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A B S T R A C T

The novel Coronavirus infection disease is becoming more complex for the humans society by giving death
and infected cases throughout the world. Due to this infection, many countries of the world suffers from
great economic loss. The researchers around the world are very active to make a plan and policy for its early
eradication. The government officials have taken full action for the eradication of this virus using different
possible control strategies. It is the first priority of the researchers to develop safe vaccine against this deadly
disease to minimize the infection. Different approaches have been made in this regards for its elimination. In
this study, we formulate a mathematical epidemic model to analyze the dynamical behavior and transmission
patterns of this new pandemic. We consider the environmental viral concentration in the model to better
study the disease incidence in a community. Initially, the model is constructed with the derivative of integer-
order. The classical epidemic model is then reconstructed with the fractional order operator in the form of
Atangana–Baleanu derivative with the nonsingular and nonlocal kernel in order to analyze the dynamics of
Coronavirus infection in a better way. A well-known estimation approach is used to estimate model parameters
from the COVID-19 cases reported in Saudi Arabia from March 1 till August 20, 2020. After the procedure
of parameters estimation, we explore some basic mathematical analysis of the fractional model. The stability
results are provided for the disease free case using fractional stability concepts. Further, the uniqueness and
existence results will be shown using the Picard–Lendelof approach. Moreover, an efficient numerical scheme
has been proposed to obtain the solution of the model numerically. Finally, using the real fitted parameters,
we depict many simulation results in order to demonstrate the importance of various model parameters and
the memory index on disease dynamics and possible eradication.
Introduction

Infectious diseases are disorders caused by different organisms such
as viruses, bacteria, fungi or parasites. A number of outbreaks of
different infectious diseases have been reported across the globe taking
the lives of millions of humans each year. These outbreaks are not only
a serious issue for public health, but also having a significant impact
on the whole societies, economic interest and political systems and is
felt in both developing and developed countries across the world. The
world is facing different types of deadly infectious diseases. Although
some of these infections have been eradicated from the world or almost
wiped out still many diseases such as HIV/AIDS and TB persist with
little or even no hope of getting them under control. In addition, the
emergence of new infectious diseases is another serious threat to the
world. The novel Coronavirus infectious disease or COVID-19 is one
of the newly emerged deadly infectious disease. It was initiated in the
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mainland China during the end of 2019 and spread to the rest of the
word within no time. Many facts are still to explore about the novel
COVID-19 pandemic. Initially, the transmission of the COVID-19 infec-
tion was observed from animals to humans. The first virus transmission
among humans was observed in Guangdong a province of China on
January 20 [1,2]. New research confirmed that this virus can also be
transferred to humans through environment. As on 28 August 2020, the
Who reports show the cumulative cases confirmed with this infection
are higher than 24,021,218 with the total death cases were 821,462
and the recovered cases are more than 15,907,858 [3]. The Kingdom of
Saudi Arabia (KSA) is among those Arabian countries seriously affected
from the COVID-19 pandemic and has the highest graph of the infected
cases. The first case confirmed with COVID-19 is reported in Saudi
Arabia on 2nd of March 2020. Later on after few days on 14th of
March, the second case was detected when a companion came from
vailable online 26 April 2021
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Iran. Currently, Saudi Arabia is placed at fourteen position in the list
of high confirmed infected cases. As of 28 August, the Kingdom has
reported 311,855 confirmed COVID-19 cases, with 286,255 recoveries
and 3785 deaths.

Recently, many approaches are used for the analysis and inves-
tigations of the Coronavirus infection and its early eliminations. In
this regards, the modeling tools are gaining much attention from re-
searchers point of view. The mathematical modeling is effectively and
confidently being used to provide to help the public health decision-
making in order to set effective control measure for diseases. These
models are helpful to study the dynamical behavior and spatiotemporal
patterns of infectious disease and consequently, can be used to set effec-
tive control measures to eradicate the disease. Mathematical models are
mostly based on differential and integral operators with integer or non-
integer orders. A rich literature regarding deterministic compartmental
epidemic models have been formulated on the dynamics of effective
controlling strategies of the ongoing novel COVID-19 pandemic in
different countries and territories in the world. The importance of some
control measures on the dynamics and future prediction of COVID-19
outbreak in Pakistan has been presented in [4]. The authors in [4]
also have developed the optimal control problem using optimal control
concepts. A deterministic mathematical model incorporating the inci-
dence of infection through environmental route in Ghana is suggested
in [5]. The authors carried out the cost effective analysis and used the
confirmed COVID-19 cases in Ghana to estimate the model parameters.
A new transmission model on COVID-19 describing the dynamical
behavior of COVID-19 has been studied in [6]. Additionally, the au-
thors [6] simulated the proposed model for real parameters estimated
from infected cases in Nigeria. The effective mitigating measure for the
COVID-19 in the population of Canada have been presented in [7].

Mathematical modeling of real-world physical problems with frac-
tional derivatives gains much attention from the researchers and scien-
tists in recent days. It is due to some serious limitations of classical
integer order derivative, which can be overcome through fractional
order operators. The crossover behavior and fading memory effects
found in many physical and biological processes can be captured only
using fractional order derivatives. The model with fractional oper-
ators provides a better understanding of disease dynamics. In the
recent era, a class of fractional operators based on either singular or
nonsingular kernels were studied in literature. But, among these, the
operators which gain more interest are known as Caputo derivative
developed in [8], the Caputo–Fabrizio (CF) recently described in [9]
and the Atangana–Baleanu (AB) operator developed in the sense of
Caputo shown in [10]. These operators were effectively utilized to
express many problems in science and other field as well [11–13].
The Atangana–Baleanu derivative has a nonsingular as well as nonlocal
kernel and is the most recent and generalized fractional operator. The
application of ABC derivative can be found in almost every field of
science such as [14–17] and references therein. Recently, a number of
the epidemic transmission models describing the COVID-19 dynamics
with fractional order have been developed and studied in the literature.
The transmission of COVID-19 pandemic using a mathematical model
in ABC sense are explored in [18]. Moreover, in the study [18], the
authors have taken the Wuhan infected cases for parameter estima-
tion in order to make a realistic study. Baleanu et al. [19] analyzed
transmission procedures of COVID-19 with the help of a compartmental
epidemic model in CF sense. The application of the Caputo operator to
describe the dynamical behavior of COVID-19 through a new model
is recently studied in [20]. A realistic and novel approach based on
fractional–fractal operator is used to construct a new compartmental
model based on the dynamics of the current COVID-19 pandemic in
[21,22]. The application of well-known classical Caputo-type operator
coupled with real data to studying the transmission dynamics of novel
COVID-19 can be found in [23,24].

In the current study, a fractional epidemic model with environ-
2

mental transmission of the virus that contributes the further spread
of infection among humans population is considered. The model in
integer case was studied recently in [25]. The model is developed
by taking into consideration the environmental contributions of the
latent, infected and asymptomatic infected population. The model un-
der consideration is taken in the from of fractional order differential
operators instead of integer order. The ABC derivative is used to derive
the proposed epidemic compartmental model and obtain their results.
In the first stage, the model construction is briefly described using the
integer order differential equations. The classical COVID-19 model is
then simulated to provide a better fit to COVID-19 cases in KSA and
ultimately to estimate the updated parameters. The present paper has
been arranged in various sections as follows: The related concepts of
fractional operator and its integral has been suggested in Section ‘‘Some
basics of fractional calculus’’. The novel COVID-19 model for the real
data analysis of Saudi Arabia in integer case is presented in Section
‘‘Integer order model’’. The model in fractional case is developed in
‘‘The COVID-19 model in fractional case’’ Section, while its necessary
mathematical aspects are studied in Section ‘‘Theoretical investigations
of the fractional model’’. The Section ‘‘Numerical solution of the ABC
model’’ presents an iterative scheme of the considered model and
the simulation results along with discussion, which are performed in
Section ‘‘Simulations and discussion’’. Finally, the conclusion is given
in Section ‘‘Conclusion’’.

Some basics of fractional calculus

The related concepts regarding the fractional operators used in the
given paper are shown in the following:

Definition 1. Let 𝑦(𝑡) ∈ 𝐶𝑛, then the fractional derivative of Caputo
ype with order 𝜌 in (𝑛 − 1, 𝑛] such that 𝑛 ∈ N defined in [8] is given
y:

𝐷𝜌
𝑡 (𝑦(𝑡)) =

1
𝛤 (𝑛 − 𝜌) ∫

𝑡

0

𝑦𝑛(𝜁 )
(𝑡 − 𝜁 )𝜌+1−𝑛

𝑑𝜁. (1)

Clearly, 𝐶𝐷𝜌
𝑡 (𝑦(𝑡)) tends to 𝑦′(𝑡) when 𝜌 → 1.

efinition 2. We define the Atangana–Baleanu derivative defined in
10] and shown by the following:

BC𝐷𝜌
𝑡 𝑦(𝑡) =

𝐴𝐵(𝜌)
1 − 𝜌 ∫

𝑡

𝑎
𝑦′(𝑥)𝐸𝜌

[−𝜌(𝑡 − 𝑥)𝜌

1 − 𝜌

]

𝑑𝑥, (2)

where, 0 ≤ 𝜌 ≤ 1 and 𝑦(𝑡) ∈ 𝐶[𝑎, 𝑏]. The expression 𝐴𝐵(𝜌) in the above
ntegral equation defines the normalized function.

efinition 3. The Atangana–Baleanu derivative defined above has the
ollowing integral [10]:

BC𝐼𝜌𝑡 𝑦(𝑡) =
1 − 𝜌
𝐴𝐵(𝜌)

𝑦(𝑡) +
[ 𝜌
𝐴𝐵(𝜌)𝛤 (𝜌) ∫

𝑡

0
𝑦(𝑥)(𝑡 − 𝑥)𝜌−1

]

𝑑𝑥. (3)

Let us express the model proposed in the fractional derivative of
BC case by the following way [16]:
ABC
𝑡0

𝐷𝜌
𝑡 𝑥)(𝑡) = 𝛶 (𝑡, 𝑥), (4)

here 𝛶 ∶ 𝙳 ⊂ R𝑛 × R+ ⟶ R𝑛 and 𝜌 ∈ (0, 1]. So, to obtain the global
symptotical stability of the model in the Atangana–Baleanu sense, the
esults for (4) can be used.

heorem 2.1 ([16]). The model (4) in Atangana–Baleanu derivative must
possess: (1): Let 𝛶 (𝑡, 𝑥(𝑡)) describes a positive definite function, (2): 𝛶 (𝑡) =
𝛶 (𝑡, 𝑥(𝑡)) must be continuously differentiable, (3): Further, ABC

𝑡0
𝐷𝜌

𝑡 𝛶 (𝑡, 𝑥(𝑡))
ust be negative definite for every 𝜌 ∈ (0, 1]. Then, under the condition that
function shown by G having class K exists with 𝛶 (𝑥) = G (𝑥) and further,

f 𝛶 increases then G increases, so, then the equilibrium point shown by
= 0 is asymptotically stable at the initial time 𝑡 = 0.
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Integer order model

The present section explores the modeling of the novel Coronavirus.
We begin the modeling process be denoting the host population by 𝑁(𝑡)
ividing into five mutually exclusive epidemiological classes based on
ynamics of COVID-19 infection. These classes consist of susceptible
, exposed 𝐸, infectious showing symptoms of disease 𝐼 , infected with
o disease symptoms 𝐼𝑎 and the individuals recovered are denoted 𝑅
espectively. So, that

= 𝑆 + 𝐸 + 𝐼 + 𝐼𝑎 + 𝑅.

The symptomatically-infected individuals are infectious and have
linical symptoms of COVID-19 whereas the asymptomatically-infected
eople are capable to transmit the infection and show mild or even
ot yet shown any disease symptoms. We define the class 𝐵(𝑡) that
efines concentration of the virus present in the contaminated surfaces
n environment. The assumption taken in consideration into the model
ormulations are:

(i) The individuals in the symptomatically-infected class have the
ability to infect other health individuals fully and spread the
disease further.

(ii) The individuals in the asymptomatically-infected class that do
not show the symptoms but may transmit the infections and
infect other individuals in the population.

(iii) Individuals in the exposed class within the incubations which
may or may not yet show any disease signs are capable to
transmit the disease further.

(iv) The COVID-19 related death is only considered in
symptomatically-infected class.

(v) The exposed, symptomatic, asymptomatic COVID-19 population
has contributed the virus to the environment and is one of the
transmission routes of the infection.

aking the above discussion and assumptions in account, we formulate
he following dynamical model for the COVID-19:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑
𝑑𝑡𝑆 = 𝛱 − (𝜂1𝐸 + 𝜂2𝐼 + 𝜂3𝐼𝑎 + 𝜂4𝐵)

𝑆
𝑁 − 𝜇𝑆,

𝑑
𝑑𝑡𝐸 = (𝜂1𝐸 + 𝜂2𝐼 + 𝜂3𝐼𝑎 + 𝜂4𝐵)

𝑆
𝑁 − (𝜅 + 𝜇)𝐸,

𝑑
𝑑𝑡 𝐼 = 𝜅(1 − 𝜏)𝐸 − (𝜇 + 𝜁 + 𝛿1)𝐼,

𝑑
𝑑𝑡 𝐼𝑎 = 𝜏𝜅𝐸 − (𝜇 + 𝛿2)𝐼𝑎,

𝑑
𝑑𝑡𝑅 = 𝛿1𝐼 + 𝛿2𝐼𝑎 − 𝜇𝑅,

𝑑
𝑑𝑡𝐵 = 𝜛1𝐸 +𝜛3𝐼𝑎 +𝜛2𝐼 − 𝜙𝐵,

(5)

here the additional non-negative initial conditions

𝑆(0) = 𝑆0 ≥ 0, 𝐸(0) = 𝐸0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0, 𝐼𝑎(0) = 𝐼𝑎0 ≥ 0,

𝑅(0) = 𝑅0 ≥ 0, 𝐵(0) = 𝐵0 ≥ 0.
(6)

n the model described in (5), the individuals in the susceptible class is
enerated by the birth rate 𝛱 , while the death naturally in each class
an be shown by 𝜇. The death rate due to COVID-19 infection is denoted
y 𝜁 , which only appears in symptomatically-infected class. The param-
ters 𝜂1, 𝜂2 and 𝜂3 are the effective transmission rates of infection due
o exposed, symptomatically-infected and asymptomatically-infected
ndividuals, respectively. The parameter 𝜂4 denotes the generation of
nfection due to environment. We denote the incubation period of the
ndividuals by 𝜅. The exposed individuals at the end of incubation
eriod, a proportion 𝜏, where (0 < 𝜏 < 1), remain in the 𝐼 which
evelops symptoms compartment while the rest join 𝐼𝑎 class which
ave no or mild disease symptoms. The parameters 𝛿1 and 𝛿2 account

for the recovery rates of symptomatically and asymptomatically in-
3

fected people. The contribution of the virus to the environment due to
Fig. 1. Data since 1 March to 20 August 2020 versus model fitting.

exposed, and the population of both infected comparers (i.e. 𝐼 and 𝐼𝑎)
are shown respectively by 𝜛1, 𝜛2 and 𝜛3. The virus can be removed
from the environment using the parameter 𝜙. We define the following
expressions to make the model easier for onward analysis:

𝜆(𝑡) =
(𝜂1𝐸 + 𝜂2𝐼 + 𝜂3𝐼𝑎 + 𝜂4𝐵)

𝑁
, 𝚔1 = (𝜅 + 𝜇),

𝚔2 = (𝜇 + 𝜁 + 𝛿1), and 𝚔3 = (𝜇 + 𝛿2).

hus, the model (5) can be reformulated as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑
𝑑𝑡𝑆 = 𝛱 − 𝜆(𝑡)𝑆 − 𝜇𝑆,

𝑑
𝑑𝑡𝐸 = 𝜆(𝑡)𝑆 − 𝚔1𝐸,

𝑑
𝑑𝑡 𝐼 = 𝜅(1 − 𝜏)𝐸 − 𝚔2𝐼,

𝑑
𝑑𝑡 𝐼𝑎 = 𝜏𝜅𝐸 − 𝚔3𝐼𝑎,

𝑑
𝑑𝑡𝑅 = 𝛿1𝐼 + 𝛿2𝐼𝑎 − 𝜇𝑅,

𝑑
𝑑𝑡𝐵 = 𝜛1𝐸 +𝜛2𝐼 +𝜛3𝐼𝑎 − 𝜙𝐵.

(7)

Estimation of parameters

The estimation of parameters is one of the essential parts for the
mathematical models in epidemiology. Various approaches are used for
the estimation of parameters of a biological model having real data.
Among these techniques, the nonlinear least square curve fitting is
one of them. We used the nonlinear least square curve fitting method
in order to determine the best values of the parameters involved in
the model under consideration. We use the method of nonlinear least
square curve fitting method by considering the infected cases of KSA for
a selected period of time as shown in Fig. 1. In parameters estimation,
we get the value of the parameter 𝛱 and 𝜇 using the literature.
The remaining parameters have been gotten through the fitting. The
procedure used in this paper for estimation is obtained from the work
in [4], while the readers can see the details procedure of this technique
in [4]. After using the technique, the desired result for the data fitting is
shown in Fig. 1 while, Table 1 contains the respective estimated values.
We have the 0 ≈ 1.2915 for the given data of the proposed period.
During the estimations, the initial values of various population classes
are set out as: 𝑆(0) = 34 811 870, 𝐸(0) = 2000, 𝐼(0) = 1, 𝐼𝑎(0) = 0,

𝑅(0) = 0 and 𝐵(0) = 30 000.
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Table 1
Biological description of parameters with respective numerical values.

Notation Biological meaning Value/day Source

𝛱 Recruitment rate 𝜇 ∗ 𝑁(0) Estimated
𝜇 Natural death rate 1∕(74.87 ∗ 365) [26]
𝜉 COVID-19 induced mortality rate in 𝐼 compartment 0.0103 Fitted
𝜂1 Transmissibility rate relative to exposed class 0.2259 Fitted
𝜂2 Transmissibility rate due to symptomatic class 0.01298 Fitted
𝜂3 Transmissibility rate due to asymptomatic class 0.4579 Fitted
𝜂4 The transmission rate at which the environment contributes 0.0969 Fitted
𝜅 Incubation period 0.5625 Fitted
𝜏 Fraction of the asymptomatically-infected people 0.1142 Fitted
𝛿1 Recovery rate of 𝐼 class 0.3346 Fitted
𝜙2 Recovery or removal rate of 𝐼𝑎 class 0.0867 Fitted
𝜛1 Contribution due to 𝐸 0.2616 Fitted
𝜛2 Contribution due to 𝐼 0.0100 Fitted
𝜛3 Contribution due to 𝐼𝑎 0.1815 Fitted
𝜙 Virus decay 0.2786 Fitted
T
e



The COVID-19 model in fractional case

The classical integer order epidemic models developed for an infec-
tious having its own importance in epidemiology and its importance
cannot be ignored. However, there are certain number of limitations of
the models developed via classical differential equations. Such as the
non existing of the memory or nonlocal effects, not able to capture the
crossover behavior of a physical or a biological process. In the result,
the mathematical models developed via the integer order derivatives
are not suitable in some cases due to the properties mentioned above.
To deal with limitations, the fractional operator specifically the ABC
operator comprises the memory effects and the crossover behavior
of the model. Therefore, to explore the COVID-19 dynamics more
realistically, the proposed model (7) described in Section ‘‘Some basics
of fractional calculus’’ is reformulated with the replacement of classical
derivative by the one having fractional order in ABC sense. Thus, the
fractional epidemic model for COVID-19 with the nonlocal kernel is
formulated through the following system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐴𝐵𝐶𝐷𝜌
𝑡 𝑆 = 𝛱 − 𝜆(𝑡)𝑆 − 𝜇𝑆,

𝐴𝐵𝐶𝐷𝜌
𝑡 𝐸 = 𝜆(𝑡)𝑆 − 𝚔1𝐸,

𝐴𝐵𝐶𝐷𝜌
𝑡 𝐼 = 𝜅(1 − 𝜏)𝐸 − 𝚔2𝐼,

𝐴𝐵𝐶𝐷𝜌
𝑡 𝐼𝑎 = 𝜏𝜅𝐸 − 𝚔3𝐼𝑎,

𝐴𝐵𝐶𝐷𝜌
𝑡 𝑅 = 𝛿1𝐼 + 𝛿2𝐼𝑎 − 𝜇𝑅,

𝐴𝐵𝐶𝐷𝜌
𝑡 𝐵 = 𝜛1𝐸 +𝜛2𝐼 +𝜛3𝐼𝑎 − 𝜙𝐵.

(8)

he notation 𝐴𝐵𝐶𝐷𝜌
𝑡 represents the time fractional derivative in ABC

ense and the parameter 𝜌 ∈ (0, 1] denotes the arbitrary order of the
BC operator.

heoretical investigations of the fractional model

The current section presents the basic mathematical features of the
BC Coronavirus transmission model as formulated in (8). Initially, we

nvestigate the biologically-feasible region for the ABC model. After
his, we evaluate the model equilibria, the basic reproductive quantity
nd then explore the asymptotic stability of the model at the disease
ree equilibrium. Finally, the existence and uniqueness are provided.

e proceed as follows:

iologically-feasible region

Now, summing the first five equations of the system (8), we are lead
o the following equation
𝐵𝐶𝐷𝜌𝑁(𝑡) = 𝛱 − 𝜇𝑁(𝑡) − 𝜁𝐼 (9)
4

𝑡

≤ 𝛱 − 𝜇𝑁(𝑡).

Solving Eq. (9) via Laplace transform, we deduce that

lim
𝑡→∞

𝑁(𝑡) ≤ 𝛱∕𝜇.

As a result, we derived the biologically feasible region as shown in the
following set:

𝛷 =
{

(𝑆,𝐸, 𝐼, 𝐴,𝑅) ∈ R5
+ ∶ 𝑁 ≤ 𝛱

𝜇
, 𝐵 ∈ R+ ∶ 𝐵(𝑡)

≤ 𝛱
𝜇

𝜛1 +𝜛2 +𝜛3
𝜙

}

.

Model equilibria

This section explores the equilibrium points of the fractional ABC
case described in (8). Also, we evaluate the basic reproductive number
0 and then prove the asymptotical stability of the disease free equi-
librium. Moreover, we will explore impartment features of fractional
models known as the existence and uniqueness (EU). The fractional
model describing the COVID-19 dynamics (8) possess usually two types
of steady states. The one is known as the disease free equilibrium (DFE)
and the second one is named as the endemic equilibrium (EE). The DFE
is obtained by solving the system by equating the right sides of (8) to
zero at the infection free state. Thus, the following expression is derived
for DFE of the model (8):

𝙺0 =
(𝛱
𝜇
, 0, 0, 0, 0, 0

)

.

In order to derive 0 of the model, we follow the next generation
matrix approach [27]. Using the approached mentioned earlier, we
have the desired results for our system (8) given by:

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜂1 𝜂2 𝜂3 𝜂4
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

𝚔1 0 0 0
−(1 − 𝜏)𝜅 𝚔2 0 0

−𝜏𝜅 0 𝚔3 0
−𝜛1 −𝜛2 −𝜛3 𝜙

⎞

⎟

⎟

⎟

⎟

⎠

.

hus, using the well-known criteria developed in [27], we finally,
valuate the desired expression as follows:

0 =
𝜅(1 − 𝜏)(𝜂4𝜛2 + 𝜂2𝜙)

𝚔1𝚔2𝜙
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1

+
𝜅𝜏(𝜂4𝜛3 + 𝜂3𝜙)

𝚔1𝚔3𝜙
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

+
(𝜂4𝜛1 + 𝜂1𝜙)

𝚔1𝜙
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

3

.

Existence of EE

We focus on the existence of EE for the epidemic model (8) in ABC
sense in this section. The EE is denoted by

𝙺∗∗ = (𝑆∗∗, 𝐸∗∗, 𝐼∗∗, 𝐼∗∗, 𝑅∗∗, 𝐵∗∗),
1 𝑎
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where, the expressions involved are obtain by solving the equations in
(8) at steady state.

𝑆∗∗ = 𝛱
𝜆 + 𝜇

, 𝐸∗∗ = 𝜆𝑆∗∗

𝚔1
, 𝐼∗∗ =

(1 − 𝜏)𝜅𝐸∗∗

𝚔2
,

𝐼∗∗𝑎 =
𝜏𝜅𝐸∗∗

ℎ
𝚔3

, 𝑅∗∗ =
𝛿1𝐼∗∗ + 𝛿2𝐼∗∗𝑎

𝜇
,

∗∗ =
𝜛3𝐼∗∗𝑎 +𝜛2𝐼∗∗ +𝜛1𝐸∗∗

𝜙
, (10)

where,

𝜆∗∗ =
(𝜂1𝐸∗∗ + 𝜂2𝐼∗∗ + 𝜂3𝐴∗∗ + 𝜂4𝐵∗∗)

𝑁∗∗ . (11)

After substituting the values involved (10) into (12), we obtain the
following equation in 𝜆∗∗:

1𝜆
∗∗ + 𝐴2 = 0, (12)

here;

1 = 𝜙
(

𝜅𝚔3(𝜇 + 𝛿1)(1 − 𝜏) + 𝚔2(𝜅𝜏(𝛿2 + 𝜇) + 𝜇𝚔3)
)

,

𝐴2 = 𝚔1𝚔2𝚔3𝜇𝜙(1 −0). (13)

Thus, the following result regarding the existence of EE for the COVID-
19 (8) is parented.

Theorem 5.1. A unique EE of the model (8) describing the COVID-19
dynamics exists if and only if 0 > 1.

Stability results of DFE

For the proof of the local asymptotical stability (𝙻𝙰𝚂) of the model
around the DFE, the necessary condition to be shown is that for the en-
tire eigenvalues of the matrix (14) lie outside the closed angular sector
|𝑎𝑟𝑔(𝛱)| ≤ 1 [28]. Although the Matignon’s result was applied to the
Caputo case, but it can be extended to systems having ABC fractional
order (FO) derivative. To proceed, let us evaluate the corresponding
Jacobian matrix of (8) as:

𝐽0
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇 −𝜂1 −𝜂2 −𝜂3 0 −𝜂4
0 −𝚔1 + 𝜂1 𝜂2 𝜂3 0 𝜂4
0 𝜅(1 − 𝜏) −𝚔2 0 0 0
0 𝜅𝜏 0 −𝚔3 0 0
0 0 𝛿1 𝛿2 −𝜇 0
0 𝜛1 𝜛2 𝜛3 0 −𝜙

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (14)

Next, we introduce the following result for the desired stability of the
model.

Theorem 5.2. The DFE 0 of the COVID-19 model in ABC case is 𝐿𝐴𝑆
if ∀ eigenvalues 𝜆𝑖 of 𝐽𝙺0 satisfy the necessary condition:

|𝑎𝑟𝑔(𝜆𝑖)| >
𝜌𝜋
2

𝑓𝑜𝑟 𝑖 = 0, 1,… , 6. (15)

Proof. It is clearly observed from 𝐽𝙺0 that the two eigenvalues i.e.,
−𝜇 and −𝜇 are negative and clearly satisfy the necessary condition
(15) for all 𝜌 ∈ (0, 1]. Moreover, after some manipulations, it is easy
o show that the remaining four eigenvalues will have negative real
arts whenever, 0 < 1 and thus, following [28], the arguments of the
emaining eigenvalues fulfill the desired condition as described (15).
ence, 𝙺0 is LAS whenever, 0 < 1. □

The GAS of the COVID-19 model (8) at the DFE is discussed in the
ollowing result. The result for this purpose is stated as follows:

heorem 5.3. For any 𝜌 ∈ (0, 1], the DFE 0 of (8) is GAS in the region
if 0 <1.
5

Proof. We introduce the following suitable Lyapunov function in order
to proceed

 (𝑡) = 1𝐸(𝑡) + 2𝐼(𝑡) + 3𝐼𝑎(𝑡) + 4𝐵(𝑡),

here, 𝑗 , for j= 1,… , 4, describe unknown positive constants to be
hosen later. The time fractional ABC derivative of  (𝑡) leads to the
ollowing
𝐵𝐶𝐷𝜌

𝑡  (𝑡) = 1𝐴𝐵𝐶𝐷
𝜌
𝑡 𝐸 + 2𝐴𝐵𝐶𝐷

𝜌
𝑡 𝐼 + 3𝐴𝐵𝐶𝐷

𝜌
𝑡 𝐴 + 4𝐴𝐵𝐶𝐷

𝜌
𝑡 𝑀.

sing the system defined in (8), we get
𝐵𝐶𝐷𝜌

𝑡  (𝑡) = 1
{

(𝜂1𝐸 + 𝜂2𝐼 + 𝜂3𝐼𝑎 + 𝜂4𝐵)
𝑆
𝑁

− 𝚔1𝐸
}

+2
{

𝜅(1 − 𝜏)𝐸 − 𝚔2𝐼
}

+3
{

𝜏𝜅𝐸 − 𝚔3𝐼𝑎
}

+ 4
{

𝜛1𝐸 +𝜛2𝐼 +𝜛3𝐼𝑎 − 𝜙𝐵
}

≤ 1
{

(𝜂1𝐸 + 𝜂2𝐼 + 𝜂3𝐴 + 𝜂4𝐵) − 𝚔1𝐸
}

+2
{

𝜅(1 − 𝜏)𝐸 − 𝚔2𝐼
}

+3
{

𝜏𝜅𝐸 − 𝚔3𝐼𝑎
}

+ 4
{

𝜛1𝐸 +𝜛2𝐼 +𝜛3𝐼𝑎 − 𝜙𝐵
}

𝑎𝑠 𝑆
𝑁

≤ 1

=
{

1𝜂1 + 2𝜅(1 − 𝜏) − 3𝜅𝜏 + 4𝜛1 − 1𝚔1
}

𝐸

+
{

1𝜂2 + 4𝜛2 − 2𝚔2
}

𝐼

+
{

1𝜂3 + 4𝜛3 − 3𝚔3
}

𝐼𝑎 +
{

1𝜂4 − 4𝜙
}

𝐵,

= 1𝚔1
{1𝜂1 + 2𝜅(1 − 𝜏) − 3𝜅𝜏 + 4𝜛1

1𝚔1
− 1

}

𝐸

+
{

1𝜂2 + 4𝜛2 − 2𝚔2
}

𝐼

+
{

1𝜂3 + 4𝜛3 − 3𝚔3
}

𝐼𝑎 +
{

1𝜂4 − 4𝜙
}

𝐵.

et us choose the constants values as

1 = 𝜙, 2 =
𝜙𝜂2 +𝜛2𝜂4

𝚔2
, 3 =

𝜙𝜂3 +𝜛3𝜂4
𝚔3

, and 4 = 𝜂4,

and then after some simplifications, we have
𝐴𝐵𝐶𝐷𝜌

𝑡  (𝑡) ≤ 𝜙𝚔1
{

0 − 1
}

𝐸.

t is clear that when 0 < 1 then 𝐴𝐵𝐶𝐷𝜌
𝑡  (𝑡) is negative, due to the

on-negativity of all parameters. Thus,with the help of Theorem 2.1,
hat the DFE 0 is GAS in the region 𝛷. □

Existence and uniqueness of the solution

This subsection is focused on proving the EU of fractional com-
artmental epidemic model (8). The well-known fixed point theory is
tilized for the said purpose. Firstly, the COVID-19 model (8) is shown
hrough a general initial value problem as follows:
{𝐴𝐵𝐶𝐷𝜌

𝑡 𝚟(𝑡) = 𝐹 (𝑡, 𝚟(𝑡)),
𝚟(0) = 𝚟0, 0 < 𝑡 <  < ∞.

(16)

In the problem described in (16), the vector 𝚟 = (𝑆,𝐸, 𝐼, 𝐼𝑎, 𝑅, 𝐵)
denotes state variables while 𝚟0 = (𝑆(0), 𝐸(0), 𝐼(0), 𝐼𝑎(0), 𝑅(0), 𝐵(0))
denotes the corresponding initial condition. Moreover, 𝙵 defines a
continuous vector function as follows:

𝙵 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐹1
𝐹2
𝐹3
𝐹4
𝐹5
𝐹6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛱 − (𝜆(𝑡) + 𝜇)𝑆
𝜆(𝑡)𝑆 − 𝐹1𝐸

(1 − 𝜏)𝜅𝐸 − 𝐹2𝐼
𝜏𝜅𝐸 − 𝐹3𝐼𝑎

𝛿1𝐼 + 𝛿2𝐼𝑎 − 𝜇𝑅
𝜛1𝐸 +𝜛2𝐼 +𝜛3𝐼𝑎 − 𝜙𝐵

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Additionally, the function 𝐹 satisfies the Lipschitz condition expressed
as below:
‖𝐹 (𝑡, 𝚟1(𝑡)) − 𝐹 (𝑡, 𝚟2(𝑡))‖ ≤ 𝙳‖𝚟1(𝑡) − 𝚟2(𝑡)‖, 𝙳 > 0. (17)
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Next, we introduce the following theorem regarding the EU of the
model solution.

Theorem 5.4. There exists a unique solution of the epidemic model (16),
if the condition shown in (18) holds:
(1 − 𝜌)
𝐴𝐵𝐶(𝜌)

𝙳 +
𝜌

𝐴𝐵𝐶(𝜌)𝛤 (𝜌)
 𝜌
𝑚𝑎𝑥𝙳 < 1. (18)

Proof. Taking the ABC integral operator over the problem (16), which
gives a nonlinear Volterra integral equation in the following form:

𝚟 = 𝑣0 +
1 − 𝜌

𝐴𝐵𝐶(𝜌)
𝐹 (𝑡, 𝚟) +

𝜌
𝐴𝐵𝐶(𝜌)𝛤 (𝜌) ∫

𝑡

0
(𝑡 − 𝜍)𝜌−1𝐹 (𝑥, 𝑣(𝑥))𝑑𝑥. (19)

Let  = (0,  ), and the operator 𝙵 ∶ ( ,R6) → ( ,R6) be defined as

𝙵[𝚟] = 𝑣0 +
1 − 𝜌

𝐴𝐵𝐶(𝜌)
𝐹 (𝑡, 𝚟) +

𝜌
𝐴𝐵𝐶(𝜌)𝛤 (𝜌) ∫

𝑡

0
(𝑡 − 𝑥)𝜌−1𝐹 (𝑥, 𝑣(𝑥))𝑑𝑥. (20)

Thus, the expression in (19) takes the form:

𝚟 = 𝙵[𝚟]. (21)

Further, let ‖.‖ be the supremum norm over  and expressed as:

‖𝚟‖ = sup
𝑡∈

‖𝚟‖, 𝚟 ∈ . (22)

It is clear that ( ,R6) with the respective norm ‖.‖ constructs a
Banach space. Also, the inequality given in (23) can be easily demon-
strated as:
‖

‖

‖

‖

∫

𝑡

0
𝐹 (𝑡, 𝑥)𝚟(𝑥)𝑑𝑥

‖

‖

‖

‖

≤  ‖𝐹 (𝑡, 𝑥)‖ ‖𝚟‖ , (23)

with 𝚟 ∈ ( ,R6), 𝐹 (𝑡, 𝑥) ∈ ( 2,R) such that

‖𝐹 (𝑡, 𝑥)‖ = sup
𝑡,𝑥∈

|𝐹 (𝑡, 𝑥)|. (24)

Using Eq. (21), we obtain

‖𝙵[𝚟1(𝑡)] − 𝙵[𝚟2(𝑡)]‖

≤
‖

‖

‖

‖

(1 − 𝜌)
𝐴𝐵𝐶(𝜌)

(𝐹 (𝑡, 𝚟1(𝑡)) − 𝐹 (𝑡, 𝚟2(𝑡))) +
𝜌

𝐴𝐵𝐶(𝜌)𝛤 (𝜌)
×

∫

𝑡

0
(𝑡 − 𝑥)𝜌−1(𝐹 (𝑥, 𝚟1(𝑥)) − 𝐹 (𝑥, 𝚟2(𝑥)))𝑑𝑥

‖

‖

‖

‖
. (25)

Further, utilizing Eqs. (17), (23) along with triangular inequality,
Eq. (25) leads to the following form:

‖𝙵[𝚟1(𝑡)] − 𝙵[𝚟2(𝑡)]‖ ≤
(

(1 − 𝜌)𝙳
𝐵(𝜌)

+
𝜌𝙳

𝐵(𝜌)𝛤 (𝜌)
 𝜌
𝑚𝑎𝑥

)

‖𝚟1(𝑡) − 𝚟2(𝑡)‖ .

(26)

Finally, we get the following equation:

‖𝙵[𝚟1(𝑡)] − 𝙵[𝚟2(𝑡)]‖ ≤ 𝙼‖𝚟1(𝑡) − 𝚟2(𝑡)‖ , (27)

where,

𝙼 =
(1 − 𝜌)𝙳
𝐴𝐵𝐶(𝜌)

+
𝜌𝙳

𝐴𝐵𝐶(𝜌)𝛤 (𝜌)
 𝜌
𝑚𝑎𝑥.

If the condition given in (18) holds then the operator F will be a
ontraction. Thus, the desired model shown by (16) will possess unique
olution. □

umerical solution of the ABC model

It is obvious that the biological models are often complicated due to
heir nonlinearity. The nonlinearity together with fractional derivative
he model becomes more complex and difficult to solve analytically.
n this regard, the numerical techniques are often considered for its
olution graphically. Different numerical methods are considered for
he solution of fractional order numerically. Among these methods, the
6

ethod developed in [29] based on Lagrange interpolation polynomial
of two-step is appropriate for the given problem. We will present the de-
tails of the scheme in the present section and then write the scheme for
the proposed system. To get the approximate solution of the problem,
we use the method in [29]. Considering the Atangana–Baleanu integral
described in (3) and applying upon the general problem described in
(16), then we have the following:

𝚟(𝑡) − 𝚟(0) =
(1 − 𝜌)
𝐴𝐵(𝜌)

𝐹 (𝑡, 𝚟) +
𝜌

𝐴𝐵(𝜌) × 𝛤 (𝜌) ∫

𝑡

0
𝐹 (𝜍, 𝑣(𝜍))(𝑡 − 𝜍)𝜌−1𝑑𝜍.

(28)

urther, at 𝑡 = 𝑡𝚖+1 = (𝚖 + 1)ℎ, we have

(𝑡𝚖+1) − 𝚟(0) =
1 − 𝜌
𝐴𝐵(𝜌)

𝐹 (𝑡𝚖, 𝚟(𝑡𝚖)) +

𝜌
𝐴𝐵(𝜌) × 𝛤 (𝜌)∫

𝑡𝚖+1

0
𝐹 (𝜍, 𝑣(𝜍))(𝑡𝑚+1 − 𝜍)𝜌−1𝑑𝜍,

=
1 − 𝜌
𝐴𝐵(𝜌)

𝐹 (𝑡𝚖, 𝚟(𝑡𝚖)) +

𝜌
𝐴𝐵(𝜌) × 𝛤 (𝜌)

𝚖
∑

𝑗=0
∫

𝑡𝑗+1

𝑡𝑗
𝐹 (𝜍, 𝚟(𝜍))(𝑡𝚖+1 − 𝜍)𝜌−1𝑑𝜍. (29)

ow, utilizing the polynomial interpolation concept, we approximate
he function 𝐹 (𝜍, 𝚟(𝜍)) by two-step Lagrange polynomial over the closed
nterval [𝑡𝑗 , 𝑡𝑗+1] as follows:

(𝜍, 𝐹 (𝜍)) ≅ 𝑘(𝜍) =
𝐹 (𝑡𝑗 , 𝚟(𝑡𝑗 ))

ℎ
(𝜍 − 𝑡𝑗−1) −

𝐹 (𝑡𝑗−1, 𝚟(𝑡𝑗−1))
ℎ

(𝜍 − 𝑡𝑗 ). (30)

Thus, Eq. (29) becomes:

𝚟(𝑡𝚖+1) = 𝚟(0) +
1 − 𝜌
𝐴𝐵(𝜌)

𝐹 (𝑡𝚖, 𝚟(𝑡𝚖)) +

𝜌
𝐴𝐵(𝜌) × 𝛤 (𝜌)

𝚖
∑

𝑗=0

(𝐹 (𝑡𝑗 , 𝚟(𝑡𝑗 ))
ℎ ∫

𝑡𝑗+1

𝑡𝑗
(𝜍 − 𝑡𝑗−1)(𝑡𝚖+1 − 𝜍)𝜌−1𝑑𝜍

−
𝐹 (𝑡𝑗−1, 𝚟(𝑡𝑗−1))

ℎ ∫

𝑡𝑗+1

𝑡𝑗
(𝜍 − 𝑡𝑗 )(𝑡𝑚+1 − 𝜍)𝜌−1𝑑𝜍

)

. (31)

y simplifying the above Eq. (31), the final approximate form can be
hown by the below expression:

(𝑡𝚖+1) = 𝚟(𝑡0) +
1 − 𝜌
𝐴𝐵(𝜌)

𝐹 (𝑡𝚖, 𝚟(𝑡𝚖)) +
𝜌

𝐴𝐵(𝜌)

𝚖
∑

𝑗=0
(ℎ𝜌𝐹 (𝑡𝑗 , 𝚟(𝑡𝑗 ))

𝛤 (𝜌 + 2)

{

(𝚖 − 𝑗 + 1)𝜌(𝚖 − 𝑗 + 2 + 𝜌)

−(𝚖 − 𝑗)𝜌(𝚖 − 𝑗 + 2 + 2𝜌)
}

−
ℎ𝜌𝐹 (𝑡𝑗−1, 𝚟(𝑡𝑗−1))

𝛤 (𝜌 + 2)

{

(𝚖 − 𝑗 + 1)𝜌+1

−(𝚖 − 𝑗)𝜌(𝚖 − 𝑗 + 1 + 𝜌)
})

. (32)

sing the above scheme (32), we can write the system (8) below that
resents the numerical scheme:

𝑆(𝑡𝚖+1) = 𝑆(𝑡0) +
1 − 𝜌
𝐴𝐵(𝜌)

𝐹1(𝑡𝚖, 𝚟(𝑡𝚖)) +
𝜌

𝐴𝐵(𝜌)

𝚖
∑

𝑗=0
(ℎ𝜌𝐹1(𝑡𝑗 , 𝚟(𝑡𝑗 ))

𝛤 (𝜌 + 2)

{

(𝚖 + 1 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 𝜌)

−(𝚖 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 2𝜌)
}

−
ℎ𝜌𝐹1(𝑡𝑗−1, 𝚟(𝑡𝑗−1))

𝛤 (𝜌 + 2)

×
{

(𝚖 − 𝑗 + 1)𝜌+1 − (𝚖 − 𝑗)𝜌(𝚖 − 𝑗 + 1 + 𝜌)
})

,

𝐸(𝑡𝚖+1) = 𝐸(𝑡0) +
1 − 𝜌
𝐴𝐵(𝜌)

𝐹2(𝑡𝚖, 𝚟(𝑡𝚖)) +
𝜌

𝐴𝐵(𝜌)

𝚖
∑

𝑗=0
(ℎ𝜌𝐹2(𝑡𝑗 , 𝚟(𝑡𝑗 ))

𝛤 (𝜌 + 2)

{

(𝚖 + 1 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 𝜌)

−(𝚖 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 2𝜌)
}
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Fig. 2. Numerical solution of (8) with different 𝜈.
−
ℎ𝜌𝐹2(𝑡𝑗−1, 𝚟(𝑡𝑗−1))

𝛤 (𝜌 + 2)

×
{

(𝚖 + 1 − 𝑗)𝜌+1 − (𝚖 − 𝑗)𝜌(𝚖 − 𝑗 + 1 + 𝜌)
})

,

7

𝐼(𝑡𝚖+1) = 𝐼(𝑡0) +
1 − 𝜌
𝐵(𝜌)

𝐹3(𝑡𝚖, 𝚟(𝑡𝚖)) +
𝜌

𝐴𝐵(𝜌)

𝚖
∑

𝑗=0
(ℎ𝜌𝐹3(𝑡𝑗 , 𝚟(𝑡𝑗 ))

𝛤 (𝜌 + 2)

{

(𝚖 + 1 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 𝜌)
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Fig. 3. Numerical solution of (8) with many 𝜌 and 𝜛3.
S

p
f
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−(𝚖 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 2𝜌)
}

−
ℎ𝜌𝐹3(𝑡𝑗−1, 𝚟(𝑡𝑗−1))

𝛤 (𝜌 + 2)

×
{

(𝚖 + 1 − 𝑗)𝜌+1 − (𝚖 − 𝑗)𝜌(𝚖 − 𝑗 + 1 + 𝜌)
})

,

𝐼𝑎(𝑡𝚖+1) = 𝐼𝑎(𝑡0) +
1 − 𝜌
𝐴𝐵(𝜌)

𝐹4(𝑡𝚖, 𝚟(𝑡𝚖)) +
𝜌

𝐴𝐵(𝜌)

𝚖
∑

𝑗=0
(ℎ𝜌𝐹4(𝑡𝑗 , 𝚟(𝑡𝑗 ))

𝛤 (𝜌 + 2)

{

(𝚖 + 1 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 𝜌)

−(𝚖 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 2𝜌)
}

−
ℎ𝜌𝐹4(𝑡𝑗−1, 𝚟(𝑡𝑗−1))

𝛤 (𝜌 + 2)

×
{

(𝚖 + 1 − 𝑗)𝜌+1 − (𝚖 − 𝑗)𝜌(𝚖 − 𝑗 + 1 + 𝜌)
})

,

𝑅(𝑡𝚖+1) = 𝑅(𝑡0) +
1 − 𝜌
𝐴𝐵(𝜌)

𝐹5(𝑡𝚖, 𝚟(𝑡𝚖)) +
𝜌

𝐴𝐵(𝜌)

𝚖
∑

𝑗=0
(ℎ𝜌𝐹5(𝑡𝑗 , 𝚟(𝑡𝑗 ))

𝛤 (𝜌 + 2)

{

(𝚖 + 1 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 𝜌)

−(𝚖 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 2𝜌)
}

−
ℎ𝜌𝐹5(𝑡𝑗−1, 𝚟(𝑡𝑗−1))

𝛤 (𝜌 + 2)

×
{

(𝚖 + 1 − 𝑗)𝜌+1 − (𝚖 − 𝑗)𝜌(𝚖 − 𝑗 + 1 + 𝜌)
})

,

8

A

𝐵(𝑡𝚖+1) = 𝐵(𝑡0) +
1 − 𝜌
𝐴𝐵(𝜌)

𝐹6(𝑡𝚖, 𝚟(𝑡𝚖)) +
𝜌

𝐴𝐵(𝜌)

𝚖
∑

𝑗=0
(ℎ𝜌𝐹6(𝑡𝑗 , 𝚟(𝑡𝑗 ))

𝛤 (𝜌 + 2)

{

(𝚖 + 1 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 𝜌)

−(𝚖 − 𝑗)𝜌(𝚖 + 2 − 𝑗 + 2𝜌)
}

−
ℎ𝜌𝐹6(𝑡𝑗−1, 𝚟(𝑡𝑗−1))

𝛤 (𝜌 + 2)

{

(𝚖 + 1 − 𝑗)𝜌+1

−(𝚖 − 𝑗)𝜌(𝚖 − 𝑗 + 1 + 𝜌)
})

. (33)

imulations and discussion

We derive the numerical scheme using the two-step Lagrange inter-
olation polynomial for the approximate solution of the model involves
ractional derivative. Then, we particularize the scheme for our model
y giving the scheme shown in (33). As we taken the daily reported
ases, so the time unit considered in the numerical solution in days. The
espective values of the biological parameters involved in the model
btained through the real cases of KSA data shown in Table 1 are used
or the simulation purpose. Firstly, we depict the influence of variation
n the memory index (or fractional order 𝜌) upon the dynamics of all
opulation classes of the proposed model. After that, we analyzed the
nfluence of various model parameters such as 𝜛3 and 𝜙 on the COVID-
9 incidence in the population of Saudi Arabia. The dynamics of the
usceptible population for various values of fractional order 𝜌 of the
BC derivative are shown in Fig. 2(a). It is observed that susceptible
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Fig. 4. Numerical solution of (8) with many 𝜌 and 𝜙.
individuals are increasing with the decrease in 𝜌. The impact of mem-
ory index 𝜌 over the exposed, symptomatically and asymptomatically
COVID-19 infective individuals is shown in sub-plots (b), (c) and (d)
Fig. 2, respectively. It is observed that peaks of population in the
exposed, symptomatically and asymptomatically infected classes are
decreasing significantly for the smaller values of 𝜌. The dynamical
behavior of the recovered people is depicted in Fig. 2(e). The recovered
people shows a decreasing effect with a decrease in the fractional order
𝜌. The impact of memory index 𝜌 on the dynamics of virus concentra-
tion in the environment 𝐵 is analyzed in Fig. 2(f). Further, Fig. 3(a-d)
depicts the influence of the variation in the viral contribution due
asymptomatically-infected individuals 𝜛3 on the COVID-19 incidence.
We have analyzed this impact for various values of fractional order 𝜌.
In all cases, it is observed that the peaks cumulative symptomatically
and asymptomatically infected curves decreased well with the decrease
in the parameter 𝜛3. Moreover, it is observed that the decrease in
pandemic peaks is comparatively faster for smaller values of 𝜌 as shown
in Fig. 3(b-d). Finally, the impact of parameter 𝜙 for various values of
𝜌 is shown in Fig. 4(a-d). It is observed that infected curves become
flatten with the increase in parameter 𝜙 by different rates to their
baseline values as shown in Fig. 4(a). Furthermore, the decrease in
the peaks of symptomatically and asymptomatically infected curves
is slightly faster for smaller values of fractional order 𝜌 showing the
significance of the memory index on disease dynamics.
9

Conclusion

In the last few decades, mathematical models have been used as a
useful tool to understand the complex dynamics and to determine the
future trend of an infectious disease. Although, the epidemic models
developed via classical integer order differential systems have its own
significance to explore a disease dynamics. But the mathematical model
designed through the fractional operators are more useful than the
ordinary case, due to data fitting, the memory effects and the crossover
behavior etc. We studied a new fractional model for understanding
the complex dynamics of Coronavirus in the Kingdom of Saudi Arabia
reported cases using non-singular kernel operator. We studied the
model and provided its mathematical results in details. We found that
the given model is locally asymptotically stable at the infection free
state when its threshold below 1. We used the nonlinear least square
method for the obtaining of parameters estimations and then provide
the good fit to the proposed data. We also proved the existence and
uniqueness criteria of the fractional COVID-19 model. The proposed
parameters obtained through estimation are considered further to ob-
tain its numerical results. We studied graphically the model equations
solution with memory index and found that the solution converges for
the arbitrary order. We then varied the important sensitive parameters
for different fractional orders. Reducing the fractional order, the num-
ber of infective compartment decreases well. The results obtained in
this paper through this fractional model can be useful further for the
scientists and researchers working on the COVID-19 infection in KSA.
The results can be useful to have the policy for the future spread and
control of Coronavirus in the country.



Results in Physics 25 (2021) 104240E. Alzahrani et al.
CRediT authorship contribution statement

Ebraheem Alzahrani: Investigation, Conceptualization, Methodol-
ogy, Formal analysis, Validation, Visualization, Software. M.M. El-
Dessoky: Software, Data curation, Investigation, Methodology, Visual-
ization, Writing - original draft, Conceptualization, Validation, Writing
- review & editing, Formal analysis. Dumitru Baleanu: Visualization,
Software, Validation, Formal analysis, Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This project was funded by the Deanship of Scientific Research
(DSR) at King Abdulaziz University, Jeddah, Saudi Arabia under grant
no. (KEP-MSC-33-130-41). The authors, therefore, acknowledge with
thanks DSR for technical and financial support.

References

[1] World Health Organization Coronavirus disease (COVID-19) technical
guidance. 2020, https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/technical-guidance. Accessed 30th June 2020.

[2] Center for Disease Control and Prevention (CDC), https://www.cdc.gov/
coronavirus/2019-ncov/index.html.

[3] World Health Organization. 2020, https://www.who.int/emergencies/diseases/
novel-coronavirus-2019. Accessed 28th August 2020.

[4] Ullah S, Khan MA. Modeling the impact of non-pharmaceutical interventions on
the dynamics of novel coronavirus with optimal control analysis with a case
study. Chaos Solitons Fractals 2020;110075.

[5] Asamoah JKK, Owusu M, Jin Z, Oduro F, Abidemi A, Gyasi EO. Global stability
and cost-effectiveness analysis of COVID-19 considering the impact of the
environment: using data from Ghana. Chaos Solitons Fractals 2020;110103.

[6] Okuonghae D, Omame A. Analysis of a mathematical model for COVID-19
population dynamics in Lagos, Nigeria. Chaos Solitons Fractals 2020;110032.

[7] Wu J, Tang B, Bragazzi NL, Nah K, McCarthy Z. Quantifying the role of
social distancing, personal protection and case detection in mitigating COVID-19
outbreak in Ontario, Canada. J Math Ind 2020;10(1):1–12.

[8] Podlubny I. Fractional differential equations: an introduction to fractional deriva-
tives, fractional differential equations, to methods of their solution and some of
their applications, Vol. 198. Elsevier; 1998.

[9] Caputo M, Fabrizio M. A new definition of fractional derivative without singular
kernel. Prog Fract Differ Appl 2015;1(2):73–85.
10
[10] Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-
singular kernel: theory and application to heat transfer model. Therm Sci p.
763–9.

[11] Ullah S, Khan MA, Farooq M, Hammouch Z, Baleanu D. A fractional model for
the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete
Contin Dyn Syst-S 2019;975.

[12] Baleanu D, Jajarmi A, Bonyah E, Hajipour M. New aspects of poor nu-
trition in the life cycle within the fractional calculus. Adv Difference Equ
2018;2018(1):1–14.

[13] Atangana A, Koca I. Chaos in a simple nonlinear system with Atangana–Baleanu
derivatives with fractional order. Chaos Solitons Fractals 2016;89:447–54.

[14] Atangana A. Non validity of index law in fractional calculus: A fractional
differential operator with Markovian and non-Markovian properties. Physica A
2018;505:688–706.

[15] Ullah S, Khan MA, Farooq M. Modeling and analysis of the fractional HBV model
with Atangana-Baleanu derivative. Eur Phys J Plus 2018;133(8):313.

[16] Taneco-Hernández MA, Vargas-De-Leon C. Stability and Lyapunov functions
for systems with Atangana–Baleanu caputo derivative: An HIV/AIDS epidemic
model. Chaos Solitons Fractals 2020;132:109586.

[17] Khan MA, Ullah S, Kumar S. A robust study on 2019-nCOV outbreaks through
non-singular derivative. Eur Phys J Plus 2021;136(2):1–20.

[18] Khan MA, Atangana A. Modeling the dynamics of novel coronavirus (2019-nCov)
with fractional derivative. Alexandria Eng J 2020.

[19] Baleanu D, Mohammadi H, Rezapour S. A fractional differential equation model
for the COVID-19 transmission by using the Caputo–Fabrizio derivative. Adv
Difference Equ 2020;2020(1):1–27.

[20] Tuan NH, Mohammadi H, Rezapour S. A mathematical model for COVID-19
transmission by using the Caputo fractional derivative. Chaos Solitons Fractals
2020;110107.

[21] Atangana A. Modelling the spread of COVID-19 with new fractal-fractional
operators: Can the lockdown save mankind before vaccination? Chaos Solitons
Fractals 2020;136:109860.

[22] Khan MA, Atangana A, Alzahrani E, et al. The dynamics of COVID-19 with
quarantined and isolation. Adv Difference Equ 2020;2020(1):1–22.

[23] Oud MAA, Ali A, Alrabaiah H, Ullah S, Khan MA, Islam S. A fractional order
mathematical model for COVID-19 dynamics with quarantine, isolation, and
environmental viral load. Adv Difference Equ 2021;2021(1):1–19.

[24] Chu Y-M, Ali A, Khan MA, Islam S, Ullah S. Dynamics of fractional or-
der COVID-19 model with a case study of Saudi Arabia. Results Phys
2021;21:103787.

[25] Alqarni MS, Alghamdi M, Muhammad T, Alshomrani AS, Khan MA. Mathematical
modeling for novel coronavirus (COVID-19) and control. Numer Methods Partial
Differential Equations 2020.

[26] P.P. 1950-2020, https://www.worldometers.info/world-population/saudi-arabia-
population/.

[27] Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission. Math
Biosci 2002;180(1–2):29–48.

[28] Matignon D. Stability results for fractional differential equations with ap-
plications to control processing. In: Computational engineering in systems
applications, Vol. 2. France: Lille; 1996, p. 963–8.

[29] Toufik M, Atangana A. New numerical approximation of fractional derivative
with non-local and non-singular kernel: application to chaotic models. Eur Phys
J Plus 2017;132(10):444.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb4
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb4
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb4
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb4
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb4
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb5
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb5
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb5
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb5
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb5
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb6
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb6
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb6
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb7
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb7
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb7
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb7
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb7
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb8
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb8
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb8
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb8
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb8
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb9
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb9
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb9
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb11
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb11
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb11
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb11
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb11
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb12
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb12
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb12
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb12
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb12
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb13
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb13
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb13
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb14
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb14
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb14
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb14
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb14
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb15
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb15
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb15
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb16
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb16
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb16
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb16
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb16
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb17
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb17
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb17
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb18
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb18
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb18
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb19
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb19
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb19
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb19
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb19
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb20
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb20
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb20
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb20
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb20
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb21
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb21
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb21
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb21
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb21
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb22
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb22
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb22
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb23
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb23
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb23
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb23
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb23
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb24
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb24
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb24
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb24
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb24
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb25
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb25
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb25
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb25
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb25
https://www.worldometers.info/world-population/saudi-arabia-population/
https://www.worldometers.info/world-population/saudi-arabia-population/
https://www.worldometers.info/world-population/saudi-arabia-population/
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb27
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb27
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb27
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb27
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb27
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb28
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb28
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb28
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb28
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb28
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb29
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb29
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb29
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb29
http://refhub.elsevier.com/S2211-3797(21)00381-8/sb29

	Mathematical modeling and analysis of the novel Coronavirus using Atangana–Baleanu derivative
	Introduction
	Some basics of fractional calculus
	Integer order model
	Estimation of parameters

	The COVID-19 model in fractional case
	Theoretical investigations of the fractional model
	Biologically-feasible region
	Model equilibria
	Existence of EE
	Stability results of DFE
	Existence and uniqueness of the solution

	Numerical solution of the ABC model
	Simulations and discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


