engineering, physics, 

numerical analysis, biology and economics [37-50]. In 2015 Caputo and Fabrizio 

created a new derivative, in order to give the researchers new powerful deals to dig 

into the unknown world of dynamics of complex systems [51-60].The aim of my 

thesis is to present a detailed review about this new introduced derivative and to 

show some of its recent applications. This thesis consists of 6 chapters. 

In the second chapter we present the special functions as Gamma and Beta 

functions, the complementary error function and Mittag-Leffler. The Riemann-

Liouville (RL), and Caputo definition of the fractional derivatives are given in this 

chapter.  

In third chapter the fundamental properties of the Riemann-Liouville and Caputo 

fractional derivative are discussed and a comparison between them is given. 

In the fourth chapter we reviewed the new definition proposed by Caputo and 

Fabrizio of the fractional time derivatives and discuss its properties. 

In the fifth chapter we show some applications of the Caputo-Fabrizio derivative. 

The sixth chapter is devoted to the conclusion part. 
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CHAPTER 2 

 

RIEMANN- LIOUVILLE AND CAPUTO DERIVATIVES  

 

Before we discuss the fractional Caputo and Riemann-Liouville derivatives, we 

present some special functions important for the fractional calculus as Gamma, Beta 

functions, the complementary error function and the Mittag-Leffler function. 

Furthermore, the fractional integration is introduced [6, 10]. 

 

2.1 Special Functions 

 

2.1.1 The Gamma Function  

 

This function is represented by the symbol      is a simplification of the factorial 

function     i.e.              in which    . For complex arguments with 

positive real part it is definite as [10]: 

     ∫                     
 

 

 

By analytic continuation, the function is extended to the total complex plane except 

for the points {0,-1,-2,-3,-4,-5,-6,…} were it has simple poles          

                  

Below we show some basic properties of   function, namely [10]: 

     ∫           
 

 

 
 

    =1.    = 1 =1,  

                      (2.1) 
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       √ , 

                 

                

                    ,  

where    is the set of the non-negative integers. 

2.1.2 The Beta Function 

We can define the Beta function by the following integral, namely: 

       ∫     
 

 

                         

In addition        is used for convenience to replace a combination of Gamma 

functions. The relation between the Beta and Gamma function is [10] 

       
        

      
  

 

(2.2) 

Equation (2.2) provides the analytical continuation of the Beta function to the 

entire complex plane via the analytical continuation of the Gamma function. It 

should also be mention that the Beta function is symmetric, namely:  

             . 

 

2.1.3 The Complementary Error Function  

The complementary error function is an entire function defined as 

        
 

√ 
∫    

 
 

 

    

Special values of the corresponding error function are given below [10]:  

 

         
 

√ 
∫    
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√ 
∫    

 
      

 

  

 

         
 

√ 
∫    

 
      

 

  

 

The following relations are interesting to be mentioned [10], namely: 

                  , 

∫            
 

√ 

 

 

  

∫             
  √ 

√ 

 

 

  

   Respectively. 

2.1.4 The Mittag-Leffler Function 

While the Gamma function is a generalization of the factorial function, the MLF 

is a generalization of the exponential function. Firstly, we introduced a one-

parameter function by using the series [2], namely: 

      ∑
  

       
                 

 

   

                                                   

and then we define the MLF with two parameters, as: 

        ∑
  

       
                     

 

   

                                     

            Below we mentioned few of MLF properties [10], namely:  

    (g)=  ,  

      
            ,  

      
   

        

 
   

(2.5) 

    (g)=     .  
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2.2 Fractional Integration 

 

In this subsection we recall the Cauchy’s formula [9, 10]: 

          ∫ ∫   ∫               

    

 

  

 

 

 

 

                
 

      
∫                 
 

 
                                                          (2.6) 

 

  

Definition 2.1 [10]: 

Suppose that                 . Then, the fractional integration operator 

 is given by:  

       
 

    
∫                

 

 

  
                                 (2.7) 

        We give some properties of the fractional integration [10] by convention we have  

            ,                                        (2.8) 

i.e.      is the identity operator. 

Another property is the linearity, namely: 

  (          )                           .       (2.9) 

If      is continuous for all     the following equalities holds 

   
   

                                                  (2.10) 

  (       )    (       )                 , respectively. 
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2.3 The Riemann-Liouville and Caputo Fractional Differential  

  

Definition 2.2 [10]: 

Suppose that                 .Then we have [6,10]:  

 

       

 

{
 

 
 

      

  

    
∫

    

          
                  

 

 

  

    
                                                                                           

       

 

 

 

This is named the Riemann-Liouville fractional derivative (RL) of order   [10]. 

It should be mention that the operator (2.11) is the left-inverse operator of the 

fractional integral (2.7), i.e. 

        

By convention it is defined as 

              i.e.      .  

The main properties of the Riemann-Liouville operator (2.11) are treated in 

subsection (3.1) together with the corresponding properties of the Caputo 

fractional differential operator. 

 

Definition 2.3 [33]: 

Suppose that                . The fractional Caputo operator has the 

form [33]:  

 

       
       

{
 
 

 
  

      
∫

       

          
              

 

 

  

    
                                                                      

 

 

(2.12) 
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CHAPTER 3 

 

THE PROPERTIES OF RIEMANN-LIOUVILLE AND CAPUTO 

DERIVATIVES  

In this chapter, the fundamental properties of the RL and Caputo derivatives are 

discussed and a comparison between them is given [10]: 

3.1 Main Properties  

Consider the class of functions     , integrable and continuous in every finite 

interval            suppose also, that these functions may be an integrable 

singularity of order     at the point      i.e.        
                 [10]. 

This is the class of function, for which (2.7) and (2.11) in subsection (2.2) and 

subsection (2.3) are well-defined as already mentioned in subsection (2.4) for the 

Caputo fractional differential operator (2.12) the integrality of the n-th derivative of 

the function is additionally required later on, all the function in this survey are 

considers to be in the corresponding class [6, 10]. 

 

Remark 1 [10] 

The operator   , n  N used in the following sections is the standard integer-order 

differentiation operator, i.e.   = 
  

    
. 

 

Lemma 1 [10]: If n-1      n   ,     and g(t) be such that   
       exists, 

then  

  
             g(t).      (3.1) 

This means that the Caputo fractional operator is equivalent to (n- ) fold integration 

after n-th order differentiation. Equation (3.1) follows immediately from (2.12), the 
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Riemann-Liouville fractional derivatives equivalent to the composition of the same 

operators {(    )-fold integration and n-th order differentiation} but in reverse 

order, i.e. 

  g(t)=      g(t). (3.2) 

 

From (3.1) and (3.2) since                 it follows the result. 

 

Proposition 1 [12]:  

In general, the two operators, the Riemann-Liouville and Caputo do not coincide:  

          
        

 

Lemma 2 [10]: Suppose                  and      be such that 

  
       exists. 

Then the following properties for the Caputo operator hold: 

 

      
   

  
                

       
     

  
                            

 

(3.3) 

Proof [10]:  

By using the integration by parts we get: 

 

  
      

 

      
∫

       

          
   

 

 

 

 

 
 

 

      
.        

        

   
    
  ∫           

        

   

 

 

  /  

 
 

 

        
             ∫                      

 

 

 

 

Now, by taking the limit for     and       respectively, it follows that   
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          , 

and 

 

           
     

  
                                  

  ∫           
 

 

  

              
                       

For the corresponding interpolation property reads as follows [10]. 

 

   
   

                 

 

   
     

                   

 

Lemma 3 [10]: 

Suppose                    and the functions      and      be such 

that both   
       and    

       exist. The Caputo fractional derivative is a linear 

operator, namely:  

  
 (          ) =    

         
     . (3.4) 

 

Proof [10]: 

The proof follows straightforwardly from the definition of fractional integration and 

the fact that the integral and the classical integer-order derivative are linear 

operators. Similarly, the Riemann-Liouville operator satisfies [10]: 

                               . 

Lemma 4 [10]: Let                   and the functions      is such 

that   
       exists. Then, in general we have: 

  
          

             
       (3.5) 
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Corollary 1 [9]: Suppose that                             

        and the functions       is such that   
       exists then we have: 

   
        

 
         . 

Proof [9]: 

Substitute   for   and     for   in (3.5), then we calculate:  

  
 
            

     
        

                    
      .   

 

Remark 2 [10] 

To find the Caputo fractional derivative of arbitrary order   (n-1      of the 

function g(t), it is sufficient to find the Caputo derivative of order           

of the (n-1) the derivative of the function. Notice that         is a real number 

between 0 and 1. Hence studying the behavior of the Caputo derivative of order   

      is sufficient for finding the Caputo derivatives of arbitrary order. Nevertheless, 

for completeness later on in this survey the general result for the Caputo fractional 

derivative is given. 

In general, the Riemann- Liouville operator is also non-commutative and satisfies 

[10]: 

               (t)     g(t), n-1              .   (3.6) 

The inequalities in equation (3.5) and (3.6) become equalities under the following 

additional conditions [10]: 

  (0)=0,  S= n, n+1,….,m, for   
 , and   (0)=0, S=0, 1, 2, 3,…,m for   , 

respectively. 

It should be noticed, that in case of Caputo derivative there are no restrictions on the 

values   (0)=0,  S=0,1,2,3,…,n-1, for example, for m=3, n=2, the functions. 
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  +…satisfies the condition for Caputo but doesn’t 

satisfy the condition for Riemann-Liouville [10]. 

3.2 The Laplace Transform 

In this section the Laplace transform is discussed. First general definition is given 

then the Laplace transforms of two–parameter function of Mittag-Leffler, the 

Riemann- Liouville and the Caputo fractional derivatives are studied [10], 

Definition 3.1 [5]: If the function 

               ∫                
 

 

 
                                (3.7) 

exists, then it is named the Laplace transform (LT) of       

Let the function       be [5]:  

(1) Piecewise smooth over every finite interval in [0, ) and 

(2) Of exponential order   , i.e, 

there exists constants r           such that |g(t)| r    for all t T then,  the 

Laplace transform (LT) L{g(t),s}of g(t) exists. 

The Laplace transform is most applicable to initial value problem on semi-infinite 

domains. 

The original g(t) can be obtain from its Laplace transform  (s) using the inverse 

Laplace transform [6]: 

                 
 

   
∫              

    

    

          
(3.8) 

while    is located in the right half plane of the absolute convergence of the Laplace 

integral (3.7) the integral in (3.8) is also called Bromwich integral. 

Lemma 7 [10]: Let  (t) and f(t) are two functions which are equal to zero for t   0 

and for which the Laplace transforms G(s) and F(s) exist. The following statements 

hold (see [5] p.105-115). 
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a) The Laplace transform and its inverse are linear operators i.e. suppose that           

    so: 

L{λ g(t)+f(t),s}=λL{g(t),s}+L{f(t),s}=λ G(s)+F(s)  and (3.9) 

                                                            

b) For the Laplace transform of the convolution of  (t) and  (t) it follows [5]: 

 

L{g(t)*f(t);s}=G(s) F(s), (3.10) 

 

where the detour is defined by [5]: 

          ∫              ∫     
 

 

 

 

          

c) The limit of the function s  (s) for s→∞ is given by [5] 

   
   

s (s)=  (0).        (3.11) 

 

d) The Laplace transform of g(t) of the  n-th derivative n N writes as follows [5]: 

 

                  ∑           

   

   

 

 

 

           ∑           

   

   

  
     (3.12) 

 

3.3. Laplace Transforms of the Basic Fractional Operators  

 

Let p    and suppose  (s) is the LT of   (t). Then the following statements hold 

[10]: 

a) LT of the fractional integral of order   (2.7) is given by 

L {  g (t),s}=   G(s).        (3.13) 

b) LT of the Riemann-Liouville fractional differential operator of order   (2.11) is 

written as. 
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                    ∑  [           ]    

   

   

 

 

        ∑      [           ]    

   

   

            
 

(3.14) 

 

c) Let                  . Then, the Laplace transform of the two-parameter 

function of Mittag-Leffler type (2.4) is given by  

 ,           
         -  

      

         
          

 

 

 

  

 

                    (3.15) 

Of great interest in this thesis is the Laplace transform of the Caputo fractional 

derivative. The following statement is proved. 

 

Theorem 1   [10]: 

Let     and suppose that  (s) is the LT of g (t).Then, the LT of the Caputo 

fractional differential operator of order   (2.12) is written as: 

    
                 ∑                     

   

   

 

           (3.16) 

Proof [10]: 

To show the validity of (3.16) consider the first equation (3.1). We have 

  
 g (t) =      g(t).   

Let f (t) =  g (t), then (3.1) becomes  

  
 g (t) =        .                                                                                                                                                    (3.17) 

Using the LT of the fractional integral (3.13) of order n-  of g(t) and the equation  

(3.17) [10],p.106) the LT of the Caputo fractional operator can be written as. 

L{  
 g(t),s}=L{    f(t),s}=       F(s) ,                                                      (3.18) 

where F(S) =L {f (t), S} can be expressed using (3.12) in the following way 
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            ∑           

   

   

  
                                                        (3.19) 

 

Finally, substituting (3.19) in (3.18) the statement of the theorem 

    
                 (       ∑           

   

   

)

        ∑      

   

   

      

is proved.  

The LT of the Caputo fractional derivative is a generalization of the Laplace 

transforms LT of the integer-order derivative (3.12) where n is replaced by  . The 

same does not hold for the Riemann-Liouville case. This property is an important 

advantage of the Caputo operator over the Riemann-Liouville one [11]. 

Suppose that g (t) be a function such that both               
 g(t) exist and n-1 

    ,n  . Then,              
 g (t) holds.   

They are reverse to each other since they can be represented as a composition of the 

same operators but in reverse order. 

 Considering n-1    n, n   N, in the interpolation property they are also some 

differenced for the values of the parameter    n the result for both operators is the 

same. 

Let n-1    n. Then: 

 

       
               

            ,   

holds. 
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Concerning the commutation for function g(t) such as     =0,s=0,1,2,3,…,m each 

of the two fractional derivatives commutes with the mth order derivative (m  ) 

namely [10]. 

    g(t) =    g(t) =    g(t), 

and 

  
   g (t)=  

   g(t)=    
 g(t). 

In relation to that, another similarity between the Riemann-Liouville and Caputo is 

given in the following statement. 

Proposition 2: 

Suppose that the function      be such that      =0, S=0,1,2,3,…,n-1.Then, the 

Riemann-Liouville and the Caputo fractional derivatives coincide, namely [10] 

  
          g(t).    

It should also be mentioned that in both cases Riemann-Liouville and Caputo only 

derivatives of order   in the interval (0,1) can be consider, since (see Remark 2 and 

formulas (3.5) and (3.6) for n-1     , namely 

  
           

       
    g(t),    

  g(t)=            g(t),    

where                           is the classical integer –order derivative. 

One of the most impressing differences between the two operators is the 

differentiation of the constant function [10]: 

  
  c = 0,   for Caputo, where for Riemann-Liouville, we have [10]: 

    
 

      
              .  
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3.4. The Relation Between Caputo and Riemann-Liouville Operators 

The central point in this section is the following statement [10] for which a proof is 

derived. 

Theorem 2 [6]: 

Suppose t                         then the following relation 

between the Riemann-Liouville and the Caputo operator holds:  

  

  
               ∑

    

        
     

   

   

  
                                        (3.20) 

 

Proof [6]: 

The well-known Taylor series expansion about the point 0 reads as: 

g(t)= g(0)+t  (0)+
  

  
   (0)+

  

  
    (0)+…+

    

      
    (0)+     

 

 ∑
  

      
           

   

   

 

Considering (2.11) [6] we conclude that 

     ∫
               

      
   

 

    
∫                            

 

 

 
 

 

 

Now, by using the linearity characteristic of the Riemann-Liouville fractional 

derivative, we obtain: 

 

 

         (∑
  

      
            

   

   

) 
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               ∑
    

      
        

   

   

     

  

 
 ∑

      

        

   

   

    

      
                

 

 

 ∑
    

        
  

   

   

              

  

 
 ∑

    

        
  

   

   

      
       

 

This means that [6]: 

  
             ∑

    

        
      

   

   

 

So, the proof is completed. 

The formula (3.20) implies that the Caputo and the Riemann-Liouville fractional 

operators coincide if and only if g(t) together with its first (n-1) derivatives vanish 

 at t=0  [10]. 
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CHAPTER 4 

 

THE CAPUTO-FABRIZIO DERIVATIVE 

 

After the Riemann–Liouville and Caputo fractional differential operators were 

introduced in chapters 2, 3 and we discussed  some of their properties as well as the 

differences between them, it is reasonable to present the new fractional time 

derivative (CF) introduced by Caputo-Fabrizio in 2015. 

 

4.1 A New Fractional Time Derivative 

Definition 4.1 [6]:The Caputo Fabrizio derivative is defined as follows  

  
      

    

     
∫         0 

      

   
1

 

 

    
(4.1) 

where N( ) is anormalization function such that N(0)=N(1)=1. According to the 

definition (4.1), the CF is zero when g(t) is constant, as in the CFD, the kernel does 

not have singularity for t=τ .The new CF can also be applied to functions that do not 

belong to   (a,b). Indeed the definition (4.1) can be formulated also for  

G   (-     and for any    [0,1] as: 

  
      

     

     
∫               0

      

   
1   

 

  

 

 Now, it is worth to observe that if we put σ =
   

 
 [   ]   

 

   
 [   ] the 

definition (4.1) of  CF assume the form  
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∫         [ 

     

 
]

 

 

    
                                                    (4.2) 

where   [   ] and M(   is the corresponding normalization term of N( ) 

fulfilling M(0)=M(  =1. Moreover we have: 

      
 

 
 exp [- 

     

 
] =δ                                                            (4.3) 

and for      we have    , namely 

   
   

  
         

   

    

   
∫         [ 

      

   
]

 

 

   

 

 
    

   

    

 
∫         [ 

     

 
]          

 

 

 

 

                            

(4.4) 

Otherwise, when     it implies that        Hence, we calculate [6]: 

   
   

  
         

   

    

   
∫         [ 

      

   
]

 

 

   

 

 
    

    

    

 
∫         [ 

     

 
]              

 

 

 

 

      (4.5) 

 

 

Theorem 4.1 [6]: 

For (CF) if the function g(t) is such that     (a)=0, s=1, 2,…, n, then, we have  

  
 (  

     )    
 (  

     )                                                            (4.6) 

 

Proof [6]: 

We begin considering n=1, then from the definition below: 

  
   g(t)=  

 (  
     )                                                           (4.7) 

 

Then, we calculate the followings [6]: 

  
 (  

      )  
    

   
∫   

 

 

      0 
      

   
1    

                                   (4.8) 
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Hence after an integration by parts and assuming   (a)=0, we have  

              
 (  

      )  
    

   
∫  

 

  
  

 

 

        
      

   
   

 

 
               

    

   
0∫

 

  
         

      

   

 

 

   
 

   
∫   

 

 

       

 
      

   
  1 

    

(4.9) 

 
              

    

   
0      

 

   
∫          

      

   
  

 

 

1  
 

 

Otherwise we conclude the followings [6]: 

 

  
    

       
 

  
.
    

   
∫   

 

 

       
      

   
  / 

 

 
 
    

   
0      

 

   
∫          

      

   
  

 

 

1  
    

(4.10) 

It is easy to generalize the proof for the case of any n    In the following we 

suppose the function fulfilling N (   = 1. 

 

4.2 The Laplace Transform  

 In order to study the characteristics of the CF defined in equation (4.2) with a=0, has 

priority the calculation of its Laplace transform (LT) given with P variable, namely 

  [  
      ]  

 

   
∫       ∫          

      

   
       

 

 

 

 

 

Hence, from the property of the Laplace transform of a convolution, we have [6]: 

  [  
      ]  

 

   
  (     )       
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Similarly, we get the following: 

LT [  
   g(t)] = 

 

   
LT(   (t)LT(exp-

  

   
  

 
 
     [    ]              

        
  

 

Finally, we calculate that [6] 

  [  
       ]  

 

   
  [       ]  [    

  

   
] 

 

 
 
      [    ]                        

        
  

 

4.3 Fractional Gradient Operator  

In this subsection we introduce a new notion of fractional gradient able to describe 

non-local dependence in constitutive equation [6]. 

Let us consider a set Ω    and a scalar function u(.): Ω R,we define the fractional 

gradient of order   [   ] as follows [6]:  

       
 

     √  
∫         0 

        

      
1   

 

 

 
(4.11) 

with x, y     

It is simple to prove by using the definition (4.11) together with  the property [6]   

   
   

 

     √ 
   0 

        

      
1          

that  

                        ∫         
 

 

 

When         u(x) loses the non-locality given otherwise     u(x) is related to 

the mean value of            In the case of a vector u(x) we define the fractional 

tensor by [6]:  
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     √  
∫         0 

        

      
1    

 

 

 
(4.12) 

 

Thus, a material with non–Local property may be described by fractional 

constitutive equations. As an example we consider an elastic non –local material 

defined by the following constitutive equation between the stress tensor T and 

  u(x) [6], namely T(x, t)=A  u(x ,t),          where A is a fourth order 

symmetric tensor or in the in integral form 

       
  

     √  
∫          0 

        

      
1     

 

 

 

Likewise we introduce the fractional divergence defined for  u (.): Ω    by [6] 

          
 

     √  
∫            0 

        

      
1

 

 

    
  (4.13) 

 

Theorem 4. 2 [6]: 

From the definition (4.12) and (4.14) we have for any u(x):     that [6]: 

                                                                                                                    (4.14) 

The identity        u(x)=    u(x) holds.                                                        (4.15)                                                                

Proof [6]: 

By means of  (4.12), we obtain [6]: 

 

          
 

     √  
∫            0 

        

      
1

 

 

   

 
  

 

     √  
∫             0 

        

      
1   

 

 

 

 
 

 

     √  
∫             0 

        

      
1   

 

 

 
(4.16) 
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     √  
∫            0 

        

      
1    

 

  

 

 

Hence, from the boundary condition (4.14), the identity (4.15) is proved because 

(4.16) coincides with [6]:    

         
 

     √  
∫           0 

        

      
1    

 

 

 

 

4.4 Fourier Transform of Fractional Gradient and Divergence  

For a smooth function u(x):      the Fourier transform (FT) of the fractional 

gradient is defined as [6]: 

           𝜉  ∫           [    𝜉  ]    
 

  
 

Thus, if we consider the gradient of  (4.12), the Fourier transform reads as [6]; 

        𝜉  
 

     √  
   .∫          0 

        

      
1

 

  
  /  𝜉  

 
 

 

     √  
        𝜉   .   0 

    

      
1/  𝜉   

 

where  

  .   0 
    

      
1/  𝜉  

     √ 

 
    0 

        𝜉 

  
1  

Thus, we obtain [6]: 

        𝜉  √           𝜉    0 
        𝜉 

  
1  

The Fourier transform of fractional divergence is defined by [2]: 

         𝜉  
 

     √  
   .∫          0 

        

      
1   

 

 

/  𝜉   
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From here we conclude that [6]: 

         𝜉  √             𝜉    0 
        𝜉 

  
1  

 

4.5 Fractional Laplacian  

In the study of fractional partial differential equations there is a great interest on the 

notion of the fractional Laplacian. Using the definition of the fractional gradient and 

divergence we can suggest the representation of the fractional Laplacian for a 

smooth function      Ω   , such that           =0, as [6]: 

          
 

     √  
∫           0 

        

      
1    

 

 

 

By Theorem (4.1) we conclude that [ ]: 

         =         =          

Now, we suppose that [6]: 

     =0, on   , then we extend the function          on   \Ω, so we consider the 

Fourier Transform (FT): 

   (        )  
 

    √  
  .∫           0 

        

      
1   

 

  
/  𝜉  

 
 

 

    √  
           𝜉   .   0 

    

      
1/  𝜉  

(4.17) 

 
    𝜉    (    ) 𝜉 √       0 

      𝜉 

  
1  

 

Finally, if                           that: 

FT (         -          𝜉 
 FT(   ))  𝜉 √       * 

        

  
+ 

 =- 4  𝜉  LT(F(x))( 𝜉  . 
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4.6 The Distributed Order of the Memory Operator 

The distributed order operator    is defined for the fractional derivative of Caputo-

Fabrizio by [6]: 

   
      ∫       [  

 
 

 

    ] 

 
    

 ∫       [∫    ( 
 

     
     )     

 

 

]   
 

 

  
(4.18) 

Here g(   is a weight function and 0        Following the method of Caputo 

is readily seen that for the Fubini-Tonelli theorem we may change the order of 

integration in    and    provided 

∫       [∫       
 

   

 

 

 

 

               ]  

Is summable with respect to τ in the interval (a ,b) with 0      ,which is 

readily verified the solution on if found using the LT of (4.18) which is [6]: 

                
      ∫ ∫       [[  

     ]           
 

 

 

 

 

 
 ∫ ∫       0∫    . 

 

   
     /        

 

 

1            
 

 

 

 

 
(4.19) 

or 

       
      

 ∫ 2∫ 0∫    ( 
 

   
  

 

 

 

 

 

 

          )1           3         

Finally,  we obtain that [6]: 

       
      ∫

 

   
      

 

 

     ∫
     

        
   

 

 

 

                           (4.20) 
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which represents the filtering properties of the operator and is simpler than that 

obtained using the Caputo derivative. As an example we may consider the simple 

case g (           gives [6]: 

      
            ∫

    

   
           

   

   
 

 

 

 

Hence, the response is  p log
   

   
, whose filtering properties are readily computed. 

We rewrite the definition (4.2) in the new form as 

  
          ∫                   

 

 

 
  (4.21) 

From (4.1) or (4.2) with V=
 

 
                 

 

 
  so, we have: 

 

Theorem 4.3 [6]: 

If the function       (a, b), then the integral in (4.22) exists for t  [   ] and 

   
   (t)   [   ]   

Proof [6]: 

Let us write     

  
          ∫                  

 

 

 

 
     ∫   

 

  

             
  (4.22) 

where   (y)=exp(-vy),when 0            p(y)=0.When y          

              when a      finally q(y)=0 when y   or y    Hence under 

the hypotheses of the theorem, the function     q 

                             result on Lebesgue integrals the integral (4.21) exists 

almost everywhere in t [   ]       
        [   ]   This ends the proof. 
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It is of some interest to see the fractional derivatives of the elementary and 

transcendental functions according to the new definition (4.1). We begin with 

sin(wt),whose fractional derivatives is given by: 

  
             ∫      

 

 

. 
 

   
     /            

where E(   
    

   
  

Then we conclude: 

         
                  * 

 

   
 +∫    (

 

   
 )          

 

 

 

 
 

     

(
 

   
)
 

   

(
 

   
                 

 

   
   ( 

 

   
 )) 

 
 

     

(
 

   
)
 

   

.((
 

   
)
 

   )
   

          
 

   
   * 

 

   
 +/  

          (                 * 
 

   
 +)  (4.23) 

where a is such that  

     
  

     
      

 

   

((
 

   
)
 

   )
     

and 

      
 

  
 

   
         

  

We note that the new derivative of sin(wt) implies only a change of the phase(a) and 

the amplitude variation, namely: 

      

  
 

   
         

  

Now, we see   
                                , namely  
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                ( 

 

   
)  ∫    (

 

   
 )         

 

 

 

 =E(      *                  ( 
 

   
 )+  

We note the same phase change and amplitude variation reported for the case of 

sin(wt). Moreover, we observe that b is related to a as follows: 

     
 

    
  

Hence, we consider   
 (expwt), then we find [6]: 

  
         

     
 

   
  

,           * 
 

   
 +- 

 
 

     
 

   
  

       ,      (  
 

   
 )-  

Finally, we conclude that 

  
  

    

   
∫    . 

 

   
     /    

    

 

 

 

(      
 

   
  ) 

        ) 

 

4.7 The Associated Fractional Integral  

After the notion of fractional derivative of order 0      that of  related fractional 

integral becomes a natural requirement. In this section we review the fractional 

integral associated to the Caputo–Fabrizio fractional derivative previously 

introduced in [27]: 

Let us consider 0     . Consider now the following fractional differential 

equation, namely 

  
 

   (t)= u(t),t  . (4.24) 

 

Using Laplace transform we obtain L[      (t)](s)=L[u(t)](s) for        s    

That is using 
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 [   
 

      ]    
         

 (        )
(  [    ]        )          

we have that 

         

 (        )
   [    ]           [    ]            

or equivalently, 

 [    ]    
 

 
      

  

          
 [    ]    

      

(        )
 [    ]       

    

Hence, using the well-known properties of the inverse Laplace transform we deduce 

that  

     
      

(        )
     

 
  

(        )
∫                 

 

 

 

(4.25) 

 

In other words the function defined as below: 

     
      

(        )
      

  

(        )
∫              

 

 

 

where C    is a constant is also a solution of (4.24). We can also rewrite the 

fractional differential equation (4.24) as: 

         

      
∫       

 

   

 

 

                                      

or equivalently 

∫    (
 

   
 )        

      

         
    (

 

   
 )              

 

 

 

Differentiating both sides of the latter equation we conclude [6]  

      
      

         
       

 

   
                   

Hence, integrating now from 0 to t we deduce as in (4.26) that  
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[         ]  

  

         
∫                      

 

 

 

Thus, as a consequence, we expect that the fractional integral of Caputo –Fabrizio 

type must be defined as follows. 

Definition 4.2 [2]: 

The fractional integral of order   of a function      has the form: 

         
      

         
     

  

         
∫                     

 

 

 

Remark 1 [2]: 

We see that, according to the definition (4.2) the fractional integral of Caputo –

Fabrizio derivative is an average between function  (t) and its integral of order one. 

Imposing   
      

         
 

  

         
    we obtain an explicit formula for N (    

namely 

N (   
 

   
,                                           0            

Due to this the following of fractional derivative of order 0      was proposed 

[2]. 

Definition 4.3 [2]: 

The fractional Caputo-Fabrizio derivative of order   of a function      is given as 

follows: 

  
        

 

   
∫    . 

 

   
     /        

 

 

             

 

4.8 Some Fractional Differential Equations 

In this section we present some useful fractional differential equations. 

Lemma1 [27]: 

Let 0      and    (t) be a solution of the fractional differential equation as in 
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 the equation below: 

     (t)=0,                                                         (4.26)   

Then      is a constant function. The converse, as indicated in the introduction, is 

also true. 

Proof [27]:   

From (4.25) we obtain that the solution of (4.26) must satisfy the condition    ) 

=     for all       subsequently it is clear that      must be a constant function. 

Proposition 4.1 [27]: 

If 0      so the unique solution of the following initial value problem [27] 

      t) = σ (t),                                                    (4.27) 

  (0)=                                                     (4.28) 

So, we conclude that: 

 (t)=   +  (σ(t)-σ(0))+   
        t                                                    (4.29) 

          it shows the primitive of   and  

   
      

         
    

  

         
  

                                            (4.30) 

 

Proof [27]: 

 We suppose that the equations (4.27) and (4.28) have two solution             .In 

this case we have [27]: 

      (t)-       (t) =     [      ]    =0,  and (     )(0)=0.     

So, by Lemma 1 [27], we have that        .That is   (t)=  (t) for all    

   By (4.25) it is clearly  that the function defined by (4.29) is a solution of the 

fractional differential equation (4.27), furthermore if we substitute  t by 0 in (4.29), 

we obtain    hence the function determined by (4.29) is the unique solution of initial 

value problem (4.27)-(4.28) [27]: 

Remark 2 [27]  For      we have that the solution of (4.27) is the usual primitive 

of    Now, we consider the following linear fractional differential equation: 
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                            t    (4.31) 

 

where             corresponds to the case previously studied). From the 

Proposition 4.1, we have that solving the equation (4.31) is equivalent to find a 

function g such that  

          [                    ]    ∫ [    ]             
 

 

 

Here    ,   are given by (4.30). Equivalently, we must find g such that [27] 

(1-   )g(t)-     
 g(t)= (1-   )    +   (u(t)-u(0) +    

 u(t),     t    

If    =1, we obtain [27]: 

      
  
   

      
  
 
             

In the other case, i.e.,      , we have [27]: 

     
    

     
                        

(4.32) 

         
  

     
(         )  

  
     

             
 

respectively. 

The case      is trivial, and we obtain g=  .if      We see that (4.32) can be 

rewritten as [27]: 

G(t)-                 t   , where [27]: 

  
  

     
  

Hence                             t   . 

Thus, we have obtained an ordinary differential equation, which has a unique 

solution if we consider an initial condition. In consequence, we have proved the 

following result: 

Proposition 4.2 [27] Let 0       Then, the initial value problem given by  

                                  t     

           has a unique solution for    . 
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CHAPTER 5 

 

APPLICATIONS OF CAPUTO-FABRIZIO DERIVATIVE  

 

In this chapter we explained that the advantage of utilizing the Caputo-Fabrizio 

derivative is due to the necessity of using a better model describing the behavior of 

classical viscoelastic materials, electromagnetic systems and thermal media. In fact, 

the original definition of fractional derivative appears to be particularly convenient 

for those mechanical phenomena, related with plasticity, fatigue, damage and with 

electromagnetic hysteresis. However, when these effects do not appear it seems more 

appropriate to utilized the Caputo-Fabrizio derivative. 

Below the applications of a new fractional time derivative (CF) introduced by 

Caputo-Fabrizio in 2015 is reviewed. 

5.1 A Chemical Model 

The active model  of the meeting process of cellular slime mold through biochemical 

attraction proposed by Keller and Segel in 1970. Simplified model in one dimension 

is presented by [2]: 

{
  
 

  
 
       

  
  

        

   
 

 

  
(      

         

  
)  

 
 

       

  
      

        

   
                 

 

 

 

 

(5.1) 

    initial conditions associated to the above equations (5.1) are given as [2]: 

a(x,0) =                                
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The coupled solutions a(x, t) and       represent the concentration of amoebae and 

concentration of a chemical substance, respectively u ,p ,c, and d are positive 

constants. The sensitivity of the chemicals and attraction of terms are seen from the 

chemical expression, namely [2]: 

 

  
4      

    
 

  
       

         

  
      

  
5  

 

(5.2) 

The term         is the sensibility function, and is the smooth function of   

      which represent a cell’s perception and response to chemical stimulus. Note 

that, the above equation (5.2) is not able to clarification the effect of memory and as 

well the activity of the bacteria within different layers of the medium by which the 

global activity is taking place. Therefore, in order to include these two effects into 

the mathematical formula, we amendment the system by change the ordinary time 

derivative to the new proposed fractional order derivative as in equation (5.3) below 

[2]: 

{
 
 

 
   

        
    

        

   
 

 

  
.      

  (      )

  
/  

  
        

     
        

   
                            

 

 

(5.3) 

 

To be more accurate, we chose the sensibility function to be in the following form 

[2]: 

         
      

        
        

       

         
    (      )  

(5.4) 

We note that the initial conditions are the same like in equation (5.2). 

5.1.1 Existence of Interlinked Solutions 

In this subsection, by using the fixed- point theorem, we offer the existence of the 

coupled-solution. In the beginning we transform the equation (5. 3) to an integral 

equation as: 
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{
 
 

 
                 

 
 

  2 
        

   
 

 

  
.      

  (      )

  
/3  

                
 

 
  2 

        

   
                3             

 

Using the observations made in [2], we get:  

{
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(      

         

  
)3  

  

         
∫ 

 

 

 
        

   
  

 

  
       

  (      )

  
                                      

                        
      

         
2 

        

   
                3  

  

         
∫ 

 

 

        

   
                    

 

 

 

 

 

 

 

 

    simplicity, we define the following kernels [2]: 

{
 
 
 

 
 
            

        

   
 

 

  
.      

  (      )

  
/  

 
 

                
        

   
                                

 

 

 

 

                          (5.6)   

 

Theorem 5.1 [2]: 

   and    satisfy the contraction and Lipschiz condition if the following inequality 

achieved: 

     
    

 ‖
  (      )

  
‖     
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Proof [2]: 

Let’s start with   .Let a and v be two function, then we evaluate the following [2]. 

 

‖                   ‖= 

‖ 
                 

   
 

 

  
                  

  (      )

  
‖ 

 

(5.7) 

We transform (5.7) into 

‖                   ‖

  ‖
                 

   
‖

 ‖ 
 

  
.               

  (      )

  
/‖  

By using the triangular inequality note that the operator derivative satisfies the 

Lipschitz conditions, we can then find a positive two parameters     and    such that: 

 ‖
                 

   
‖     

 ‖             ‖ 
(5.8) 

‖ 
 

  
.               

  (      )

  
/‖    ‖

  (      )

  
‖‖             ‖  

Replace the equation (5.8) in to Equation (5.6) we find: 

‖                   ‖  2   
    ‖

  (      )

  
‖3 ‖             ‖  

(5.9) 

 

     Taking: 

  2   
    ‖

  (      )

  
‖3  

     then  
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‖  (x ,t ,a)-  (x,t,v)‖   ‖             ‖  therefore    satisfies  the Lipschitz 

conditions and also  if [2]: 

      
    

 ‖
  (      )

  
‖   ,  

then it is a contraction. 

With the second case that we have, the kernel is linear, then it satisfies the Lipschitz 

condition as in the equations below [2]: 

‖                    ‖     
    ‖              ‖  

Taking into account these kernels, equation (5.5) is reduced to [2]: 

 

{
 
 
 

 
 
 
       

      

         
                 

  

         
∫              

 

 

       
      

         
                 

  

         
∫            

 

 

 
 

 

 

 

 

       

We consider the following iterative formula [2]: 

{
 
 
 

 
 
 
        

      

         
             

  

         
∫                 

 

 

        
      

         
             

  

         
∫               

 

 

 
 

 

 

 

        

with initial component [2]: 

{
                              

                               



  

38 
 

Difference between the consecutive terms is given as follows [2]:  

  (x,t) =                   

 = 
      

         
  (x,t     ) - 

      

         
  (x,t,    ) 

+ 
  

         
∫                               
 

 
 

 

(5.12) 

 

                      (x,t) = 
      

         
                   

 
  

         
∫                    
 

 
. 

 

 

It worth noting that [2]: 

{
 
 
 

 
 
         ∑  

 

   

      

         ∑        

 

   

 

We conclude that [2]: 

 ‖        =‖                 ‖ 

 

 ‖
      

         
             

      

         
            

 
  

         
∫                             

 

 

‖ 

 

The above equation by using the triangular inequality becomes [2]: 

‖                 ‖  
      

         
‖                         ‖ 

 

(5.13) 
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‖∫                            

 

 

  ‖  

 

Because the kernel satisfies the Lipschitz condition, we find [2]: 

‖                 ‖                                                                                                                      

 
      

         
 ‖         ‖  

  

         
 ∫ ‖         ‖   

 

 

 

 

 

Then, we calculate [2]:  

‖       ‖  
      

         
 ‖         ‖

 
  

         
 ∫ ‖         ‖   

 

 

 

(5.15) 

In the same way we obtain [2]:   

‖       ‖  
      

         
  ‖         ‖

 
  

         
  ∫ ‖         ‖   

 

 

 

(5.16) 

To understand the concentration of a chemical substance and concentration of amoebae 

we shall then state the following theorem [2]: 

Theorem 5.2 [2]: 

Because the concentration of a chemical substance and concentration of amoebae are 

taking place in a confined medium, so, the equation (5.3) has a coupled-solution.      

 

Proof [2]: 

Both b(x, y) and a(x,t) are bounded, moreover we have proved that both kernels satisfy 

the Lipschiz condition, so following the results obtained in equations (5.15) and (5.16).  
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Using the frequent technique, we find the following relation [2]: 

‖       ‖  ‖      ‖{2
      

         
 3

 

 {
  

         
  }}  

 

‖       ‖  ‖      ‖{2
      

         
  3

 

 {
  

         
   }}  

(5.17) 

So, the above solutions are continuous and they exist. However, to show that the above 

is a solution of equation (5.3) let us consider [2]:  

{
                       

                          

Thus, we report that: 

                                                                                                                                           

 
      

         
  (             )

 
  

         
∫ {  (             )}   

 

 

 

 

It follows from the above that [2]: 

       
      

         
  (             )  

  

         
∫              

 

 

 
 

         
      

         
                                                                                                       

  
  

         
∫ ,  (             )             -    
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Nevertheless, applying the norm on both sides together with the Lipschitz condition, we 

find [2]:  

‖       
      

         
                

 
  

         
∫              

 

 

‖ 

 ‖       ‖  2
      

         
  

  

         
  3 ‖       ‖  

 

 

(5.20) 

In the same way, we conclude that [2]: 

‖       
      

         
                

 
  

         
∫              

 

 

‖ 

 

 ‖       ‖  2
      

         
   

  

         
   3 ‖       ‖  

(5.21) 

When n                            sides of equation (5.20) and (5.21), the right 

hand sides of both equations tend to zero, namely [2]: 

       
      

         
                 

  

         
∫               

 

 

 

       
      

         
                

 
  

         
∫               

 

 

 

  (5.22) 

This completes this proof.  
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5.1.2 Uniqueness of the Coupled Solutions  

Below, we explained that the coupled – solutions presented in the above subsection are 

unique. To achieve this, we suppose that we can obtain another coupled-solutions for 

system (5.3) let   (x,t),   (x,t) [2]: 

Then, we have [2]: 

                        
      

         
                       

          
    

         
∫ {  (                  )}

 

 

   

  (5.23) 

and 

‖              ‖

 
      

         
 ‖                    ‖ 

 
  

         
∫ {‖  (                  )‖}   

 

 

 

(5.24) 

Making use of the Lipschitz conditions of the kernel, together with the fact that the 

solutions are bounded, we find that [2]:  

‖              ‖  
      

         
   {

  

         
      }

 

  
            (5.25) 

 

This is true for any n so [2]:  

      =  (x,t). 

Using the same method, we conclude  

      =  (x,t). 

In this way the uniqueness of the coupled-solution of system (5.3) was completed. 
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5.2. Derivation of Approximate Coupled-Solutions 

Because the system is nonlinear and it may be difficult to get the exact solution. In this 

subsection, we offer the derivation of a special solution by employing an iterative 

technique [2]. The technique involves coupling the Laplace transform and it’s inverse. 

Before presenting the methodology of the technique, we will first present the connection 

between the Laplace transform and Caputo-Fabrizio derivative with fractional order [2]. 

The Laplace transform of the Caputo-Fabrizio fractional order derivative is given as 

[19]:  

 (   
 

 
  (    ))  

  (    )      

        
  

(5.26) 

Now, by applying the above operator on both sides of the system (5.3) we find [2]: 

{
 
 

 
 
  (      )        

        
  2 

        

   
 

 

  
.      

  (      )

  
/3  

  (      )        

        
  2 

        

   
                3  

 

 

(5.27) 

We transform the above into [2]: 

{
  
 

  
          

      

 
 
(        )

 
 2 

        

   
 

 

  
.      

  (      )

  
/3  

                                                                                                                                                         

 (      )  
      

 
 
(        )

 
 2 

        

   
                3  

 

 

 

Now, we applying the inverse Laplace on both sides and we report [2]: 

a(x ,t)=a(x,0)+

{
  
 

  
    2

(        )

 
 , 

        

   
 

 

  
(      

  (      )

  
)-3  

              

   2
(        )

 
 , 

        

   
                -3  

 

 

 

(5.29) 
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We assume the following iterative formula [2]: 

    (x,t)=  (x,t)+

{
  
 

  
    2

(        )

 
 , 

         

   
 

 

  
(       

  (       )

  
)-3  

                                                                                             

   2
(        )

 
 , 

         

   
                  -3

 

 

 

 

with the first component [2]: 

{
                              

                            
 

The coupled solution is thus provided as [19]: 

{

          
   

        

          
   

         

(5.31) 

5.3 Fractional Falling Body Problem 

Consider a mass m falling due to gravity. The net force acting on the body is equal to the 

rate of change of the momentum of that body. For constant mass, by applying the 

classical Newton second law, we conclude [27] 

               

where   is the gravitational constant, and the air resistance is proportional to the velocity 

with proportionality constant k. If the air resistance is negligible, then       and the 

equation simplifies to [27]: 

         

If we replace   =    by    we have the following fractional falling body equation [27]: 

          - 
 

 
        

For an initial velocity         then, according to proposition 4.2, it has a unique 

solution [27]. 
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5.4. Systems of Nonlinear Time – Fractional Differential Equations   

Below we examine the existence of solutions for two coupled systems of nonlinear time-

fractional differential equations and inclusions within Caputo-Fabrizio time-fractional 

derivative. First, we discuss the coupled system of the time-fractional differential 

equations, namely [3] 

{

   
             (                 ) 

   
 
            (                 )  

 

            

such that [3]: 

u(0,0)=0,v(0,0)=0,                                                                                                       (5.33) 

where 0                 [   ]  [   ]  the mappings      :[0,1]  

[   ]  R R R are continuous function. In addition, we discuss the existence of 

solutions for the coupled system of nonlinear time-fractional differential inclusions [3]: 

{

   
         

     (                 ) 

   
 
        

     (                 ) 
 

 

 

       

such that 

u(0,0)=0,v(0,0)=0,                                                                                                      (5.35) 

where   ,   : [0,1]  [   ]  R R P(R) are some multivalued maps. We say that F: 

[0,1]  [   ]  R R    is a Caratheodory multifunction whenever (x ,t)   

F(x,t,  ,  ) is measurable for all     R and  (  ,  )  F(x,t,  ,  ) is upper semi-

continuous (u.s.c) for almost all (x ,t)   [0,1]  [   ] and   ,    X. A Carath  odory 

multifunction F: [0,1]  [   ]  R R   is said 

to be an   -Caratheodory whenever for each    there exists       [   ]   

[   ]   )such that ‖F(x ,t,  ,  ) ‖ =          [   ]  [   ] {|s|:s  F(x ,t ,  ,  )}  
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       for all |        and for almost all (x ,t)   [0,1]  [   ]. The set of selection of 

   at    is defined by [3]: 

   (  ) = {      [   ]   [   ]  )  (x ,t)   F(x,t,  (x ,t),  
 (x ,t)) for almost all (x 

,t)  [0,1]  [   ]} for all    ,  
    ([   ]   [   ]) for i=1,2. The sets     (  ) are 

nonempty for all     ([0,1]  [   ]) whenever dim K    The graph of the 

multifunction F:X   is defined by the set  (F) ={(x ,y)   X Y :y   F(x)}.We say that 

the graph  (F) of F:X    (Y)is a closed subset of X Y whenever for each sequences 

{       in X and {       in Y with       ,       and     F(  ) for all n, we 

have    F(  )[3]. 

Lemma 5.1.[3] Suppose that     
  [   ]  [   ]   and 0      The function    

  ([0,1]  [   ])is a solution for the time –fractional integral equation: 

       
      

         
.              

  

         
∫       

 

 

/    
(5.36) 

 

if and only if     is an unique solution of the time-fractional differential equation. 

{

   
                                                       [   ]  [   ]

                                                                                                      
 

 

       

Proof. [3] A solution of (5.37) is denoted by    . As a result (    
          

           

and   (0,0) =0. By integrating both sides we get [3]: 

          
      

         
.              

  

         
∫       

 

 

/    

This show that     represents the solution of (5.42). If      and      are two distinct 

solutions [3]: 

of (5.36), the   
          

      
          

  =   
 [       ]     

  =0, and(    

             By the property of the Caputo-Fabrizio time – fractional derivative 
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in[27], we get    =   . Hence,     is an unique solution of(5.37). Now, suppose that     

is a solution of (5.36). Thus, we conclude that  

          
      

         
.              

  

         
∫       

 

 

/    

By using the equation below [3]: 

       
      

         
             

  

         
∫                 

 

 

 

where 0     and        [   ]  [   ] [27] one can see that this function represents 

a solution of (5.37) [3].Note that,            

Now, we consider this equation, namely [3]: 

      
      

         
∫    * 

 

   
+

 

 

  

  
   

with equation of the fractional integral of order  . For each       [   ]  [   ] , 

define the operators   ,  : X X, by: 

            
      

         
  (                 )

 
      

         
  (                 )

 
      

         
∫   (                 )   

 

 

 

   (5.38)  

                 
      

         
  (                 )

 
  

         
  (                 ) 

                           
  

         
∫   (                 )   

 

 

 

   (5.39) 
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and put [3]: 

   
    

         
           

    

         
                                                                 

Theorem 5.3 [3] 

Suppose that       :[0, 1]  [   ]  X X X are the continuous mappings in the system 

(5.32)-(5.33) and there exist positive constants   and                 (x ,t ,  ,  )  

   and    (x ,t ,  ,  )     for all (x ,t)   [0,1]  [   ]  and   ,    X. Thus, (5.32) 

and (5.33) has at least one solution. 

Proof [3]: 

Let us consider the operators   ,    : X  X defined by (5.38)-(5.39).Now, we define the 

operator [3]: 

T: X X X X by T(u ,v)(x ,t)= ((     )(x ,t),(     ) (x ,t) for all  (x ,t)   [0,1]  

[   ].note that T continuous because the mappings    and    are continuous. We show 

that the operator T maps bounded sets into the bounded subsets of X ×X. Let    be a 

bounded subset of X ×X,(u ,v)    and (x ,t)   [0,1]  [   ]  Then, we conclude that [3]: 

            

 ||

      

         
  (                 )  

      

         
  (                 )  

  

         
∫   

 

 

(                  )  
  

         
∫   (                )  

 

 

|| 

 
      

         
|  (                 )|  

      

         
             

 
      

         
 

|  (                 )|     2
      

         
 

      

         
 

  

         
 3 

   2
      

         
 

  

         
3    {

    

         
}        
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And so ‖      )(x ,t)‖ x        . Also we have [3]: 

            

 |
|

      

         
  (                 )  

      

         
  (                 )  

  

         
∫   

 

 

(                  )  
  

         
∫   (                )  

 

 

|
| 

 
      

         
|  (                 )|  

      

         
              

      

         
 

|  (                 )|     2
      

         
 

      

         
 

  

         
 3 

   2
      

         
 

  

         
3    {

    

         
}         

Therefore, we conclude ‖(     )(x ,t)‖ x     [ ]. Thus ‖T(u,v)(x,t)      

    +    .This shows that T maps bounded sets into the bounded sets of X×X. Now, 

we show that T is equi-continuous Let (x,  ), (x,  )   [0,1]  [   ]with      .Then, 

we have [3]: 

                           

|
      

         
  (                    )  

      

         
  (                 )

 
  

         
∫   (                 )  

  

 

 
      

         
  (                    )

 
      

         
  (                 )

 
      

         
∫   (                 )  

  

 

| 

 
      

         
  (            )    (                    ) | 

  

         
∫  

  

  

| 
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  (                 ) |  

 
  

         
  (            )    (                    )| 

 
    

         
         

This implies that |      )(x,  ) -       )(x,  )|  0, whenever (x,  )  (x,   .By utilizing 

the Arzela-Ascoli theorem,     is completely continuous. Similarly, we have [3]: 

                           

|
      

         
  (                    )  

      

         
  (                 )

 
  

         
∫   (                 )  

  

 

 
      

         
   (                    )

 
      

         
  (                 )

 
      

         
∫    (                 )  

  

 

| 

 
      

         
  (            )    (                    ) | 

  

         
∫  

  

  

| 

  (                 ) |  

 
  

         
  (            )    (                    )| 

 
    

         
         

Again, by utilizing the Arzela-Ascoli theorem we observe that    is completely 

continuous [3]. Therefore, when get ‖T(u ,v)(x,  )- T(u ,v)(x,  )‖      whenever (x 

,    tends to (x ,  ). Thus, T is completely continuous. We prove that [3] 
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 ={(u,v)    :(u,v)=λT(u,v) for some λ [0,1]} is bounded. Let (u ,v) be an arbitrary 

element of   choose λ [0,1] such that (u ,v)= λ T( u ,v). Hence v(x ,t)= λ(  v)(x,t) and 

u(x,t)= λ(  u)(x ,t)for all (x ,t)   [0,1]  [0,1]. Since [3]: 

 

 
|v(x ,t)=| (  v)(x,t)|      , we get |v(x, t) |        and so ‖v(x,t)‖          

Similarly, we can show that ‖u(x ,t)‖        .thus ‖(u ,v)‖     [         .] 

and so   is a bounded set. Now, by using theorem (1.1) in [3],we get that T has affixed 

point which is a solution for the coupled system of the time-fractional differential 

equations. 

Then, we present the existence of solution for the coupled system of time-fractional 

differential inclusions [3]: 

{
 
 

 
    

             (                 ) 

   
 
            (                 ) 

 

with the initial value conditions u(0,0)=0, and v(0,0)=0, where    ,  

  : [0, 1]  [   ]  R R P(R), are some multivalued maps [3]: 

Definition.5.1. [3] We say that (  ,  )   [   ]  [   ], X)    [   ]  [   ], X),is a 

solution for the system of the time-fractional differential inclusions whenever satisfies 

the initial value conditions and there exists (           [   ]  [   ]     [   ]  

[   ] , such that   (x ,t)    (x ,t ,u(x ,t),v(x ,t)) for almost all (x ,t)  [   ]  [   ] and 

i=1,2 and also [3]: 

                  
      

         
  (                 )

 
      

         
  (                 ) 

 
  

         
∫  (          )   
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for all       [   ]  [   ]            

Theorem 5.4 [3]:  

Let   ,   [   ]   [   ]            (R)are     Caratheodory multi- functions. 

Suppose that there exist a non-decreasing bounded continuous map  :[0,   (0,  ) 

and a continuous function P:[0,1]  [   ]  (0,  )such that ‖  (x,t,  (x,t),  
 (x,t))‖  

       (‖  ‖)for all (x ,t) [   ]  [   ]      
    for i=1,2. Then, (5.34) and (5.35) 

possess at least one solution [3]: 

Proof [3]: Define the operator N:X X     by N(  ,  )=(                    , 

where          ={    X X: there exists          such that   (x ,t)=   (x ,t) for all 

(x ,t)  [   ]  [   ]   

         ={    X X: there exists          such that   (x,t)=   (x ,t) for all (x 

,t)  [   ]  [   ]   

        
      

         
        

      

         
       

 
  

         
∫           

 

 

 

and [3]: 

        
      

         
        

      

         
        

  

         
∫           

 

 

 

By Lemma 5.1, it is clear that each fixed point of the operator N is a solution for the 

system of time-fractional differential inclusions (5.34).First, we proved that the 

multifunction N is convex- valued. Let   ,  )   X X, (     ),(  
    

 
)   N   ,  ). 

Choose       
             such that [3]: 

        
      

         
        

      

         
       

 
  

         
∫           
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∫            

 

 

 

For almost all (x ,t)  [   ]  [   ] and i=1,2.Let  0     be given. Then, we have 

[   +(1-     
 ]      

      

         
[    (x,t)+(1- )   

      ]  
      

         
 [    (0,0)+(1- 

 )   
      ]+

  

         
∫ [                    

      
 

 
]  , 

for i=1,2. Since the operator    has convex values,         is a convex set and [   +(1-

     
 ]        ,  )  [3] for i=1,2.This implies that the operator N has convex values. 

Now, we prove that N maps bounded sets of X into bounded sets. Let 

r  ,  ={   ,  )      :‖   ,  ) ‖  } be a bounded of X x X,(  ,  )     ,  )  and 

   ,  )     .Then, there exists     ,  )          x        such that [3]: 

        
      

         
        

      

         
       

 
  

         
∫           

 

 

 

and 

        
      

         
        

      

         
        

  

         
∫           

 

 

 

for almost all (x ,t)  [0,1]x[0,1]. If ‖p‖  =          [   ] [   ]|p(x ,t)|, then we obtain [3]: 

          |
      

         
        

  

         
       

 
      

         
∫          

 

 

| 

 
      

         
          

      

         
          

      

         
∫            
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         ‖  ‖ 2
      

         
 

      

         
 

  

         
 3  

 ‖ ‖   ‖  ‖ 2
      

         
 

  

         
3  

 ‖ ‖   ‖  ‖ {
    

         
}  ‖ ‖   ‖  ‖     

where the constant   is defined by (5.40). This implies that ‖  ‖ ‖ ‖  ψ(‖  ‖)   

.Similarly, we get ‖  ‖ ‖ ‖  ψ(‖  ‖)  , where the constant    is defined by (5.40). 

Thus,‖     ‖ ‖ ‖  ψ(‖       ‖(   +  ). Now, we prove that N maps bounded sets 

into equi- continuous subsets of X   . Let            and [3]: 

(x,  ),(x,  )  [0,1]x[0,1], with       . Then, we have [3]: 

                     

|
      

         
         

      

         
       

 
  

         
∫           

      

         
        

 

 

 
      

         
        

  

         
∫          

 

 

| 

 
      

         
                    

  

         
∫  

  

  

            

 
      

         
                    

  ‖ ‖   ‖  ‖ 

         
         

By using a similar way, we obtain [3]: 

                   

 
      

         
                    

  ‖ ‖   ‖  ‖ 
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Hence,|  (x,  )-   (x,  )|  , as (x,  )  (x,  ). By  utilizing the Arzela-Ascoli theorem 

we get that N is completely continuous. Here, we prove that N is upper semi-continuous. 

By using Lemma 1.2, N is upper semi-continuous whenever it has a closed graph. Since 

N is completely continuous, we must show that N has  a closed graph. Let {   
    

   

be a sequence in X   with    
    

      
    

   and    
    

       
    

   with 

   
    

       
    

  . We show that (  
    

 )       
    

  .For each 

   
    

        
    

  , we can choose    
    

            x         such that [3]: 

  
       

      

         
  
       

      

         
  
      

 
      

         
∫   

         
 

 

 

and 

  
       

      

         
  
       

      

         
  
      

 
  

         
∫    

        
 

 

 

 for all [3]: 

(x ,t)   [0,1]x[0,1]. It is sufficient to show that exists    
    

            x         such 

that [3] 

  
       

      

         
  
       

      

         
  
      

 
      

         
∫   

         
 

 

 

and  

  
       

      

         
  
       

      

         
  
      

 
  

         
∫   
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for all (x ,t)   [0,1]x[0,1]. Now, we consider the linear operators 

  ,  :  ([0,1]x[0,1],X)  C([0,1]x[0,1],X) defined by [3]: 

           
      

         
       

      

         
      

 
      

         
∫   

         
 

 

 

and 

           
      

         
       

      

         
      

 
  

         
∫   

         
 

 

 

Note that, 

‖  
         

      ‖   

‖
      

         
[  

         
      ]  

      

         
[  

         
      ]

 
  

         
∫ [  

         
      ]

 

 

‖         

‖  
         

      ‖   

‖
      

         
[  

         
      ]  

      

         
[  

         
      ]

 
      

         
∫ [  

         
      ]

 

 

‖      

By using the Lemma (1.3)[3 ], we get       is a closed graph operator for i=1,2. Also, 

we get   
 

(x ,t)       
    

  
 ) for all n. Since   

    
 , we get [3]: 
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∫   

         
 

 

 

and 

  
       

      

         
  
       

      

         
  
      

 
  

         
∫   

         
 

 

 

for some   
       

    
  

 ) (i=1,2). Thus, N has a closed graph. Now, we prove that 

there is an open set U  X with (     )∉ N(     ) for all λ   (0,1) and (     )   .Let 

λ   (0,1) and (     ) λN(     ).Then, there exists      ([0,1] [   ],R) with 

          
(i=1,2) such that [3]: 

        
      

         
        

      

         
       

 
      

         
∫           

 

 

 

and 

        
      

         
        

      

         
        

  

         
∫           

 

 

 

for all (x ,t)   [0,1] [   ]. By using the above computed values, we obtain ‖  ‖ 

‖ ‖    ‖  ‖ ∑   
 
    for i=1,2. This follows that 

‖  ‖

‖ ‖   ‖  ‖ ∑   
 
   

   

for i=1,2. Choose    , with ‖  ‖     in such a way that  [3]: 

  

‖ ‖   ‖  ‖ ∑   
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for i=1,2.put U={(           ‖      ‖            }. We note that the operator 

N: ̅       is upper semi- continuous and completely continuous. Also, we showed 

that there is no (         U such that                  for some   (0,1).Hence, 

with the help of theorem (1.4) [3], we get that N has a fixed point          ̅ which 

being a solution for the time-fractional differential inclusion (5.34) and  (5.35). 
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CHAPTER 6 

 

CONCLUSION  

 

           The fractional calculus is a field of mathematics that studies the integration and 

differentiation of functions of any order. It turned out that this calculus is a very strong 

tool that can be used when scientists want to mathematically model physical phenomena 

happening in our real world. In this master thesis, I reviewed the properties and 

applications of the fractional derivative introduced by Caputo and Fabrizio in 2015. 

In order to understand the properties of the Caputo-Fabrizio derivative I presented there 

very recent applications of it. I reviewed a chemical model, a fractional falling body 

problem and systems of nonlinear time – fractional differential equations. From the first 

application, I saw the abilities of Caputo-Fabrizio to explain better the effect of memory 

and also the activity of the bacteria within different layers of the medium by which the 

global activity is taking place. From the second application, I reviewed that we can 

apply successfully the Caputo-Fabrizio in physics. From third application, I concluded 

that we can use the Caputo-Fabrizio derivative in solving more efficiently the systems of 

nonlinear time – fractional differential equations.  

I hope that the content of my thesis will motivate the researchers to start vigorously 

studying the Caputo-Fabrizio derivative together with its huge potential applications in 

different fields of science and engineering. 
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