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ABSTRACT In this article, multi-objective trajectory planning has been carried out for a quadrotor carrying
a slung load. The goal is to obtain non-dominated solutions for path length, mission duration, and dissipated
energy cost functions. These costs are optimized by imposing constraints on the slung-load quadrotor
system’s endpoints, borders, obstacles, and dynamical equations. The dynamic model of a slung-load
quadrotor system is used in the Euler-Lagrange formulation. Although the differential flatness feature is
mostly used in this system’s trajectory planning, a fully dynamic model has been used in our study. A new
multi-objective Genetic Algorithm has been developed to solve path planning, aiming to optimize trajectory
length, mission time, and energy consumed during the mission. The solution process has a three-phase
algorithm: Phase-1 is about randomly generating waypoints, Phase-2 is about constructing the initial non-
dominated pool, and the final phase, Phase-3, is obtaining the solution. In addition to conventional genetic
operators, simple genetic operators are proposed to improve the trajectories locally. Pareto Fronts have been
obtained corresponding to exciting scenarios. The method has been tested, and results have been presented
at the end. A comparison of the solutions obtained with MOGA operators and MOPSO over hypervolume
values is also presented.

INDEX TERMS Multiobjective optimization, slung-load quadrotor system, trajectory planning.

NOMENCLATURE
C ∈ R3 : Configuration space.
Cobs ∈ R3 : Configuration space for obstacles.
Cfree ∈ R3 : Obstacle-free configuration space.
E : Consumed energy.
f : The lifting force.
fm : Objective function vector.
xq : The position vector of quadrotor’s center

of mass with respect to (wrt.) inertial
frame.

xl : The position vector of load wrt. inertial
frame.

x : State vector.
Mφ : Roll moment acting on the quadrotor.
Mθ : Pitch moment acting on the quadrotor.
Mψ : Yaw moment acting on the quadrotor.
ωj : The angular velocity of rotor j.
Kf : Force-constant.
KM : Moment-constant.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Tang .

R : The rotation matrix from Body Frame to
Inertial Frame.

� : The angular velocity.
I : The inertia matrix.
mq : The mass of the quadrotor.
l : Length of Rope.
ml : The mass of the load.
φ : The roll angle.
φmin : Lower bound for the roll angle.
φmax : Upper bound for the roll angle.
θ : The pitch angle of the quadrotor.
θmin : Lower bound for the pitch angle.
θmax : Upper bound for the pitch angle.
pT : The unit vector from the quadrotor to load

in the inertial frame.
u : The vector that defines a Maneuver.
Tmission : Scenario duration.

I. INTRODUCTION
The use of quadrotors is increasing day by day. One of the
tasks quadrotors are employed recently is load transportation.
One can equip a quadrotor with a gripper mechanism or
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connect the load mass to a quadrotor with some wire (slung-
load) to transport a load. The gripper mechanism adds to the
quadrotor’s total mass [2]; that is why the slung-load method
is preferred. Besides, the gripper mechanism needs additional
controllers and consumes energy while doing its job, which
means it is more expensive to carry a load. Alternatively, it is
preferred that the quadrotor takes the load with a tied rope
or wire. In [1], this type of transportation task was carried
out with unmanned helicopters; the helicopter-like systems’
mathematical models and controller designs were examined
for different wire connections.

It is possible to examine the literature on manipulating
slung-load unmanned aerial vehicles, mainly in two cat-
egories. Studies in the first category are concerned with
designing controllers for tracking desired payload trajecto-
ries [5], [7]–[9], and [17]. On the other hand, studies in the
second category are trajectory planning studies to optimize
a particular objective function [3], [6], [15], [18], and [19].
Our study belongs to the second category. For an extensive
summary of load transportation studies using quadrotors,
a recently published survey [3] can be investigated.

We think that in trajectory planning, usually, there is
more than one criterion involved with the problem either
directly or indirectly [29], [30]. There are studies to opti-
mize objective functions such as minimum swing angles of
load [6], [15], and [16], minimum mission time [24], and
minimum energy [21], [22]. In [23], an objective function
emphasizing the tradeoff between mission time and dissi-
pated energy were investigated. Interestingly, there is no
study aiming to optimize multiple objectives simultaneously
to the best of our knowledge. It is one of our research con-
tributions. The trajectory planning for a quadrotor slung-load
system is investigated under numerous goals such as mission
duration, path length, and dissipated energy.

Although there are many studies [5], [12]–[14] that advo-
cate doingmulti-objective path planning, most of them imple-
ment scalarization (weighted sum of multiple objectives are
considered). For example, [5] aims to minimize the mission
completion time, which is the sum of the time to set up a com-
munication and find a target. They do not consider these two
times separately; instead, they assign weights to prioritize.
An online trajectory planning algorithm is proposed in [16]
and [17] to minimize the load swing and target position-
ing error. Although there are multiple goals, the problem is
not approached as multi-objective optimization; instead, the
problems are handled separately.

Studies utilize the multi-objective optimization approach
to solve trajectory planning problems to optimize path length,
path safety, and path smoothness on the grid map without
considering the vehicle dynamics constraints [26]. In [3], the
firefly algorithm has been proposed to optimize objective
functions [26]. Although a different application is discussed
in [35] than the one we have covered in this study, a
framework is proposed that makes good use of the con-
cept of multi-objective optimization. Our study, conceptually
similar to [35], aims to optimize more than one objective

simultaneously in the trajectory planning problem for quadro-
tor slung-load system makes the problem even more difficult.

Quadrotor slung-load system is an under-actuated system
with eight degrees of freedom and four control inputs (i.e.,
it is challenging to obtain a trajectory plan even for only one
of the objectives mentioned above). Furthermore, simultane-
ously optimizing more than one objective function makes the
problem even more difficult.

Our aim here is to find out how to create a solution to
optimize the length of trajectory, mission time, and energy
consumed during the mission simultaneously. Intuitively, it is
easier to understand that system will spend more energy on
the fastest trajectory. However, it is helpful to make a few
explanations regarding the relationship between ‘‘mission
time and path length’’ and ‘‘path length and energy spent’’
objectives. The fastest trajectory may not be the shortest one
because there are obstacles in the environment. It may be
necessary to maneuver too much on the shortest trajectory.
Since it may be required to accelerate and slow down during
these maneuvers, we cannot say that the shortest trajectory is
the least energy expenditure.

Even though these objective functions may not be com-
pletely conflicting, they are not entirely supportive of others.
For example, as shown in Section 5, Figure 14, minimum
length, minimum energy, and minimum time trajectories are
different. In addition, a slight change in consumed energy
immediately resulted in entirely different paths. Usually,
there is no single solution that simultaneously optimizes
each objective. Alternatively, it is possible to combine the
individual objective functions into a single objective using
suitable weights. Here the critical question is how one should
select these weights. In this case, we will have a single
optimum solution rather than a set of ‘‘non-dominated’’ solu-
tions that can be examined for further tradeoffs (i.e., a set of
non-dominated solutions is found corresponding to all possi-
ble weight selections). The collection of these non-dominated
solutions is called the Pareto optimal set or Pareto-front [28].
In this set, solutions are non-dominated (i.e., none of the
objective functions can be improved in value without degrad-
ing some of the other objective values) concerning each other.
While moving from one Pareto solution to another, there is
always a certain amount of sacrifice in at least one objec-
tive(s) to achieve a certain amount of gain in the other(s).
Pareto optimal solution sets are often preferred to single
solutions because they can be practical when considering
real-life problems.

A solution’s superiority over other solutions is easily
determined in the single-objective optimization problem by
comparing their objective function values. In multi-objective
optimization problems, the quality of a solution is determined
by the importance of the optimization criteria. By investi-
gating the Pareto-front, it is easy to observe how different
objectives change as one moves on the Pareto-front. On the
other hand, if one optimizes a weighted sum of objectives,
only a point on the Pareto-front is found; one does not know
what happens to the overall objectives if one of the weights is
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slightly perturbed. There are many disadvantages to solving
multi-objective problems with classical optimization meth-
ods [28]. Genetic Algorithms (GA) are frequently preferred
in the solution of multi-objective optimization problems [27].
Our study used a GA-based algorithm by customizing the
genetic operators for the problem at hand.

As stated in [36], where constrained path planning problem
is examined, Evolutionary Algorithm (EA) is of great interest
in solving such problems. Moreover, while algorithms such
as SQP, IPM, which require numerical gradients, only guar-
antee convergence to the local optimum, heuristics are gen-
erally more likely to find the optimal result [33], [36]–[39].
In [33], it is underlined that PSO (Particle Swarm Opti-
mization) requires less number of function evaluations
among EAs. In [36], it is stated that direct application of
MOPSO [45], [48] to the problem is lacking in finding better
values for constraint compliance and objective functions. For
this reason, a biased search towards the feasible region is
proposed in [36]. Similar to the study we carried out in this
article, modifications were made to the classical algorithm.
In this context, in our study, not only a biased search appli-
cation towards a feasible region but also an initial popula-
tion has been generated in this way. In our study, we used
only the main structure of GA as a base since it provides
a more suitable structure than other EAs for describing the
problem-specific operators. In [29] and [30], it is stated that
it is vital to use problem-specific (mutation-like) operators to
reach a global optimum when dealing with these challenging
problems.

We believe that our approach yields many original
contributions;

1. Trajectory planning as a multi-objective optimization
problem for competing costs (energy, time, and length)
was solved using a slung-load quadrotor system for the
first time (to the best of our knowledge).

2. A new and successful Genetic Algorithm was devel-
oped for this problem (details of the algorithm are
presented in Section 4). In trajectory planning prob-
lems, optimization variables are implicitly depen-
dent, and the degree of dependence increases as one
moves along the trajectory. The proposed approach
almost completely removes this dependency between
optimization variables.

3. Problem-dependent mutation-like operators were
developed to avoid obstacles and to improve cost vec-
tors locally.

The rest of the paper is organized as follows; Firstly, the
problem definition is given in Section II. Secondly, a dynamic
model of a slung-load quadrotor system is described in
Section III. Thirdly, the details of the proposed trajectory
planner are given in Section IV. Section V contains the
resultant trajectories of the slung-load quadrotor system and
Pareto Front. Performance comparison with classical GA and
PSO algorithms and the analysis of gaps in Pareto Front
are given in Section VI. Then, all sections are concluded
in Section VII.

II. PROBLEM DEFINITION
Problem definition and associated assumptions are given
below. Here we start with the assumptions first:
• The load is a point-mass,
• The cable is massless, and it is not stretchable,
• The cable is attached to the center of mass of the quadro-
tor,

• The cable is under tension throughout the mission.
Next is the optimization problem we are supposed to deal

with:

min
u

fm (u) = (f1 (u) , f2 (u) , f3 (u))
T

subject to

State equations (Eq.5 − Eq.10)

LB ≤ u ≤ UB

xq = xqinitial at t = 0

xq = xqfinal at t = Tmission
xq, xl ∈ Cfree ∀t ≤ Tmission
φmin ≤ φ ≤ φmax ∀t ≤ Tmission
θmin ≤ θ ≤ θmax ∀t ≤ Tmission (1)

where f1 (u) , f2 (u) , f3 (u) are the objective functions corre-
sponding to the length of the path, total mission time, and
energy consumed during the mission.

f1 (u) =
∑NL

i=1
|
∣∣xq (i)− xq (i− 1)

∣∣ | (2)

where NL is the number of points along a trajectory and can
be calculated NL = 100 ∗ Tmission. The time step size of the
simulation is 0.01 s.

The duration of the mission time can be determined at the
end of the trajectory construction procedure (Tmission).

f2 (u) = Tmission (3)

The vector u consists of the control inputs (i.e., control
forces and moments acting on the quadrotor). The number of
time instances these control inputs are supposed to be applied
on the quadrotor. The vectors LB and UB are the lower and
upper bounds of u. Cfree = C\Cobs ∈ R3 is obstacle-free con-
figuration space (Figure 1).We also impose the constraints on
roll (φ) and pitch (θ ) angles of the quadrotor. The initial and
final points of the trajectory are given as input to the problem.
It should be noted the mission duration (i.e., Tmission) is a free
variable.

III. DYNAMIC MODEL OF A SLUNG-LOAD
QUADROTOR SYSTEM
In this section, the 3D dynamic model for the slung-load
quadrotor system will be described. We start with the coordi-
nate system definitions in the mathematical model, as shown
in Figure 2. The mathematical model used in this study is
borrowed from [9], and the detailed derivation of this model
can be found there. This model is differentially flat, and the
flat outputs are the position of the load and the yaw angle of
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FIGURE 1. Sample scenario.

the quadrotor. Unlike [9], the full 3D dynamic model is pre-
ferred over the flat model since we imposed constraints on the
quadrotor’s location and attitude. Additionally, different from
previous studies [5], [6], and [18], we do trajectory planning
for both the load and the quadrotor to avoid obstacles. The
state vector is; x (t) =

[
xTL p

T R ẋTL ṗ
T�T ]

∈ R18 where xTL
is the position vector of load and pT is the unit vector from
the quadrotor to load in the inertial frame. The input vector is
v =

[
f Mφ Mθ Mψ

]T where f is the lifting force acting on the
system and Mφ,Mθ ,Mψ are roll, pitch, and yaw moments,
respectively (see Figure 2).

v =


f
Mφ

Mθ

Mψ

 =

Kf Kf Kf Kf
0 −Kf 0 Kf
Kf 0 −Kf 0
KM −KM KM −KM



ω2
1

ω2
2

ω2
3

ω2
4


(4)

where ωj, (j = 1, 2, 3, 4) is the angular velocity of rotor j,
Kf aerodynamic force constant, KM aerodynamic moment
constant. Themathematical model equations are given below:

d
dt
xL = ẋL (5)

d
dt
ẋL =

1
mq + ml

(
p.fRez − mql ||ṗ||

)
p−gez (6)

d
dt
p = ṗ (7)

d
dt
ṗ =

1
mql

(p× (p× fRez)− | |ṗ| |p (8)

d
dt
R = R�̂ (9)

d
dt

� = I−1(M−�× I�) (10)

where R is the rotation matrix from Body Frame to Inertial
Frame, � is the angular velocity of the quadrotor. I is the
inertia matrix, and mq and ml are the mass of the quadrotor
and the load, respectively. �̂ is the skew-symmetric matrix
described in [41]. The energy equation, a function of rotor

speeds and accelerations given in [20], has been used to
calculate the quadrotor’s energy consumed during a mission.

f3 (u) = E =
∫ tfinal

0

∑4

j=1

Ir ω̇j (t)+ Kf ω2
j

gr,j
(
ω̇j (t) , ωj (t)

)ωj (t) dt
(11)

IV. TRAJECTORY PLANNER
As stated earlier, the trajectory planning problem discussed
in this study is expressed as a multi-objective optimization
problem. A set of ‘‘non-dominated’’ [28] solution vectors are
to be obtained. It is advisable to represent the Pareto front
by a high number of non-dominated vectors. On the other
hand, we expect them to be evenly distributed throughout the
front. The nature of Genetic Algorithms (GA) is very suitable
for solving multi-objective optimization problems [2], which
is why a modified GA is developed and used in this study.
As emphasized in [32], it is very effective to handle the
problem using several stages in constraint trajectory planning
problems.

FIGURE 2. Slung-load quadrotor system coordinate frames.

The structure of a chromosome is shown in Figure 3.
It consists of slots, each of which defines a maneuver. Each
slot contains control inputs (u = [v NoS]) and a variable
(NoSi i = 1, 2, . . . ,N) that keeps information about how
many time steps these control inputs are to be applied.

The maximum number of maneuvers is constant. Thus,
while the chromosome length remains constant, the total
mission duration is not persistent. We present some of the
parameters we use in the scenarios below;
• The size of the Population is 150.
• The length of each Chromosome is at most 500 (i.e., 100
slots × 5 variables).

• The step size in our simulations is 0.01 seconds.
• The maximum number of generations is 1000.
Reasonable initial estimates can produce better solutions

with faster convergence if we have prior knowledge of

155006 VOLUME 9, 2021



H. Ergezer: Multi-Objective Trajectory Planning for Slung-Load Quadrotor System

FIGURE 3. Chromosome structure.

FIGURE 4. Points are found randomly between the starting and final
points without obstacle violation.

the problem or can be produced at a low computational
cost [46], [47]. The method of using good initial estimates
is called seeding. In [46], five different algorithms were
tested on 48 optimization problems using different seeding
methods, and their performance was examined. It has been
shown that the seeding process based on prior knowledge
significantly reduces the computational cost. We did not ran-
domly generate the initial population. Instead, it is obtained
by using waypoints obtained by removing some randomly
generated points out of the obstacle zone that does not violate
the obstacles. In Phase 2, a structure was created between
these waypoints so that the chromosome length gets longer
and longer to reach the endpoint goal. In this way, when we
come to Phase 3, not all individuals in the initial popula-
tion have the same fitness value. In cases where the initial
population is randomly generated, as noted in [28], nearly

all MOEAs evaluate all solutions of the first non-dominant
front equally, assigning a similar or similar fitness to all
individuals in the initial population. Neither of these solutions
has a choice advantage. Naturally, it will take longer for
the EAs to advance the search towards the Pareto optimal
region. This search is difficult to achieve in the problem we
consider, especially in complex scenarios, due to compelling
dynamic constraints. Fortunately, the initial population gen-
eration technique in the proposed method greatly reduces
the probability of not finding a solution in cases where the
solution is very difficult to find.

A. PHASE-1 RANDOMLY GENERATED WAYPOINTS
To find non-dominated trajectories more quickly, we found
waypoints between the starting and the final points without
obstacle violation (Figure 4). These waypoints have been
found by generating random points in polar coordinates.
In particular, first, a radial line making an arbitrary angle
to the radial line connecting the starting point [0 0 3]Tand
final point [40 40 10]T is generated. Next, points are
created randomly along this line. If it exists, obstacles can
be handled by moving these randomly generated points into
the feasible region to have a pre-defined margin with the
obstacles (Figure 4).

Although about 10 - 15 solutions are usually sufficient in
real applications, the population size must be chosen much
larger due to the nature of EA algorithms. Population size
should be determined according to the complexity of the
problem and the number of decision variables [44]. Popula-
tion sizing is an iterative process; however, the graph based
on the randomly generated population, given in [28 pp.403],
can be used as a good starting point to determine the pop-
ulation size. The initial population in our study has been
formed based on the data obtained at the former stages,
not completely random. Therefore, the population size has
been chosen as 150, aiming to find a nominal number of
trajectories between 10 and 15.

B. PHASE-2 INITIAL NON-DOMINATED
POOL CONSTRUCTION
One of the main difficulties in trajectory planning is that
any change in a specific point significantly impacts the tra-
jectory’s remaining parts. In other words, optimization vari-
ables are implicitly dependent, and the degree of dependence
increases as one moves along the trajectory [29].

The following idea can reduce this dependency; the tra-
jectory is constructed stepwise. At each step, new waypoints
are considered (Figure 5 and Figure 6). Equivalently, new
slots are added to each Chromosome’s end at each step,
depending on the number of waypoints considered. Even
though the solution obtained in previous steps (except the first
step) is allowed to change within the algorithm’s structure,
it is observed that these changes are minimal. The operations
outlined above can be repeated for all trajectory candidates,
for all the waypoints on each trajectory are repeated, and
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FIGURE 5. The first step of the algorithm with k slots.

FIGURE 6. The ith step of the algorithm with additional m slots.

finally, one obtains the initial non-dominated chromosome
pool.

C. PHASE 3 MULTI-OBJECTIVE OPTIMIZATION
There are several multi-objective GA optimization codes
in the literature. The most well-known of these are NSGA
and NSGA-II [2]. NSGA-II is better than NSGA in terms
of computational cost and elitism. NSGA-II uses a fast
non-dominated sorting technique, an elitist-keeping tech-
nique, and a new niching genetic operator without parame-
ters [2]. In this study, we have implemented a multi-objective
optimization algorithm. This algorithm uses only the sorting
structure of the NSGA-II to find a non-dominated solution.
An important contribution of this study is that the chromo-
some length is variable, and the introduction of Phase-1 and
Phase-2 will result in a very fast algorithm.

D. PROBLEM SPECIFIC OPERATORS
One should be careful in applying the crossover operation;
the crossover points are selected between the slots.

Regularization Operation (RegOp) - Since the ranges
of force and moment inputs are different (between 20 N

FIGURE 7. The mutated part of the trajectory, ComMut operator, has been
applied, (a) trajectory before the operator, (b) trajectory after the
operator (T2 > T1).

and 35 N for force, ±0.5N.m for moments), it is not meant
to change the force and moment creating values in the same
range to mutate these inputs. For this reason, we perform
the mutation operations for force and moments separately.
The force and moment values have been changed per the
maneuver to be made.
The number of Step Mutation (NoSMut) - As the NoS val-

ues are integers, a different mutation operator is also defined.
By mutating these values, one can change the total mission
duration. Again, this operator affects the dissipated energy
by the quadrotor.
Combined Mutation (ComMut) – In this mutation opera-

tion, NoS is increased/decreased, and the objective functions
are minimized by increasing or decreasing the force and
moment values accordingly. Figure 7 presents this operator’s
effect; the slung-load quadrotor positions are plotted during
that particular time interval. The operator decreases the NoS
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Algorithm Trajectory Planner
1: MAIN
2: Inputs: xqinitial , xqfinal

Cfree∈ R3,Cobs∈ R3

3: Outputs: u = [v NoS]
4: Call Phase-I
5: Call Phase-II
6: Call Phase-III
7: End MAIN

8: Phase-I #RGW
Input: Cobs∈ R3, and NoRP # Number of Random Points.

9: NoRS # Number of Random point set.
Output: RPs #Random points between xqinitial , xqfinal

10: θ = arctan(
xqfinal (2)−xqinitial (2)
(xqfinal (1)−xqinitial (1)

)

11: r =
√(

xqfinal (2)− xqinitial (2)
)2
+
(
xqfinal (1)−xqinitial (1)

)2
12: For n:1 to NoRS

For k:1 to NoRP

12: θrandom = N (θ, 1) , drandom = N ( k∗r
NoRP , 1)

13: Call Obstacle_Violation(θrandom, drandom,Cobs)
14: If there is a violation Then
15: Move point to closest point in the feasible region.
16: End If
17: RPs(n, k) = (θrandom, drandom)
18: End For
19: End For
20: End Phase-I

21: Phase-II #Initial non-dominated pool construction
22: Input:Random Points generated in Phase-I

Output: Initial non-dominated solutions.
23: SetChromosome_Length to minimumLength
24: Set Chromosome to initial values.
25: Repeat For Each Random Point Set 1 to NoRS
26: For k:1 to NoRP-1

Call FindNDPaths(P (k) ,P (k+1) ,CL,PreviousPopulation)
27: # non-dominated solutions between Points P(k) and P(k + 1),

Points P are obtained in Cartesian coordinate from RPs.
28: Update CL # Chromosome_Length← Chromosome_Length
+ deltaLength

29: End For
30: End Repeat

Def: FindNDPaths()
31: Inputs: P (k) ,P (k+ 1) ,CL,PreviousPopulation

Outputs: Population
32: Initialize Population # Initialize Population by preserving

chromosome part for the previous path segment
For Each Member in Population Do

33: Call [x (t)Tmission]← SimulateDynamicModel(v) #Call
Simulink model for each input vector.

34: Call CheckForConstraintViolation #Discard paths if there is
obstacle or border violation.

35: Call CheckAngleConstraints(v) #check for the angle of the p
vector and penalize if the angle values exceed the defined limit.

36: Calculate fm (u)
37: Call NSGA-II_Sort # Find non-dominated solutions using

NSGA-II sort structure.
38: Call Crossover() # 64% of new population is generated
39: Call RollMutation() # 6% of new population is generated.
40: Call PitchMutation() # 6% of new population is generated.
41: Call ForceMutation() # 6% of new population is generated.
42: Call ComMut () # 12% of new population is generated.
43: Call NoSMut () # 6% of new population is generated.
44: End For
45: End FindNDPaths

46: Phase-III # Multi-objective optimization
Def: MOOP(xqinitial , xqfinal ,CL)

47: Inputs: Initial non-dominated solutions from Phase-II (Population)
Outputs: Non-dominated Solutions and corresponding paths.

48: For Each Member in Population Do
49: Call [x (t)Tmission]← SimulateDynamicModel(v) #Call Simulink

model for each input vector.
50: Call CheckForConstraintViolation #Discard paths if there is obstacle

or border violation.
51: Call CheckAngleConstraints(v) #check for the angle of the p vector and

penalize if the angle values exceed the defined limit.
52: Calculate fm (u)
53: Call NSGA-II_Sort # Find non-dominated solutions using NSGA-II

sort structure.
54: Call Crossover() # 64% of new population is generated
55: Call RollMutation() # 6% of new population is generated.
56: Call PitchMutation() # 6% of new population is generated.
57: Call ForceMutation() # 6% of new population is generated.
58: Call ComMut () # 12% of new population is generated.
59: Call NoSMut () # 6% of new population is generated.
60: End For
61: End MOOP

and increases the applied force simultaneously. While the
time spent in this part of the trajectory decreases, consumed
energy increases, but the path length remains constant for this
part.

Descriptions and probability rates for mutation operators
are;
• Roll Moment mutation: A chromosome is selected
randomly. One to eight slots are selected randomly
on the Chromosome. For each selected slot, the roll
moment value is changed by a randomly selected value
between +/− 10−4 N.m.
(Probability rate is %6).

• Pitch Moment mutation: A chromosome is selected
randomly. One to eight slots are chosen randomly
on the Chromosome. For each chosen slot, the Pitch
moment value is changed by a randomly selected value
between +/− 10−4 N.m.
(Probability rate is %6).

• Force mutation: A chromosome is selected randomly.
One to eight slots are chosen randomly on the
Chromosome. A randomly selected value changes the
force value between +/− 0.5 N for each selected slot.
(Probability rate is %6).

• Step number mutation (NoSMut): A chromosome is
selected randomly. One to eight slots are chosen ran-
domly on the Chromosome. For each selected slot, the
number of steps value is changed by ±1.
(Probability rate is %6).

• Combined Mutation (ComMut): Described earlier.
(Probability rate is %12).

The reason for changing the moments in these intervals
is the dynamic constraints of the vehicle. The leaning angles
of the vehicle must be within certain limits. Therefore, even if
we give higher torque values, the vehicle will not fulfill these
commands. We could have given it in lower steps, but it takes
longer to find the result this time. For Force, choosing the
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steps too small increases the time required to achieve results.
We could have given larger force values, but in this case, when
there is a velocity component in the horizontal, it increases the
oscillation of the load by performing sudden accelerations,
thus resulting in a long time to get the result.

It is not very important to choose 4% or 8% of the pro-
portional values of the operators. Thanks to the robustness
that the operators we define provide to GA, the effect of
these choices on performance is almost equal. Increasing the
ratio of these operators too much would be against the GA
structure.

V. RESULTS
The simulations of case studies investigated in our approach
were made using MATLAB/Simulink. The state equations
(differential equations) and constraints have been taken care
of implicitly by the Simulink solver. The simulations run
on the personal computer, with processor configuration:
3 GHz, Memory (RAM): 32 GB. The overall algorithm takes
3612.145 s for the 1st Scenario and 3686.104 s for the 2nd Sce-
nario. But the dynamic simulation of the quadrotor slung-load
system’s model takes about 75% of the total time.

The method described in the previous sections has been
tested and associated with Pareto Fronts for two exciting
scenarios. The trajectories corresponding to some interesting
points on Pareto Fronts have been given. The trajectories
shown in these figures are essentially just one element of
a trajectory set. Trajectories, which are in the same set, are
similar in general shape. Since there are minor differences
between trajectories, we prefer to present only one of them;
giving the others would not make much sense.

The region for the first Scenario is shown in Figure 8. The
borders of this region are defined as; [0 0 0]T ≤ [x y z]T ≤
[50 50 32]T . The region boundary bounds the obstacles’
height; the vehicle cannot fly over the obstacles. We try to

FIGURE 8. Resulting trajectory corresponding to the non-dominated
solution in terms of path-length (3D view).

construct a relatively complicated region of interest to get
more interesting Pareto Fronts at the end.

The quadrotor’s starting point is [0 0 3]T, and the rope’s
length is 1 meter. The final point of the quadrotor is [40 40
10]T in meters. In Figures 8 and 9, obstacles are shown in
blue, borders of the region are shown in yellow, the quadrotor
is in black, the load is in blue, and the rope is in red.

In Figure 9, one can observe the enlarged view of the
trajectory of the slung-load quadrotor system.

One can observe in Figure 10 that the Pareto Front is a
disjoint set of points in R3 consisting of two space curves.
Please note that the objective function values in these figures
are normalized to visualize the Pareto Front better.

In Figure 11, the projection of the Pareto Front is taken onto
the Time vs. Energy plane. When the Path Length is removed
from the multi-objective cost, the resultant Pareto Front inR2

becomes as shown in Figure 12.
In Figures 10 to 15, the Pareto Front in R3 associated

with the multi-objective optimization problem in Scenario-1

FIGURE 9. The resulting trajectory for the 1st scenario (zoomed view).

FIGURE 10. Pareto Front for scenario-1.
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and its projections on different coordinate planes in R2 can
be observed. This Pareto Front has been obtained according
to path length, total mission time, and dissipated energy
minimizations.

We have performed a similar analysis when the Pareto
Front’s projection is taken onto the Energy vs. Path Length
plane (Figure 13). If the scenario duration is removed from
the multi-objective cost, the resultant Pareto Front in R2

becomes as shown in Figure 14. It is interesting to observe the
jump on the projected Pareto Front in this figure. The actual
trajectories corresponding to the points (Pareto Point-1,
Pareto Point-2 in Figure 14) at the beginning and the end
of this jump are shown in Figures 15 and 16, respectively.
It is important to note that the solution curves in Region-1
in Figure 14 are similar to those in Figure 15. Similarly, the
solution curves in Region-2 in Figure 14 are similar to the
curve in Figure 16.

FIGURE 11. Projection of the Pareto front on time vs. energy.

FIGURE 12. Pareto front when the path length is removed from the
multi-objective cost.

The 3D plot of the Pareto Front points is shown in
Figures 10, 11, and 13. Note that they are not Pareto Front
surfaces (contrary to their representations in those figures).
These figures have been obtained using the MATLAB func-
tion ‘‘scatteredinterpolant.’’

Since we normalized the objective function values
between 1 and 2, it does not give the maximum and minimum
values. Still, the mean and standard deviation values are given
in Table 1 for the first scenario.

We do not present the trajectory corresponding to Pareto
Point-3 explicitly because it is very similar to the one corre-
sponding to Pareto Point-2. The trajectory corresponding to
Pareto Point-4 is illustrated in Figure 18 (its 3D version is
shown in Figure 16).

In Figures 20 and 22, one can observe the global opti-
mum solution corresponding to energy and time, respectively.

FIGURE 13. Projection of the Pareto front on energy vs. path length.

FIGURE 14. Pareto front when the scenario duration is removed from the
multi-objective cost.
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The 3D representations of the paths in Figures 20 and 22 are
given in Figures 19 and 21.

Scenario-2 aims to construct obstacles so that jumps
in the resultant Pareto Front and the corresponding dif-
ferences in the solution trajectories will be more distinc-
tive. For example, in the Pareto Front for the 2nd Scenario
(Figure 23), the jump points are indicated as has been
done earlier. In Figures 25, 26, and 27, one can observe the
global-optimum trajectories corresponding energy (Pareto
Point-1), path-length (Pareto Point-2), and scenario duration

TABLE 1. Statistical objective results (1st scenario).

FIGURE 15. Resulting trajectory corresponding to the non-dominated
solution in terms of path-length (3D view).

FIGURE 16. Resulting trajectory corresponding to the non-dominated
solution in terms of path-length (3D view).

FIGURE 17. Resulting trajectory corresponding to the non-dominated
solution in terms of path-length (3D view).

(Pareto Point-3), respectively. Additionally, the 3D represen-
tation of the solution corresponding to the minimum length is
shown in Figure 24.

Since we normalized the objective function values
between 1 and 2, it does not give the maximum and minimum
values. Still, the mean and standard deviation values are given
in Table 2 for the second scenario.

It can be seen that the quadrotor slows down near the
obstacles (for example, see Figures 26 and 27). The effect
of this slowdown on the time objective function is obvious.
However, due to the possible accelerations and deceleration
before and after this slowdown, the effect of the energy
objective function may be different. We can compare this to
the fuel consumption in traffic; while the short-term red light
will slightly prolong our total driving time, the main effect

FIGURE 18. Resulting trajectory corresponding to the non-dominated
solution in terms of path-length (top view).
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FIGURE 19. The resulting path corresponds to the non-dominated
solution in terms of energy dissipation.

FIGURE 20. Resulting trajectory corresponding to the non-dominated
solution in terms of energy dissipation (top view).

FIGURE 21. Resulting trajectory corresponding to the non-dominated
solution in terms of scenario duration.

will be on fuel consumption due to stop-go or slow-speed
movements. The positions of the obstacles with respect to

each other are also factors that directly affect the path-length
objective function.

There is no study in the literature regarding the region of
interest complexity. We have proposed a method to measure
this complexity in our previous work [29], but this problem is
still open to solving. From this point of view, we can say that
obstacles are the most critical element in the trajectory plan-
ning problem. While determining the goal function, either
knowledge about the complexity of the region in it should
be produced or, as we suggest in our study, different goal
functions should be looked at together. This study aimed
to examine how different objective functions change when
different regions are in question.

We think it is necessary to emphasize Scenario-1 and
Scenario-2 covered in this study are pretty challenging.

FIGURE 22. Resulting trajectory corresponding to the non-dominated
solution in terms of scenario duration.

FIGURE 23. Pareto front for 2nd scenario, with the objective functions
scenario duration and energy.

VOLUME 9, 2021 155013



H. Ergezer: Multi-Objective Trajectory Planning for Slung-Load Quadrotor System

TABLE 2. Statistical objective results (2nd scenario).

FIGURE 24. Resulting trajectory corresponding to the non-dominated
solution in terms of scenario duration (3D view).

FIGURE 25. Top view of the resulting trajectory corresponding to the
non-dominated solution in terms of energy.

Therefore, finding a Pareto Front with sufficient points and
good spread with classical GA operators (i.e., MOGA) or
MOPSO. This situation is investigated in a less challenging
scenario (Scenario-3) using classical MOGA and MOPSO.
We also have tried to solve multi-objective problems given
in Scenario-1 and Scenario-2 by increasing the maximum
number of generations to ten times that of our algorithm.
They could only find trajectories given in Figure 28; they
could not find the paths advancing through the obstacles as

FIGURE 26. Resulting trajectory corresponding to the non-dominated
solution in terms of path-length, top view of the trajectory shown in
Figure 21.

FIGURE 27. Resulting trajectory corresponding to the non-dominated
solution in terms of time.

given in Figure 29. It cannot find the paths advancing through
obstacles as given in Figure 26 and Figure 27. We tried to
exemplify this situation through a less challenging scenario
(Scenario-3) using MOGA and MOPSO.

In Figure 28, one can see from this figure; the slung-load
quadrotor system reaches the final point by passing as close
as possible to the obstacles thanks to the problem-specific
operators. So, this solution dominates the solutions obtained
using MOGA and MOPSO. In MOGA and MOPSO, it can
find the trajectories that do not require too many maneuvers.
Still, these two classical methods cannot solve complex tra-
jectories, such as the route given in Figure 29.

We optimized the controller design for the Quadrotor
slung-load system in the previous study [49]. Within the
scope of this study, it is checked that the results are insensitive
to the quadrotor controller’s parameters as long as they are
within 20% of the nominal parameters.
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FIGURE 28. Resulting trajectories obtained using MOGA (yellow), MOPSO
(blue), and the proposed method (pink).

FIGURE 29. Resulting trajectory for the 3rd scenario obtained by the
proposed method. MOGA and MOPSO cannot find a solution similar to
this trajectory family.

Underlining the situation that the MOGA and MOPSO
cannot find some trajectories that our proposed method can
find, we compare the computation time required for an iter-
ation of our method with the computation time required
for an iteration of other algorithms over the 3rd scenario.
Since our method performs extra calculations such as com-
bined mutation, one iteration takes 1.6418 s, excluding
model runs. For MOGA, this time is 1.4321 s; for MOPSO,
it is 1.2123 seconds. Although the single iteration times are
shorter, the number of iterations required to find similar
trajectories is higher in MOGA and MOPSO. Hence, the
total times are higher for these methods. Essentially, for this
comparison to be more meaningful, all algorithms should
have been able to find similar route families.

VI. PERFORMANCE EVALUATIONS
In single-objective optimization, it is reasonably easy to
measure the quality of a particular solution; if the problem
under consideration is a minimization problem, the smaller
the objective function value, the better. However, evaluating

the quality of a Pareto set of solutions also requires examining
several criteria, and 57 performance indicators are exam-
ined [42]. In our study, hypervolume [36], [43] is preferred
to compare the proposed method with other methods. The
hypervolume metric is sensitive to the scales of the objective
functions; it is suggested to evaluate the [28] metric using
normalized objective function values. Actually, in the Pareto
Fronts, objective functions are evaluated as normalized val-
ues. Hypervolumes have been calculated using (Eq. 12) with
normalized values [42].

HV (P, r) = L
(⋃

p∈P
[p; r]

)
(12)

where P is the Pareto front approximation, r is the reference
point dominated by all points in P, and L is the Lebesgue
measure.

TABLE 3. Hypervolume results obtained from scenario-3 (reference
point (2, 2, 2).

The gaps in the Pareto Fronts need special attention,
as stated in [37]. We need to determine whether these
gaps are due to the nature of the problem or an error
in the algorithm. As mentioned earlier, there are two
goals in the Multi-objective optimization problem: finding
a well-converged and well-distributed set of Pareto-optimal
solutions and choosing a single preferred solution from this
set. Therefore, it must be determined that there is no solution
(i.e., trajectory) associated with these gaps. A method for this
issue is proposed in [37]. In the first stage of this method, it is
investigated whether there is a gap or not. An Automated Gap
finding procedure described in [37] has been used to find gap
points (Gj j = 1, 2, . . . ,M). At the second stage, using the
following two equations, we can find whether these gaps are
formed due to the nature of the problem [37]. The method
given in [40] has been used to find R near-PO point (i.e., RF i)

dGE =
1
M

∑M
i=1 (minNj=1

(∥∥Gi − Fj∥∥2 )
1
N

∑N
i=1

(∥∥Fi − Fj∥∥2 ) (13)

The metric dGE is the average normalized distance of gap-
points Gi from their closest points on Pareto Optimal front
Fj to the points on the Pareto Optimal. If this metric value
is more significant than one (i.e., dGE > 1), the obtained
gap-point can be confirmed to exist.

dRG =
1
R

∑R

i=1

minKj=1
∥∥RF i − Gj∥∥2

minNj=1
∥∥RF i − Fj∥∥2 (14)

The metric dRG is the average distance RF i points to the
gap-point compared to their distance from points on Pareto
Optimal front. If dRG > 1 there exists a natural gap in the
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Pareto-set, and it means it is impossible to find any solution
in the gap region. If dRG < 1 the observed gap is not natural;
it is due to the problems in the algorithm. The metric dRG
is calculated as 1.151 and 1.782 for the first and the second
scenarios, respectively.

VII. CONCLUSION
In this study, multi-objective trajectory planning has been
implemented for a slung-load quadrotor system. The path
length, scenario duration, and the dissipated energy are
taken as objectives (costs). In the literature, multi-objective
optimization problems are frequently solved by transform-
ing them into a single-objective optimization problem for
a weighted sum of costs (scalarization). However, deter-
mining proper weights for scalarization is an arduous task.
Also, the scalarization approach prevents the investigation of
the problem strategically from the perspective of objectives.
In our practice, we can easily choose the proper weights by
observing, especially the points corresponding to jumps on
the Pareto Front (whenever hops exist).

We think that Pareto Front must be obtained before con-
verting from a multi-objective optimization problem to a
single objective problem in the type we have discussed here,
where more than one objective is essential, and the impor-
tance of these objectives may vary according to the mission to
be performed. As we emphasized in the results section, there
may be points where we can’t solve the problem by giving
different weights to the single objective function. Therefore,
before looking for a solution to the problem, we need to see
a solution, if any.

Using the Pareto front, one may determine a point with
short mission duration, sufficiently small energy expenditure,
and not too long path length. Then, we can find the associated
trajectory together with planned input. Finally, the physical
vehicle is run with these inputs (Actually, assuming the vehi-
cle has an autopilot, the obtained trajectory will be used as a
guidance command for the autopilot).

One could add safety to these objective functions (can
be considered the load’s swing angle). However, we added
this as a constraint in our problem. In the future, trajectory
planning can be performed by evaluating the security objec-
tive over the scenarios that can pass over the obstacles or
as a constraint in the vertical direction. Besides, we plan to
extend the method and the solution algorithm to cases where
more than one, two, or three quadrotors carry the load. Our
algorithmwill work verywell as long as the obstacle locations
are known. However, we plan to extend the present algorithm
to cases with uncertainties in obstacle locations.
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