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A B S T R A C T   

Analysis of mathematical models projected for COVID-19 presents in many valuable outputs. We analyze a model 
of differential equation related to Covid-19 in this paper. We use fractal-fractional derivatives in the proposed 
model. We analyze the equilibria of the model. We discuss the stability analysis in details. We apply very 
effective method to obtain the numerical results. We demonstrate our results by the numerical simulations.   

Introduction 

Working the concept of disease invention and diffusion has been 
presented in [1]. The invention of diseases and epidemics has been taken 
an excellent interest by many investigators [2]. The fractional calculus 
has been enhanced recently to investigate the new problems [3]. 
Additionally, more knowledge and definitions have been presented in 
[4–6]. Fractional calculus generalize the differentiation and integration 
of integer order to real or fractional order [7]. Recently, many new 
operators have been defined related to the fractional differential 
equations. 

Corona viruses are a wide family of viruses that have a typical 
corona. They were named corona viruses in 1960 because of their view. 
Viruses that give rise routine cold diseases and fatal diseases, such as 
Middle East respiratory syndrome (MERS-CoV) and severe acute respi
ratory syndrome (SARS-CoV), are from the corona viruses family. The 
researchers have obtained that the corona viruses are conducted be
tween animals and people. Additionally, many corona viruses that have 
not yet infected humans are circulating in animals [8]. Many in
vestigators concentrated this urgent topic nowadays [9–12]. This wide 
research will allow the human kind to apply a robust and fast response to 
a problem that is causing a severe global socioeconomic disruption [13]. 
For more details see [19–22]. 

The main goal of this paper is to analyse and obtain the solution for 
the system of nonlinear ordinary differential equations defining the 
deadly and most dangerous virus. 

Preliminaries 

Definition 0.1. We suppose that u(t) is continuous in (a, b) and fractal 
differentiable on (a, b) with order θ. Then, the fractal-fractional deriv
ative of u of order γ in Riemann-Liouville sense with the generalized 
Mittag-Leffler kernel is given as [14]: 

FFM
aDγ,θ

t u(t) =
AB(γ)
1 − γ

d
dtθ

∫ t

a
u(y)Eγ

( − γ
1 − γ

(t − y)γ
)

dy, 0 < γ, θ⩽1, (1)  

where AB(γ) = 1 − γ +
γ

Γ(γ). 

Definition 0.2. Suppose that u(t) is continuous in (a, b). Then the 
fractal-fractional integral of u with order γ is presented as [14]: 

FFM
0Iγ,θ

t u(t) =
θγ

AB(γ)Γ(γ)

∫ t

0
yθ− 1u(y)(t − y)γ− 1dy+

θ(1 − γ)tθ− 1

AB(γ)
u(t). (2)   
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Formulation of the model 

The representation of the constituents of the human population is 
defined as S(t) (describes the susceptible humans who shall have the 
maximum probability to catch the fatal virus), I(t) (denotes the infected 
humans who have convicted with virus) and R(t) (denotes the recovered 
humans who have healthier due to their internal level of immunity). The 
physical interpretation of the model has been given as follows: a (de
scribes the normal birth rate of humans), c (represented the convex 
incidence rate of humans interaction), δ (denotes the death rate of 
infected humans with virus), α (represented the rate of recovery again 
become susceptible), μ (the rate at which humans die to other diseases), 
β (the rate of recovery of humans due to quarantine) and b (the rate of 
infected immigrant). We present the model of the differential equations 
as: 

S′

(t) = a − cS(t)I(t)(1 + γI(t)) − μS(t)+ αR(t), ∀t⩾0, (3)  

I ′

(t) = cS(t)I(t)(1 + γI(t)) − (β + μ + δ − b)I(t), ∀t⩾0, (4)  

R′

(t) = βI(t) − (α + μ)R(t), ∀t⩾0. (5) 

It is clear that, the identity N(t) = S(t)+I(t)+R(t) is fulfilled at all the 
time t⩾0 with the following initial conditions 

S0 = S(0), I0 = I(0), R0 = R(0). (6) 

We consider the fractal fractional derivatives and obtain: 

FFM
aDγ,θ

t S(t) = a − cS(t)I(t)(1 + γI(t)) − μS(t)+ αR(t), ∀t⩾0, (7)  

FFM
aDγ,θ

t I(t) = cS(t)I(t)(1 + γI(t)) − (β + μ + δ − b)I(t), ∀t⩾0, (8)  

FFM
aDγ,θ

t R(t) = βI(t) − (α + μ)R(t), ∀t⩾0. (9)  

Equilibria of the model 

We define corona free equilibria as: 

(CFE) = C1 = (S1, I1,R1) =
(a

μ, 0, 0
)
. (10) 

We present the corona existing equilibria as: 

(CEE) = C2 = (S*, I*,R*). (11) 

We obtain S*, I*,R* as: 

S* =
(α − β − μ − δ + b) + αβI*

μ(α + μ) , (12)  

I* =
− (cB + cγA) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(cB + cγA)2
− 4(cγB)(μ − c1)

√

2cγB
, (13)  

R* =
βI*

α + μ, (14)  

where 

A =
α − β − μ − δ + b

μ , B =
αβ

μ(α + μ), c1 = β+ μ+ δ − b. (15) 

Notice that the reproduction number R0 is the spectral radius of A×

B− 1, where A and B are the transmission and transition matrices 
respectively, obtained from the system (1) to (3) by substituted the 
corona free equilibria of the model as follows: 

A =

⎡

⎣

ca
μ 0

0 0

⎤

⎦ (16)  

and 

B =

[
β + μ + δ − b 0

0 α + μ

]

(17) 

More exactly, notice that 

R0 =
ac

μ(μ + β + δ − b)
. (18)  

Local stability 

In this section, we impose the well-posed theorems at the equilibria 
of the model as follows: 

Theorem 0.3. The corona free equilibrium C1 = (S1, I1,R1) = (a
μ, 0,0) of 

model is locally asymptotically stable if R0 < 1, otherwise unstable for 
R0 > 1. 

Proof. The corona-free equilibrium C1 = (S1, I1,R1) = (a
μ,0, 0) is 

locally asymptotically stable (LAS) if all the eigenvalues, λi, i = 1, 2,3 
where λi < 0 with condition |arg(λi)| >

απ
2 . For the eigen values, the 

Jacobean matrix at C1 = (a
μ,0, 0) is obtained as follows: 

J(C1) =

⎡

⎢
⎢
⎢
⎢
⎣

− μ −
a
μ α

0
a
μ − (β + μ + δ − b) 0

0 β − (α + μ)

⎤

⎥
⎥
⎥
⎥
⎦

(19) 

Notice that, the eigenvalue is as, λ1 = − μ < 0, 

∣J(C1) − λI∣ =

⃒
⃒
⃒
⃒
⃒
⃒

a
μ − (β + μ + δ − b) − λ 0

β − (α + μ) − λ

⃒
⃒
⃒
⃒
⃒
⃒

(20)  

λ2 =
a
μ − (β+ μ+ δ − b) < 0, if R0 < 1, (21)  

λ3 = − (α+ μ) < 0, (22) 

Hence, all eigenvalues are negative, the given equilibria, C1 is locally 
asymptotical stable. □ 

Theorem 0.4. The corona existing equilibrium C2 = (S*, I*,R*) of model 
is locally asymptotically stable if R0 > 1, otherwise unstable for R0 < 1. 

Proof. The corona existing equilibrium C2 = (S*, I*,R*) is locally 
asymptotically stable (LAS) if all the eigenvalues, λi, i = 1,2, 3 where 
λi < 0 with condition |arg(λi)| >

απ
2 . For the eigen values, the Jacobean 

matrix at C2 = (S*, I*,R*) is obtained as follows: 

J(C2)=

⎡

⎣
− CI*(1+ rI*) − μ − CS* − 2CS*rI* α
CI*(1+ rI*) CS* +2CrS*I* − (β+μ+δ − b) 0
0 β − (α+μ)

⎤

⎦

(23)  

|J(C2) − λI| =

⃒
⃒
⃒
⃒
⃒
⃒

− a1 − μ − λ − a2 α
a1 a2 − a4 − λ 0
0 β − a3 − λ

⃒
⃒
⃒
⃒
⃒
⃒

(24) 

Then, we obtain 

λ3 +(a1 − a2 +a3 +a4 +μ)λ+(a1a3 +a1a4 − a2a3 +a3a4 +a3μ − a2μ+a4μ)λ
+a1a3a4 − a2a3μ+a3a4μ − a1αβ=0.

Where, a1 = CI*(1+ rI*), a2 = CS* + 2CrS*I*, a3 = (α+ μ), a4 = (β+
μ+ δ − b). By using the Routh-Hurwitz Criterion of 3rd order polynomial, 
we get 

(a1 − a2 +a3 +a4 +μ)> 0, (a1a3a4 − a2a3μ+a3a4μ − a1αβ)> 0, if R0 > 1,
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and 

(a1 − a2 + a3 + a4 + μ)(a1a3a4 − a2a3μ + a3a4μ − a1αβ)
> (a1a3 + a1a4 − a2a3 + a3a4 + a3μ − a2μ + a4μ), if R0 > 1,

Thus, we have concluded that all eigenvalues are negative and by 
Routh Hurwitz criteria, the given equilibria, C2 is locally asymptotical 
stable. □ 

Global stability 

Theorem 0.5. For the system (2.1–2.3), the Corona free equilibria C1 is 
globally asymptotically stable if R0 < 1. 

Proof. By using the comparison theorem as presented in [15], the rate 
of change of the variables (I,R) of system (2.1–2.3) could be rewritten as 
follows: 
(

I
R

)

= (A − B)
(

I
R

)

−
(

1 −
μ
a

S
)

A
(

I
R

)

(25)  

where, A and B are defined in subSection 2.1. Since S⩽a
μ,∀t⩾0 in region 

Γ. Then, we get 
(

I
R

)

⩽(A − B)
(

I
R

)

(26) 

Since the Eigen values of the matrix A − B all have negative real parts 
(this comes from the local Theorem 3.1). Then the system (2.1–2.3) is 
stable, whenever R0 < 1. So, (I,R)→(0,0) as t→∞. By the comparison 
Theorems 2.1–2.3, it follows that (I,R)→(0,0) and S→a

μ as t→∞. The (S,
I,R)→C1 as t→∞. So, C1 is globally asymptotically stable for R0 < 1. □ 

Theorem 0.6. The Corona existing equilibrium (CEE),C2 = (S*, I*,R*) is 
globally asymptotically stable if R0 > 1. 

Proof. Consider the Lyapunov function as follows [16]: 

L(t) =A1

(

S − S* − S*ln
(

S
S*

))

+A2

(

I − I* − I*ln
(

I
I*

))

+A3

(

R − R* − R*ln
(

R
R*

))

,

(27)  

□ 

a
FFMDr* ,θ

t L(t) = A1

(

1 −
S*

S

)

a
FFMDr* ,θ

t S(t) + A2

(

1 −
I*

I

)

a
FFMDr* ,θ

t I(t)

+A3

(

1 −
R*

R

)

a
FFMDr* ,θ

t R(t)

= A1

(

1 −
S*

S

)

[a − cSI(1 + rI) − μS + αR]

+A2

(

1 −
I*

I

)

[SI(1 + rI) − (β + μ + δ − b)I]

+A3

(

1 −
R*

R

)

[I − (α + μ)R]

= A1(S − S*)[a/S − cI(1 + rI) − μ + αR/S]

+A2(I − I*)[cS(1 + rI) − (β + μ + δ − b)]

+A3(R − R*)[I/R − (α + μ)].

By using, α + μ = β I
R*, β + μ + δ − b = cS(1 + rI*), μ = a

S* − cI*(1 +

rI*) + α R
S*, we obtain  

a
FFMDr* ,θ

t L(t) = −
aA1(S − S*)

2

SS* − A1c(S − S*)[I(1 + rI) − I*(1 + rI*)]

−
αRA1(S − S*)

2

SS* + A2cSr(I − I*)
2
− A3

βI
RR*(R − R*)

2
.

We chose A1 = A2 = A3 = 1, then we obtain 

a
FFMDr* ,θ

t L(t) = −
a(S − S*)

2

SS* − c(S − S*)(I − I*) − c(S − S*)r(I − I*)
2

−
αR(S − S*)

2

SS* + cSr(I − I*)
2
−

βI(R − R*)
2

RR*

= −
a(S − S*)

2

SS* − c(S − S*)(I − I*) −
αRA1(S − S*)

2

SS*

− cSr(I − I*)
2
(
(S − S*)(I + I*)

S(I − I*)
− 1

)

−
βI

RR*(R − R*)
2⩽0.

aFFMDr* ,θ
t L(t)⩽0,for R0 > 1, and aFFMDr* ,θ

t L(t) = 0,only if S = S*, I = I*,

R = R*. Therefore, by Lasalle’s invariance principle, C2 is globally 
asymptomatically stable (G.A.S) in Γ. 

Main results 

We consider the following problem: 
FFM

aDγ,θ
t S(t) = a − cS(t)I(t)(1 + γI(t)) − μS(t) + αR(t), ∀t⩾0,

FFM
aDγ,θ

t I(t) = cS(t)I(t)(1 + γI(t)) − (β + μ + δ − b)I(t), ∀t⩾0,
FFM

aDγ,θ
t R(t) = βI(t) − (α + μ)R(t), ∀t⩾0.

For simplicity, we define 

K(t, S, I,R) = θtθ− 1(a − cS(t)I(t)(1 + γI(t)) − μS(t) + αR(t) )
L(t, S, I,R) = θtθ− 1(cS(t)I(t)(1 + γI(t)) − (β + μ + δ − b)I(t) )

M(t, S, I,R) = θtθ− 1(βI(t) − (α + μ)R(t) )

Then, we get  

AB(α)
1 − γ

d
dt

∫ t

0
S(τ)Eα

( − γ
1 − γ

(t − τ)γ
)

dτ = K(t, S, I,R)

AB(α)
1 − γ

d
dt

∫ t

0
I(τ)Eα

( − γ
1 − γ

(t − τ)γ
)

dτ = L(t, S, I,R)

AB(α)
1 − γ

d
dt

∫ t

0
R(τ)Eα

( − γ
1 − γ

(t − τ)γ
)

dτ = M(t, S, I,R)

Applying the AB integral gives, 

S(t) − S(0) =
1 − γ
AB(γ)

K(t, S, I,R) +
γ

AB(γ)Γ(γ)

∫ t

0
(t − τ)γ− 1K(τ, S, I,R)dτ

I(t) − I(0) =
1 − γ
AB(γ)

L(t, S, I,R) +
γ

AB(γ)Γ(γ)

∫ t

0
(t − τ)γ− 1L(τ, S, I,R)dτ

R(t) − R(0) =
1 − γ
AB(γ)

M(t, S, I,R) +
γ

AB(γ)Γ(γ)

∫ t

0
(t − τ)γ− 1M(τ, S, I,R)dτ 

We discretize these equations at tn+1 as: 
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Sn+1 = S0 +
1 − γ
AB(γ)

K(tn+1, Sn, In,Rn)

+
γ

AB(γ)Γ(γ)

∫ tn+1

0
(tn+1 − τ)γ− 1K(τ, S, I,R)dτ

In+1 = I0 +
1 − γ
AB(γ)

L(tn+1, Sn, In,Rn)

+
γ

AB(γ)Γ(γ)

∫ tn+1

0
(tn+1 − τ)γ− 1L(τ, S, I,R)dτ

Rn+1 = R0 +
1 − α
AB(α)M(tn+1, Sn, In,Rn)

+
γ

AB(γ)Γ(γ)

∫ tn+1

0
(t − τ)γ− 1M(τ, S, I,R)dτ 

Then, we obtain  

by the method using in [17]. 

Numerical simulations 

For the numerical simulations at disease free state we consider the 
following values of parameters involved in the system under study, a =

0.5,μ = 0.5, δ = 0.05,b = 0.205,β = 0.09871, c = 0.380, γ = 0.0003,
α = 0.854302. The graphical solution at endemic equilibrium state, we 
consider the following values, a = 0.5,μ = 0.5,δ = 0.05,b = 0.205,β =

0.09871,c = 0.580, γ = 0.0003,α = 0.854302. 
In Figs. 1–3, we represent the graphical solutions to the COVID-19 

model with the proposed numerical method. All the trajectories adapt 
the same pattern and converge to the true endemic equilibrium point. In 
Fig. 1, every trajectory against a specific value of γ with θ = 0.96 shows 
the disease dynamics of the susceptible individuals. It is easy to notice 
that each graph in the Fig. 1 has a different rate of convergence (ac
cording to γ) but destination of each curve in the steady state. Similarly, 

the Fig. 2 describes the graphical solutions to the infected individuals. 
The four curved lines show the behavior of the infected individuals 
during the course of disease dynamics. It is noteworthy that all the four 
graphical lines advance towards the true endemic equilibrium point but 
the rate of convergent to reach at the designed points is different. Also, 
the curve against the small value of γ converges fastly as compared to the 
other curves for greater value of γ. So, it is important to mention that γ 
plays a decisive role in the rate of convergent and ultimately in 
describing the disease dynamics. The Fig. 3 is the graphical represen
tation of the recovered individuals for the proposed method. All the four 
sketches in the figure highlight the numerical behavior of the recovered 
individuals at endemic equilibrium point. The path followed by each 
curve clarifies the disease dynamics adopted by the recovered populace. 
Furthermore, each curve reaches at its true converging point i.e. the 
endemic equilibrium point with different speeds. The different rates of 
convergence followed by each path is in line with the theoretical results 
of the fractional calculus. 

Now, the Figs. 4–6 bring some influential facts about the numerical 
solutions at disease free equilibrium point into lime light. Particularly, 
the Fig. 4 reflects that every graph touches the true equilibrium point. 
Furthermore, each graph has its own rate to reach at the desired point. 
This rate of convergence is under the influence of γ, the order of de
rivative. The Fig. 5 is the graphical representation of the numerical so
lutions calculated with the help of proposed scheme. All the four graphs 
touch the disease free steady state at the right point i.e. disease free. It is 
evident from the graphs that each graph has its own rate of convergence 
according to the value given to γ. So, the value of γ is helpful in deciding 
the rate of convergence. One can adjust the disease dynamics by suitably 
selecting the value of γ. The Fig. 6 validates that all the graphs converge 
to the desired steady state. Also, these curves depict the dynamics fol
lowed by the recovered individuals to reach at the disease free point. 
Every curve has a specific pace to reach at required disease free point. 
Also, the different graphs in the Fig. 6 implicate that the disease dy
namics of COVID-19 can be synchronized numerically by adjusting an 
appropriate value of γ. 

Sn+1 = S0 +
1 − γ
AB(γ)

K(tn+1, Sn, In,Rn)

+
γ

AB(γ)
∑n

j=0

[
hγK(tj, Sn, In,Rn)

Γ(γ + 2)
((n + 1 − j)γ

(n − j + 2 + γ) − (n − j)γ
(n − j + 2 + 2γ))

]

−
γ

AB(γ)

∑n

j=0

[
hγK(tj− 1, Sn− 1, In− 1,Rn− 1)

Γ(γ + 2)
(
(n + 1 − j)γ+1

− (n − j)γ
(n − j + 1 + γ)

)
]

In+1 = I0 +
1 − γ
AB(γ)

L(tn+1, Sn, In,Rn)

+
γ

AB(γ)

∑n

j=0

[
hγL(tj, Sn, In,Rn)

Γ(γ + 2)
((n + 1 − j)γ

(n − j + 2 + γ) − (n − j)γ
(n − j + 2 + 2γ))

]

−
γ

AB(γ)
∑n

j=0

[
hγL(tj− 1, Sn− 1, In− 1,Rn− 1)

(
(n + 1 − j)γ+1

− (n − j)γ
(n − j + 1 + v)

)

]

Rn+1 = R0 +
1 − γ
AB(γ)

M(tn+1, Sn, In,Rn)

+
γ

AB(γ)
∑n

j=0

[
hγM(tj, Sn, In,Rn)

Γ(γ + 2)
((n + 1 − j)γ

(n − j + 2 + γ) − (n − j)γ
(n − j + 2 + 2γ))

]

−
γ

AB(γ)
∑n

j=0

[
hγM(tj− 1, Sn− 1, In− 1,Rn− 1)

Γ(γ + 2)
(
(n + 1 − j)γ+1

− (n − j)γ
(n − j + 1 + γ)

)
]
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Fig. 1. Numerical simulation for different values of γ with θ = 0.96.  

Fig. 2. Numerical simulation for different values of γ with θ = 0.96.  

Fig. 3. Numerical simulation for different values of γ with θ = 0.96.  

Fig. 4. Numerical simulation for different values of γ with θ = 0.96.  

Fig. 5. Numerical simulation for different values of γ with θ = 0.96.  

Fig. 6. Numerical simulation for different values of γ with θ = 0.96.  
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Conclusion 

In this work, a mathematical model related to the Covid-19 was 
enhanced and its different features containing the local and global sta
bility analysis of the diseases free and endemic equilibrium points were 
presented. Numerical simulations for verification of the global stability 
analysis of the steady state points were constructed. We used the Mittag- 
Leffler kernels in the proposed model. We obtained very effective results 
which will be useful for researchers in their future works. 
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