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INVESTIGATION OF COVID-19 MATHEMATICAL MODEL UNDER

FRACTIONAL ORDER DERIVATIVE
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Meshal Shutaywi2 and Dumitru Baleanu3,4

Abstract. The given article is devoted to presentation of some results regarding existence and unique-
ness of solution to a fractional order model that addressing the effect of immigration on the transmission
dynamics of a population model. Further, in view of this investigation the effect of immigration have
been checked on transmission of recent pandemic known as Corona virus COVID-19. The concerned
results have been established by using fixed point theory approach. After investigation qualitative
analysis of the considered model, by applying Laplace transform along with decomposition method,
we have calculated some series type results for the concerned model. The unknown quantities of each
equation have been decomposed into small quantities to calculate each small quantity very easily for
the series solution by adding first few terms of the said quantities. Approximate results of some testing
data with different cases are given to illustrate the results.
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1. Introduction

Recently the pandemic known as COVID-19 largely affected about two third of the world population by some
aspect. The origin and time of this disease is the Wuhan city of China and December 2019 respectively. Up to
now about forty hundred thousand people have got the infection of this pandemic and nearly fourteen hundred
thousand of the people have been died [44]. The interesting point is that much more of the human population
have been recovered from the said disease. Every country and their government are trying to make different
polices for controlling and reducing this outbreak. One of the main cause of this disease is the immigration and
interactions of infected human to the territory or area of uninfected population. For this precautions and cares
habits should be followed by each country on the globe. Since the beginning of the said pandemic up to now
various steps like banned on air traffic, immigration, non-quarrantina and social gathering in different areas,
haven been taken.
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So for different countries of the globe have announced lock down in various activities or reduce insufficient
traveling and crowded bossiness activities [17]. Peoples are afraid of this because such like pandemic in the
past have become the cause of death for more than hundred thousand of humans. For each and every terrible
outbreak different scientists and researchers trying to discover their vaccine from the very beginning and may
be applied in the future. Understanding the behavior of the pandemic need statistical data and some concepts
of mathematical formulation. Such concept of mathematical modeling was applied for the first time in 1927.
By applying the statistical data on different diseases will lead us to the construction of mathematical formula.
The said formula will be than used for modeling different real world phenomenon. So for, various infection have
been molded by single mathematical formula as can be study in [5, 7, 13, 26].

Different scholars have been analyzed the recent pandemic cased by corona virus by some methods of analysis
as can be seen in [6, 9, 18, 22, 42]. While some others formulated it by mathematical models which predicts the
future information about the said disease. The past, present and future information of the said pandemic can
helps the policy makers to construct some well strategies for controlling it. Because of importance of modeling
the aforesaid disease have been discussed in various research articles [15]. Constructing a mathematical models
involve some parameters which are based on some assumption like immigration is one of the most important
cause of spreading the disease will be include as a term in constructing models for it. As COVID-19 can
spread easily in social gathering, therefore some scholars have analyzed the dynamics of such type of disease for
transmission due to immigration as given follows


dx
dt = x(t)a− y(t)x(t)b+ x(t)e,
dy
dt = (−d− e+ c)y(t) + x(t)by(t),

x(0) = x0, y(0) = y0.

(1.1)

Such type of mathematical models that we used in this paper is inspired from the classic Lotka-Volterra model
[14, 16] for analyzing predator-prey dynamics. The classic model has been suitably modified to build the healthy-
infected individual population dynamics model. The healthy individual population at any time t is given by
x(t). The infected individual population is represented by y(t) at any time t. The infection rate is given by
b = (1 − protection rate). The immigration rate of healthy ones is given by a. Immigration rate of infected
population is given by c. The death rate is d and the treatment rate is given by e. This model is just an
indication to see what happen in a community, if immigration of individuals does not control in it.

Keeping in mind the aforementioned points, we have to study the modified model given in (1.1) by involving
birth rate β and natural death rate δ for non-integer order of derivative with 0 < α ≤ 1 is given by

cdαx(t)
dtα = β + x(t)a− y(t)bx(t) + (e− δ)x(t),

cdαy(t)
dtα = y(t)bx(t) + (c− d− e− δ)y(t),

x(0) = x0, y(0) = y0,

(1.2)

where y0 and x0 are the starting values for healthy and infected individuals density in percent. Further the total
population X = x + y holds. Also a, b, c, d, e, δ, β > 0. We investigating the equation (1.2) in fractional order
sense because it gives much better result than integer order. Due to this the modern calculus has gained more
attention as compare to classical calculus. Fractional calculus in which fractional global operators can model
physical and biological problems relating to real world phenomena with very well degree of freedom. Sa for a
large numbers of books and research articles have been touched by the scholars of fractional calculus. Various
phenomena like qualitative and numerical analysis of non-integer order differential and integral equations have
been presented in different books and monographs [8, 14, 21, 23, 28, 30, 31].

Modern calculus generalized the classical calculus of integer order differentiation and integration to rational
or complex numbers, describing the situation between two integers as in [29, 32, 33, 40]. So for, many real world
problems have been modeled by integer order differential equation, like population model,logistic equations,
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HIV, SEIR, HIV, Cancer model, Predator-prey model, etc. Further the scientists converted these equations to
arbitrary order of differential equations which give much more real solution [4, 11, 19, 25, 34–37, 41, 45]. They
have analyzed these equations for exitence and uniqueness by applying some of the properties and theorems of
fixed point theory which is given in [1, 2, 10, 24]. Some scholars apply Banach contraction theorem, topological
degree theory and Leray-Shaudar theorem [43]. The FDEs have also interesting for obtaining analytical as
well as numerical solution for different scholars and researchers. To find exact solution, it is very difficult task,
therefore, most of the scholars investigating FDEs for optimize and approximate solution applying the pre-
existing techniques. For numerical analysis they applied Taylor’s series method, Modified Euler techniques,
Adams Bash-Forth techniques, predictor-corrector method and different integral transforms along with wave-
lets methods as in [3, 12, 14, 19, 27, 38, 39]. Now we will investigate our considered problem for qualitative
and some numerical analysis using the concepts of fixed point theory and Laplace transform along with some
decomposition techniques. We will also investigate the effect of immigration on the pandemic transmission in
the society using different fractional or arbitrary orders for future policy.

2. Basics of fractional calculus

In this section we will present some basic work from modern calculus [14, 21, 45].

Definition 2.1. Let we have any operator say x(t), then we may define the arbitrary order integration w.r.t t
as

Iαt x(t) =
1

Γ(α)

∫ t

0

(t− η)α−1dζ, θ > 0,

such that integral on right side converges.

Definition 2.2. For any mapping x(t), one may define the non-integer order derivative in Caputo sense w.r.t
t as

cdαx(t)

dtα
=

1

Γ(n− α)

∫ t

0

(t− ζ)n−α−1 d
n

dζn
[x(ζ)]dζ, α > 0,

with right side is point wise continuous on R+ and n = [α] + 1. If α ∈ (0, 1], then we have

cdαx(t)

dtα
=

1

Γ(1− α)

∫ t

0

(t− ζ)−α
d

dζ
[x(ζ)]dζ.

Lemma 2.3. [14] The solution of

cdαx(t)

dtα
= z(t), 0 < α ≤ 1

is

x(t) = c0 +
1

Γ(1− α)

∫ t

0

(t− ζ)α−1dζ.

Lemma 2.4. [14] The Laplace transform of
cdαx(t)

dtα for 0 < α ≤ 1 is provided by

L

[
cdαx(t)

dtα

]
= sαL [x(t)]− sα−1x(0)].
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Lemma 2.5. “The boundedness and feasibility of the solution region for the given model is

S =

{
(x, y) ∈ R2

+ : 0 ≤ X(t) ≤ β

δ − (a+ c+ e)

}
, where δ > a+ e+ c”.

Proof. For the proof we have to add both the equation of (1.2), as

dX

dt
= (e+ a)x(t) + β − δ(y(t) + x(t)) + y(t)c− (e+ d)y(t)

≤ β + (e+ a)X(t)− δX(t) +X(t)c

= β − (δ − (e+ a+ c))X(t)

dX

dt
+ (δ − (e+ a+ c))X(t) ≤ β. (2.1)

Taking integration of (2.1), as follows

X(t) ≤ β

δ − (a+ e+ c)
+ C exp(−(δ − (a+ e+ c))t), (2.2)

where C is constant of integration. From (2.2), we see that as t→∞, then

X(t) ≤ β

δ − (a+ e+ c)
.

So proved.

3. Qualitative analysis

In this section we will check our considered model of fractional order for qualitative properties. These types
of properties can be easily handled by fixed point theory. We will apply some basic theorems like Banach
contraction and Schauder theorems to receives our required result as

cdαx(t)

dtα
= Φ1(x(t), y(t), t),

cdαy(t)

dtα
= Φ2(x(t), y(t), t), (3.1)

x(0) = x0, y(0) = y0, α ∈ (0, 1].

Upon integration for 0 < α ≤ 1 to equation (3.1), we get the given system as:

x(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1Φ1(s, x(s), y(s))ds,

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1Φ2(s, x(s), y(s))ds. (3.2)

Now we will take ∞ > T > t > 0 and define Banach space as E1 = C([0, T ] × R2+, R+), then E = E1 × E2

will also be the Banach space having the norm ‖(x, y)‖ = maxt∈[0,T ] |x(t)| + maxt∈[0,T ] |y(t)|. Expressing the
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system (3.2) as

Z(t) = Z0(t) +
1

Γ(α)

∫ t

0

(t− ζ)α−1φ(ζ,Z(ζ))dζ, (3.3)

where “

Z(t) =

{
y(t)

x(t),
Z0(t) =

{
y0(t)

x0(t),
φ(t,Z(t)) =

{
Φ1(x(t), y(t), t)

Φ2(x(t), y(t), t).
(3.4)

” To derive the proof for qualitative analysis, we take the conditions of growth on non-linear vector operator
φ : [0, T ]×R2

+ → R+ as:

(A1) ∃ a constants Lφ > 0 ; ∀ Z(t), ¯Z(t) ∈ R×R;

|φ(t,Z(t))− φ(t, ¯Z(t))| ≤ Lφ|Z(t)− ¯Z(t)|.

(A2) ∃ a constants Cφ > 0 & Mφ > 0 ;

|φ(t,Z(t))| ≤ Cφ|Z|+MΦ.

Theorem 3.1. “Under the continuity of φ together with assumption (A2), system (3.1) has at least one
solution”.

Proof. With the help of “Schauder fixed point theorem”, we will derive our result. Let us take a bounded subset
B of E as

B = {Z ∈ E : ‖Z‖ ≤ R, R > 0}.

By this take a function A : B → B and applying (3.3) as

A(Z) = Z0(t) +
1

Γ(α)

∫ t

0

(t− ζ)α−1φ(ζ,Z(ζ))dζ. (3.5)

At any Z ∈ B, follows

|A(Z)(t)| ≤ |Z0|+
1

Γ(α)

∫ t

0

(t− ζ)α−1|φ(ζ,Z(ζ))|dζ,

≤ |Z0|+
1

Γ(α)

∫ t

0

(t− ζα−1[Cφ|Z|+Mφ]ds,

≤ |Z0|+
Tα

Γ(α+ 1)
[Cφ‖Z‖+Mf ],

which implies that

‖A(Z)‖ ≤ |Z0|+
Tα

Γ(α+ 1)
[Cφ‖Z‖+Mf ],

≤ R. (3.6)
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From (3.6), one has implies that Z ∈ B. Thus A(B) ⊂ B. From this we say that operator A is closed and
bounded. Next we go ahead to prove the result for completely continuous operator as:

Let t2 > t1 lies in [0, T ], and take

|A(Z)(t2)−A(Z)(t1)| =
∣∣∣∣ 1

Γ(α)

∫ t2

0

(t2 − ζ)α−1,

φ(s,Z(ζ))dζ − 1

Γ(α)

∫ t1

0

(t1 − ζ)α−1φ(ζ,Z(ζ))dζ

∣∣∣∣,
≤ 1

Γ(α)

[ ∫ t2

0

(t2 − ζ)α−1 −
∫ t1

0

(t1 − ζ)α−1

]
(CφR+MΦ)dζ,

≤ (CφR+Mφ)

Γ(α+ 1)
[tα2 − tα1 ]. (3.7)

Now from (3.7), on can observe that ast1 approaches to t2, Then right side also vanishes. So one concludes that
|A(Z)(t2)−A(Z)(t1)| tends to 0, as t1tends to t2.

So A is “equi- continuous operator”. By using “Arzelá-Ascoli theorem”, the operator A is completely con-
tinuous operator and also uniformly bounded proved already. By “Schauder’s fixed point theorem” model (1.2)
one or more than one solution.

Further we proceeds for uniqueness as:

Theorem 3.2. “Using (A1), system has unique or one solution if Tα

Γ(α+1)LΦ < 1”.

Proof. Take A : E → E, consider Z and Z̄ ∈ E as

‖A(Z)−A(Z̄)‖ = max
t∈[0,T ]

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− ζ)α−1Φ(ζ,Z(ζ))dζ − 1

Γ(α)

∫ t

0

(t− ζ)α−1Φ(ζ, Z̄(ζ))dζ

∣∣∣∣,
≤ Tα

Γ(α+ 1)
LΦ‖Z− Z̄‖. (3.8)

From (3.8), follows

‖A(Z)−A(Z̄)‖ ≤ 2Tα

Γ(α+ 1)
LΦ‖Z− Z̄‖. (3.9)

Hence F is contraction. By “Banach contraction theorem” system has one solution.

4. General series solution of the consider system (1.2)

To produce semi-analytical solution to the considered model, we first generate a general algorithm by using
system (3.1). We apply, Laplace transform to (3.1) on both sides as

L

[
cdαx(t)

dtα

]
= L

[
φ1(x(t), y(t), t)

]
,

L

[
cdαy(t)

dtα

]
= L

[
φ2(x(t), y(t), t)

]
, (4.1)
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on using initial condition, follows

sαL

[
x(t)

]
= sα−1x0 + L

[
φ1(x(t), y(t), t)

]
,

sαL

[
y(t)

]
= sα−1y0 + L

[
φ2(x(t), y(t), t)

]
, (4.2)

or

L

[
x(t)

]
=

1

s
x0 +

1

sα
L

[
φ1(x(t), y(t), t)

]
,

L

[
y(t)

]
=

1

s
y0 +

1

sα
L

[
φ2(x(t), y(t), t)

]
. (4.3)

Let consider the needed solution as

x(t) =

∞∑
n=0

xn(t), y(t) =

∞∑
n=0

yn(t)

and the term due nonlinearity as xy may be expressed as xy =
∑∞
n=0 xn(t)

∑∞
n=0 yn(t), then (4.3) becomes

L

[ ∞∑
n=0

xn(t)

]
=

1

s
x0 +

1

sα
L

[
φ1(t,

∞∑
n=0

xn(t),

∞∑
n=0

yn(t))

]
,

L

[ ∞∑
n=0

yn(t)

]
=

1

s
y0 +

1

sα
L

[
φ2(t,

∞∑
n=0

xn(t),

∞∑
n=0

yn(t))

]
. (4.4)

On comparison, we have

L

[
x0(t)

]
=

1

s
x0,

L

[
y0(t)

]
=

1

s
y0,

L

[
x1(t)

]
=

1

sα
L

[
φ1(x0(t), y0(t), t)

]
,

L

[
y1(t)

]
=

1

sα
L

[
φ2(x0(t), y0(t), t)

]
,

L

[
x2(t)

]
=

1

sα
L

[
φ1(x1(t), y1(t), t)

]
,

L

[
y2(t)

]
=

1

sα
L

[
φ2(x1(t), y1(t), t)

]
,

...

L

[
xn+1(t)

]
=

1

sα
L

[
φ1(xn(t), yn(t), t)

]
,

L

[
yn+1(t)

]
=

1

sα
L

[
φ2(xn(t), yn(t), t)

]
.
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Evaluating inverse Laplace transform, we have

x0(t) = x0, y0(t) = y0,

x1(t) = L −1

[
1

sα
L

[
φ1(x0(t), y0(t), t)

]]
,

y1(t) = L −1

[
1

sα
L

[
φ2(x0(t), y0(t), t)

]]
,

x2(t) = L −1

[
1

sα
L

[
φ1(x1(t), y1(t), t)

]]
,

y2(t) = L −1

[
1

sα
L

[
φ2(x1(t), y1(t), t)

]]
,

...

xn+1(t) = L −1

[
1

sα
L

[
φ1(xn(t), yn(t), t)

]]
,

yn+1(t) = L −1

[
1

sα
L

[
φ2(xn(t), yn(t), t)

]]
. (4.5)

Hence the required series solution of the considered model (1.2) will be received as “

{
x(t) = x0(t) + x1(t) + x2(t) + · · · ,
y(t) = y0(t) + y1(t) + y2(t) + · · · .

(4.6)

”

5. Approximate results and discussion

To compute the Approximate results, we now take some values for parameters of (1.1) under fractional order.
Let us in community the the healthy population is at initial stage x0 and infected be y0 and taking various
values for rates we discuss certain cases as bellow:

cdαx(t)

dtα
= β + ax(t)− bx(t)y(t) + (e− δ)x(t),

cdαy(t)

dtα
= bx(t)y(t) + (c− d− e− δ)y(t), (5.1)

x(0) = x0, y(0) = y0,
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using the proposed algorithm to (5.1) as constructed in (4.5), analogously one has

x0(t) = x0, y0(t) = y0,

x1(t) =

[
β + ax0 − bx0y0 + (e− δ)x0

]
tα

Γ(α+ 1)
,

y1(t) =

[
bx0y0 + (c− d− e− δ)y0

]
tα

Γ(α+ 1)
,

x2(t) =

[
β + (a+ e− δ)x11

]
t2α

Γ(2α+ 1)
−
[
bx11y11

](
Γ(2α+ 1)

Γ2(α+ 1)

)
t3α

Γ3α+ 1
,

y2(t) =

[
bx11y11

](
Γ(2α+ 1)

Γ2(α+ 1)

)
t3α

Γ3α+ 1
+

[
(c− d− e− δ)y11

]
t2α

Γ2α+ 1
,

x3(t) = β + ax111
t3α

Γ(3α+ 1)
− ay111

Γ(2α+ 1)

Γ2(α+ 1)

t4α

Γ(4α+ 1)

− bx111y111
Γ(5α+ 1)

Γ2(α+ 1)Γ(3α+ 1)Γ(6α+ 1)
t6α − bx111y22

Γ(4α+ 1)

Γ2(2α+ 1)Γ(5α+ 1)
t5α

+ b(y111)2 Γ2(2α+ 1)

Γ4(α+ 1)Γ2(3α+ 1)
t6α + by111y22

1

Γ2(α+ 1)Γ(3α+ 1)
t5α

+ ey111
Γ(2α+ 1)

(Γ(α+ 1))2(Γ(4α+ 1))
t4α + ey22

t3α

Γ(3α+ 1)
,

y3(t) = bx111y111
Γ(5α+ 1)

Γ2(α+ 1)Γ(3α+ 1)Γ(6α+ 1)
t6α + bx111y22

Γ(4α+ 1)

Γ2(2α+ 1)Γ(5α+ 1)
t5α

− b(y111)2 Γ2(2α+ 1)

Γ4(α+ 1)Γ2(3α+ 1)
t6α − by111y22

1

Γ2(α+ 1)Γ(3α+ 1)
t5α

+ (c− d− e− δ)y(111)
Γ(2α+ 1)

Γ2(α+ 1)(Γ(4α+ 1))
t4α + (c− d− e− δ)y22

t3α

Γ(3α+ 1)

(5.2)

and so on. Further terms can be calculated in same way. The unknown values in (5.2) are given as

x11 = β + ax0 − bx0y0 + (e− δ)x0, y11 = bx0y0 + (c− d− e− δ)y0,

x111 = (a+ e− δ)x11, y111 = bx11y11, y22 = (c− d− e− δ)y11.

Case-I: First of all we present the graphical presentation for steady state solution at integer order and taking
a = 0.001, b = 0.0003, c = 0.0001, d = 0.001, e = 0.05, δ = 0.5, β = 0.0089.

In Figure 1 we plotted the steady state solution of the integer order model (1.2) against the given date.
Clearly in the presence of very small value of immigration rates a, c, the papulation of healthy class is growing
while the infection population decays. Again in Figure 2, we have presented the numerical solution for various
non-integer order up to first ten terms of the series solution using the same values a = 0.001, b = 0.0003, c =
0.0001, d = 0.001, e = 0.05, δ = 0.5, β = 0.0089. using Matlab. We see that in the presence of very small
values of immigration rate, the decline in infected papulation is fastest at small fractional order and similarly
the raise in healthy papulation is high at lower order. As the fractional order α inclines to its integer value 1,
the graph of fractional order also tends to the integer order graph.
Case-II: We simulate the results above for taking β = 0.0089, a = 0.05, b = 0.03, c = 0.05, d = 0.02, e =
0.05, δ = 0.5. Here the immigration of both infected and healthy is taken slightly small than above Case I in
Figure 3 as shown From Figure 3, we see that in the presence of slight small value of immigration rate that the
dynamics of the corresponding population has shown at various fractional order. Here the papulation dynamics
produce oscillations and the concerned oscillation is different at various arbitrary order.
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Figure 1. Graphical presentation of papulation dynamics at integer order for Model (1.2) at
the given values of parameters.

Figure 2. Graphical presentation of papulation dynamics at various fractional order for Model
(1.2) at the given values of parameters.

Case-III: Next the simulation is provided for taking β = 0.0089; a = 0.06, b = 0.0003, c = 0.06, d =
0.001, e = 0.05, δ = 0.5. Here the immigration of infected and healthy population also oscillates with maximum
amplitude . The behavior of the approximate solutions up to initial ten terms corresponding to various fractional
order has presented in Figure 4. The oscillation is very fast due to increasing in the values of immigration rates.

Remark 5.1. Clearly from (5.1), corresponding to the given values of parameters, the conditions of Theorem 3.1
and Theorem 3.2 are satisfied with LΦ = 0.05, T = 4, we see that LΦT

α

Γ(α+1) = 0.20
Γ(α+1) < 1, for all α ∈ (0, 1].

Similarly for other cases can be verified.

In the last we have provided the comparison for both quantities by two methods of laplace Adomian
decomposition and modified Euler method in Figures 5 and 6 respectively.
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Figure 3. Dynamical behaviors of population dynamics in the absence of immigration
corresponding to different fractional order.

Figure 4. Dynamical behaviors of population dynamics in the absence of immigration
corresponding to different fractional order.

6. Concluding remarks

Assigning different experimental values taken from [20] to a, b, c, d, and e, we can obtained the required
comparable result as for integer order system of (1.1). It can be observe that by increasing rate of protection
and cure and decreasing rate of the immigration, we can eventually decrease the number of infected individuals
to minimum or towards stability. By studying such dynamical system one can know easily that how to control
the populations of healthy from being infected and discourage of infected ones from immigration. This model
can be applied to the population where social gathering occur locally or globally. Further such model exist in
real world or represent real world problem as proved by using fixed point theory. While the rate of decaying
and growth has been shown thorough fractional differentiation in global ways. Hence fractional calculus can be
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Figure 5. Comparison of population dynamics in the presence of immigration corresponding
to LADM and MEM.

Figure 6. Comparison of population dynamics in the absence of immigration corresponding
to LADM and MEM.

used to comprehensively explained the model. In future if recover class is involved, then we can further extend
this model to see the immigration effect on recovered population also. The simulation shows the dynamics of
healthy and infected individuals with some prediction in the near future in fractional form. This model is just an
indication that how the aforementioned parameters are important in the transmission dynamics of the present
novel coronavirus-19 disease.
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