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1. Introduction

Fractional partial differential equations (PDEs) have gained prominence and recognition in recent
years, owing to their verified applicability in a wide range of relatively diverse domains of science and
engineering. For instance, considering the nonlinear oscillation of fractional derivatives can be
employed to model earthquakes, fractional derivatives in a fluid-dynamic traffic model can be
leveraged to alleviate the deficiency caused by the assumption of a continuous flow of traffic.
Researchers including Coimbra, Davison and Essex, Riesz, Riemann and Liouville, Hadamard, Weyl,
Jumarie, Caputo and Fabrizio, Atangana and Baleanu, Grünwald and Letnikov, Liouville and Caputo
have proposed a variety of fractional operator formulations and conceptions. On the other hand, the
Liouville-Caputo is the finest fractional filter. Furthermore, fractional PDEs are used to model a
variety of physical phenomena, including chemical reaction and population dynamics, virology,
image processing, bifurcation, thermodynamics, Levy statistics, porous media, physics, and
engineering problems, (see [1–7]).

The Shehu transform (ST) was recently highlighted by Maitama and Zhao [8] as an interesting
integral transformation. A modification of the Laplace and Sumudu transformation is the ST. However,
we can retrieve the Laplace transform by replacing$ = 1 in ST. This approach can be used to compress
complex non-linear PDEs into simpler equations.

The Shehu transform (ST) was recently highlighted by Maitama and Zhao [8] as an interesting
integral transformation. A modification of the Laplace and Sumudu transformation is the ST. However,
we can retrieve the Laplace transform by replacing$ = 1 in ST. This approach can be used to compress
complex non-linear PDEs into simpler equations.

The comprehensive evaluation of numerous advanced asymptotic approaches for the exploration of
solitary solutions of nonlinear PDEs, and DEs has been presented, see [9–16]. For instance, the
Adomian decomposition method (ADM) [17] for obtaining seven order Sawada-Kotera equations,
pseudo-spectral method (PSM) [18] for finding the numerical solution of the Laxs 7th-order KdV
equation, q-homotopy analysis method (q-HAM) for finding the convergence of special PDES [19],
Lie symmetry analysis (LSA) [20] for dealing with the conservation laws and exact solutions of the
seventh-order time fractional Sawada-Kotera-Ito equation, Laguerre wavelets collocation
method (LWCM) and Haar wavelet for the numerical solution of the Benjamina-Bona-Mohany
equations [21], a new Legendre Wavelets decomposition method (NLWDM) for solving PDEs [22],
discrete Adomian decomposition method (DADM) [23] for constructing numerical solution of time
fractional Navier-Stokes equation.

The ZKE was built in two dimensions to demonstrate nonlinear complex phenomena such as isotope
waves in a massively magnetic flux uncompressed plasma [24, 25].The SDM will be implemented to
develop the major objectives of this research. The time-fractional ZKE is stated as:

Dδ
ζU + a1(Uη1)φ + b1(Uη2)φφφ + b1(Uη3)ζζφ = 0, (1.1)

where U = U(φ, ψ, ζ) and Dδ
ζ is the Caputo fractional derivative with order δ, 0 < δ ≤ 1, a1 and

b1 are arbitrary constants and ηi, i = 1, 2, 3 are integers and ηi , 0 (i = 1, 2, 3) that demonstrates
the characteristics of physical phenomena such as ion acoustic waves in a plasma consisting of cold
ions and hot isothermal electrons in the framework of a balanced magnetic flux ( [26, 27]). In [25],
for example, the ZKEs were used to investigate shallowly nonlinear isotope ripples in significantly
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magnetism impaired plasma in three dimensions.
In spite of the incredible improvement, the Adomian decomposition method (ADM) was

contemplated by Gorge Adomian in 1980. The ADM, for example, has been effectively defined in
numerous analytical structures of PDEs, especially in Burger’s equation [28], time-fractional
Kawahara equation [29], fuzzy heat-like and wave-like equations [30] and Lane-Emden-Fowler type
equations [31]. The ADM was found to be strongly associated with a plethora of integral transforms,
including ARA, Shehu, Fourier, Aboodh, Laplace and others. Presently, modified Laplace ADM [32]
has been utilized to effectively resolve Volterra integral equations employing the noted numerical
formulation, discrete ADM [23] has been used to solve the time-fractional Navier-Stokes equation,
and Laplace ADM [33] has been considered to identify the approximate results of a fractional system
of epidemic structures of a vector-borne disease, and so on.

Several of the aforesaid approaches have the disadvantage of being always stratified and
necessitating a significant amount of algorithmic effort. To minimize the computing complexity and
intricacy, we suggested the Shehu decomposition method (SDM), which is a composition of the ST
and the decomposition method for solving the time-fractional ZKE, which is the main motivation for
this research. The projected technique develops a convergent series as a solution. SDM has fewer
parameters than other analytical methods. It is the preferred approach because it does not require
discretion or linearization.

In this study, we first provided a fractional ZKE, followed by a description of the SDM, and then, a
comparison characterization of the SDM presented with the existing methods. The graphical
representations were then thoroughly explained in relation to the ZK problem. We presented an
algorithm for SDM, discussed its estimation accuracy, and then showed two examples that
demonstrate the effectiveness and stability of a novel approach so that their obtained simulations can
be analyzed. Finally, as a part of our concluding remarks, we discussed the accumulated facts of our
findings.

2. Prelude

In order to perform our research, we require various terminologies and postulate outcomes from the
literature.

Definition 2.1. ( [8]) Shehu transform (ST) for a mappingU(ζ) containing exponential order defined
on the set of mappings is described as follows:

S =
{
U(ζ)|∃P, p1, p2 > 0,

∣∣∣U(ζ)
∣∣∣ < P exp(|ζ |/p ), i f ζ ∈ (−1)  × [0,∞),  = 1, 2;

(
P, p1, p2 > 0

)}
,(2.1)

whereU(ζ) is denoted by S
[
U(ζ)

]
= S(ξ,$), is stated as

S
[
U(ζ)

]
=

∞∫
0

U(ζ) exp
(
−
ξ

$
ζ
)
dζ = S(ξ,$), ζ ≤ 0, $ ∈ [κ1, κ2]. (2.2)

The following is an example of a supportive ST:

S
[
ζδ

]
=

∞∫
0

exp
(
−
ξ

$
ζ
)
ζδdζ = Γ(δ + 1)

($
ξ

)δ+1
. (2.3)
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Definition 2.2. ( [8]) The inverse ST of a functionU(ζ) is described as

S−1
[($
ξ

)mδ+1]
=

ζmδ

Γ(mδ + 1)
, <(δ) > 0, and m > 0. (2.4)

Lemma 2.3. Consider ST ofU1(ζ) andU2(ζ) are P(ξ,$) and Q(ξ,$), respectively [8],

S
[
γ1U1(ζ) + γ2U2(ζ)

]
= S

[
γ1U1(ζ)

]
+ S

[
γ2U2(ζ)

]
= γ1P(ξ,$) + γ2Q(ξ,$), (2.5)

where γ1 and γ2 are unspecified terms.

Lemma 2.4. ( [8])For order δ > 0, the Caputo fractional derivative (CFD) of ST is defined as

S
[
Dδ

ζU(ζ)
]

=
( ξ
$

)δ
S
[
U(φ, ζ)

]
−

m−1∑
κ=0

( ξ
$

)δ−κ−1
U(κ)(φ, 0), m − 1 ≤ δ ≤ m, m ∈ N. (2.6)

3. Description of the SDM

Considering the nonlinear partial differential equation:

Dδ
ζU(φ, ζ) +LU(φ, ζ) + ŇU(φ, ζ) = F (φ, ζ), ζ > 0, 0 < δ ≤ 1, (3.1)

subject to the condition

U(φ, 0) = G(φ), (3.2)

where Dδ
ζ =

∂δU(φ,ζ)
∂ζδ

indicates the CFD with 0 < δ ≤ 1 while L and Ň are linear/nonlinear factors and
the source term refers to F (φ, ζ).

Implementing the ST to (3.1), and we attain

S
[
Dδ

ζU(φ, ζ) +LU(φ, ζ) + ŇU(φ, ζ)
]

= S
[
F (φ, ζ)

]
.

Applying the differentiation property of ST, yields

ξδ

$δ
U(ξ,$) =

m−1∑
κ=0

( ξ
$

)δ−κ−1
U(κ)(0) + S

[
LU(φ, ζ) + ŇU(φ, ζ)

]
+ S

[
F (φ, ζ)

]
. (3.3)

Th inverse ST of (3.3) provides

U(φ, ζ) = S−1
[ m−1∑
κ=0

( ξ
$

)δ−κ−1
U(κ)(0) +

$δ

ξδ
S
[
F (φ, ζ)

]]
− S−1

[
$δ

ξδ
S
[
LU(φ, ζ) + ŇU(φ, ζ)

]]
. (3.4)

The infinite series representation of SDM is denoted by the mappingU(φ, ζ) as follows:

U(φ, ζ) =

∞∑
m=0

Um(φ, ζ). (3.5)
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Thus, the nonlinearity Ň(φ, ζ) can be estimated by the ADM represented as

ŇU(φ, ζ) =

∞∑
m=0

Ãm(U0,U1, ...), m = 0, 1, ... , (3.6)

where

Ãm(U0,U1, ...) =
1

m!

[ dm

dλm Ň

( ∞∑
=0

λ U 

)]
λ=0
, m > 0.

Substituting (3.5) and (3.6) into (3.4), we have

∞∑
m=0

Um(φ, ζ) = G(φ) + G̃(φ) − S−1
[
$δ

ξδ
S
[
LU(φ, ζ) +

∞∑
m=0

Ãm
]]
. (3.7)

Consequently, the following is the recursive methodology for (3.7):

U0(φ, ζ) = G(φ) + G̃(φ), m = 0,

Um+1(φ, ζ) = −S−1
[
$δ

ξδ
S
[
L
(
Um(φ, ζ)

)
+

∞∑
m=0

Ãm
]]
, m ≥ 1. (3.8)

4. Illustrative examples

Example 4.1. Assume the following time-dependent fractional-order Zakharov-Kuznetsov equation:

Dδ
ζU +

∂U2

∂φ
+

1
8

[ ∂
∂φ

(∂2U2

∂ψ2

)
+
∂3U2

∂φ3

]
= 0, (4.1)

subject to the initial condition

U(φ, ψ, 0) =
4
3
θ sinh2(φ + ψ), (4.2)

where θ is an arbitrary constant.

Proof. Applying the ST on both sides of (4.1), we find

S
[∂δU
∂ζδ

]
= −S

[
∂U2

∂φ
+

1
8

[ ∂
∂φ

(∂2U2

∂ψ2

)
+
∂3U2

∂φ3

]]
,

( ξ
$

)δ
S
[
U(φ, ψ, ζ)

]
−

n1−1∑
κ=0

( ξ
$

)δ−κ−1∂κU(κ)(φ, 0)
∂ζκ

= −S
[
∂U2

∂φ
+

1
8

[ ∂
∂φ

(∂2U2

∂ψ2

)
+
∂3U2

∂φ3

]]
. (4.3)

Employing the inverse ST, we have

U(φ, ψ, ζ) = S−1
[($
ξ

)δ n1−1∑
κ=0

( ξ
$

)δ−κ−1∂κU(κ)(φ, 0)
∂ζκ

−
($
ξ

)δ
S
[
∂U2

∂φ
+

1
8

[ ∂
∂φ

(∂2U2

∂ψ2

)
+
∂3U2

∂φ3

]]]
. (4.4)
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It follows that

U(φ, ψ, ζ) = S−1
[
$

ξ
U(φ, ψ, 0)

]
− S−1

[($
ξ

)δ
S
[
∂U2

∂φ
+

1
8

[ ∂
∂φ

(∂2U2

∂ψ2

)
+
∂3U2

∂φ3

]]]
,

U(φ, ψ, ζ) = S−1
[4
3
$

ξ
θ sinh2(φ + ψ)

]
− S−1

[($
ξ

)δ
S
[
∂U2

∂φ
+

1
8

[ ∂
∂φ

(∂2U2

∂ψ2

)
+
∂3U2

∂φ3

]]]
. (4.5)

Utilizing the Shehu’s decomposition method, we get

∞∑
=0

U (φ, ψ, ζ) =
4
3
θ sinh2(φ + ψ) − S−1

[($
ξ

)δ
S
[
Ň(U)φ +

1
8

[
Ň(U)φφφ + Ň(U)φψψ

]]]
, (4.6)

where Ň(U) is the Admoian’s polynomial describing nonlinear term appearing in the above mentioned
equations.

Ň(U) = U2 =

∞∑
=0

H (U). (4.7)

First few Admoian’s polynomials are presented as follows:

H0 = U2
0 ,

H1 = 2U0U1,

H2 = 2U0U2 +U2
1 ,

U0(φ, ψ, ζ) =
4
3
θ sinh2(φ + ψ),

U +1(φ, ψ, ζ) = −S−1
[($
ξ

)δ
S
[( ∞∑

=0

H (U)
)
φ

+
1
8

( ∞∑
=0

H (U)
)
φφφ

+
1
8

( ∞∑
=0

H (U)
)
φψψ

]
,

for  = 0, 1, 2, ...

U1(φ, ψ, ζ) = −S−1
[($
ξ

)δ
S
[
(U2

0)φ +
1
8

(U2
0)φφφ +

1
8

(U2
0)φψψ

]]
=

(
−

224
9
θ2 sinh2(φ + ψ) cosh(φ + ψ) −

32
3
θ2 sinh(φ + ψ) cosh3(φ + ψ)

)
S−1

(($
ξ

)δ+1)
=

(
−

224
9
θ2 sinh2(φ + ψ) cosh(φ + ψ) −

32
3
θ2 sinh(φ + ψ) cosh3(φ + ψ)

)
ζδ

Γ(δ + 1)
.

Accordingly, we can derive the remaining terms as follows

U2(φ, ψ, ζ) = −S−1
[($
ξ

)δ
S
[
(2U0U1)φ +

1
8

(2U0U1)φφφ +
1
8

(2U0U1)φψψ
]]

=
128
27

θ3
(
1200 cosh6(φ + ψ) − 2080 cosh4(φ + ψ)

+968 cosh2(φ + ψ) − 79
) ζ2δ

Γ(2δ + 1)
, (4.8)
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U3(φ, ψ, ζ) = −S−1
[($
ξ

)δ
S
[
(2U0U2 +U2

1)φ +
1
8

(2U0U2 +U2
1)φφφ +

1
8

(2U0U2 +U2
1)φψψ

]]
= −

2048
81

θ4 sinh(φ + ψ) cosh(φ + ψ)
(
88, 4000 cosh6(φ + ψ) − 160, 200 cosh4(φ + ψ)

+85, 170 cosh2(φ + ψ) − 11, 903
) ζ3δ

Γ(3δ + 1)
. (4.9)

The approximate-analytical SDM solution is

U(φ, ψ, ζ) = U0(φ, ψ, ζ) +U1(φ, ψ, ζ) +U2(φ, ψ, ζ) +U3(φ, ψ, ζ) + ...,

U(φ, ψ, ζ) =
4
3
θ sinh2(φ + ψ) −

(224
9
θ2 sinh2(φ + ψ) cosh(φ + ψ)

+
32
3
θ2 sinh(φ + ψ) cosh3(φ + ψ)

)
ζδ

Γ(δ + 1)
+

128
27

θ3
(
1200 cosh6(φ + ψ)

−2080 cosh4(φ + ψ) + 968 cosh2(φ + ψ) − 79
) ζ2δ

Γ(2δ + 1)

−
2048
81

θ4 sinh(φ + ψ) cosh(φ + ψ)
(
88, 4000 cosh6(φ + ψ) − 160, 200 cosh4(φ + ψ)

+85, 170 cosh2(φ + ψ) − 11, 903
) ζ3δ

Γ(3δ + 1)
+ ... . (4.10)

The exact solution for δ = 1 is presented by

U(φ, ψ, ζ) =
4
3
θ sinh2(φ + ψ − θζ). (4.11)

Tables 1 and 2 show the comparison results for exact, SDM, and absolute error of Uabs = ‖UE −

US DM‖ solution for (4.1), when θ = 0001 and for various fractional orders δ = 0.67, 0.75, 1. It can be
seen that the proposed method closely corresponds the exact, VIM [34], VIA [35] and RPSM [35].

Table 1. Exact (UE) and SDM-approximate (US DM) solution with absolute error (Uabs)
in comparison derived by VIM (UVIM) [34], PIA (UPIA) [35] and RPSM (URPS M) [35] for
Example 4.1 at θ = 0.001, δ = 1, 0.67 and 0.75.

φ ψ ζ UE US DM Uabs Uδ=0.67 Uδ=0.75 UVIM [34]

0.1 0.1 0.2 5.394×10−5 5.331×10−5 6.313×10−7 5.341×10−5 5.328×10−5 5.356×10−5

0.3 7.668×10−4 7.562×10−4 1.055×10−5 7.488×10−4 7.507×10−4 7.570×10−4

0.4 5.383×10−5 5.308×10−5 7.541×10−7 5.419×10−5 5.375×10−5 5.410×10−5

0.6 0.6 0.2 7.668×10−4 7.562×10−4 1.055×10−5 7.488×10−4 7.507×10−4 7.570×10−4

0.3 7.665×10−4 7.513×10−4 1.522×10−5 7.447×10−4 7.461×10−4 7.531×10−4

0.4 7.663×10−4 7.468×10−4 1.948×10−5 7.417×10−4 7.425×10−4 7.501×10−4

0.9 0.9 0.2 1.840×10−3 1.801×10−3 3.993×10−5 1.772×10−3 1.779×10−3 1.803×10−3

0.3 1.740×10−3 1.882×10−3 5.803×10−5 1.755×10−3 1.761×10−3 1.788×10−3

0.4 1.840×10−3 1.765×10−3 7.487×10−5 1.743×10−3 1.747×10−3 1.775×10−3
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Table 2. Other comparison of the projected scheme with PIA and RPSM for Example 4.1 at
θ = 0.001 having different fractional-order δ = 0.67 and δ = 0.75.

φ ψ ζ UPIA [35] URPS M [35] UPIA [35] URPS M [35]

0.1 0.1 0.2 5.3307×10−5 6.3129×10−7 5.3285×10−5 5.3562×10−5

0.3 5.28631×10−5 5.28410×10−5 5.29757×10−5 5.29675×10−5

0.4 5.25777×10−5 5.25897×10−5 5.27039×10−5 5.27119×10−5

0.6 0.6 0.2 2.95493×10−3 2.95185×10−3 2.96356×10−3 2.96251×10−3

0.3 2.92662×10−3 2.92709×10−3 2.93717×10−3 2.93780×10−3

0.4 2.90307×10−3 2.90522×10−3 2.91448×10−3 2.91561×10−3

0.9 0.9 0.2 1.06822×10−2 1.05522×10−2 1.07716×10−2 2.91561×10−2

0.3 1.04487×10−2 1.01199×10−2 1.05488×10−2 1.03695×10−2

0.4 9.02777×10−2 9.60606×10−2 1.03736×10−2 9.96743×10−2

Taking θ = 0.005 and δ = 1, we exhibit the approximate-analytical solution of the fractional KZEs
equation up to 4 components in Figure 1 (a and b). Furthermore, we establish absolute errors at δ = 1
for the exact-approximate solutions in the accompanying Figure 2. Also, we have seen how different
fractional orders perform in surface plots and 2D plots in Figure 3 and some δ1δ2 − slice (a and b)
solutions are presented in 4 when θ = 0.005 and ζ = 0.5. As a result of this behaviour, we might
conclude that the approximation solution tends to be a precise solution. Accordingly, as the iteration
increases, the absolute inaccuracy decreases. Consequently, as the number of terms grows, the SDM
findings approach the exact result.

(a) (b)

Figure 1. Numerical behavior of exact and approximate solution to the U(φ, ψ, ζ) for
Example 4.1 when the parameters are θ = 0.0005, δ = 1, and ζ = 0.5.
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Figure 2. Surface representation of U(φ, ψ, ζ) absolute error plot for Example 4.1 at θ =

0.005 and δ = 1.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-18

-16

-14

-12

-10

-8

-6

-4

-2

10
5

=exact

=1

=0.85

=0.75

=0.55

=0.35

(b)

Figure 3. Numerical behavior of different fractional orders to the function U(φ, ψ, ζ) for
Example 4.1 when the parameters are θ = 0.05, and ζ = 0.9.

The graphs in Figures 1–4 assist us to comprehend the behaviour of fractional orders when space and
time scale variables fluctuate. Additionally, the findings of this study will aid scientists connected to
pattern formation theory, optical designs, or mathematical modelling in comprehending the structural
phenomena of the ANOVA-test. Furthermore, theefficiency of the projected methodcan be boosted by
getting additional approximate solution expressions.
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(a) (b)

Figure 4. Numerical behavior of δ1δ2-slice solution to the U(φ, ψ, ζ) for Example 4.1 (a)
exact and (b) approximate when the parameters are θ = 0.0005, δ = 1, and ζ = 0.5.

�

Example 4.2. Assume the following time-dependent fractional-order Zakharov-Kuznetsov equation:

Dδ
ζU +

∂U3

∂φ
+ 2

[ ∂
∂φ

(∂2U3

∂ψ2

)
+
∂3U3

∂φ3

]
= 0, (4.12)

subject to the initial condition

U(φ, ψ, 0) =
3
2
θ sinh

[1
6

(φ + ψ)
]
, (4.13)

where θ is an arbitrary constant.

Proof. Applying the ST on both sides of (4.12), we find

S
[∂δU
∂ζδ

]
= −S

[
∂U3

∂φ
+ 2

[ ∂
∂φ

(∂2U3

∂ψ2

)
+
∂3U3

∂φ3

]]
,

( ξ
$

)δ
S
[
U(φ, ψ, ζ)

]
−

n1−1∑
κ=0

( ξ
$

)δ−κ−1∂κU(κ)(φ, 0)
∂ζκ

= −S
[
∂U3

∂φ
+ 2

[ ∂
∂φ

(∂2U3

∂ψ2

)
+
∂3U3

∂φ3

]]
. (4.14)

Employing the inverse ST, we have

U(φ, ψ, ζ) = S−1
[($
ξ

)δ n1−1∑
κ=0

( ξ
$

)δ−κ−1∂κU(κ)(φ, 0)
∂ζκ

−
($
ξ

)δ
S
[
∂U3

∂φ
+ 2

[ ∂
∂φ

(∂2U3

∂ψ2

)
+
∂3U3

∂φ3

]]]
. (4.15)

It follows that

U(φ, ψ, ζ) = S−1
[
$

ξ
U(φ, ψ, 0)

]
− S−1

[($
ξ

)δ
S
[
∂U3

∂φ
+ 2

[ ∂
∂φ

(∂2U3

∂ψ2

)
+
∂3U3

∂φ3

]]]
,
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U(φ, ψ, ζ) = S−1
[3
2
$

ξ
θ sinh

[1
6

(φ + ψ)
]]
− S−1

[($
ξ

)δ
S
[
∂U3

∂φ
+ 2

[ ∂
∂φ

(∂2U3

∂ψ2

)
+
∂3U3

∂φ3

]]]
.(4.16)

Utilizing the Shehu’s decomposition method, we get

∞∑
=0

U (φ, ψ, ζ) =
3
2
θ sinh

[1
6

(φ + ψ)
]
− S−1

[($
ξ

)δ
S
[
Ň(U)φ +

1
8

[
Ň(U)φφφ + Ň(U)φψψ

]]]
, (4.17)

where Ň(U) is the Admoian’s polynomial describing nonlinear term appearing in the above mentioned
equations.

Ň(U) = U3 =

∞∑
=0

G (U). (4.18)

First few Admoian’s polynomials are presented as follows:

G0 = U3
0 ,

G1 = 3U2
0U1,

G2 = 3U2
0U2 + 3U2

0U
2
1 ,

U0(φ, ψ, ζ) =
3
2
θ sinh

[1
6

(φ + ψ)
]
,

U +1(φ, ψ, ζ) = −S−1
[($
ξ

)δ
S
[( ∞∑

=0

G (U)
)
φ

+ 2
( ∞∑
=0

G (U)
)
φφφ

+ 2
( ∞∑
=0

G (U)
)
φψψ

]
,

for  = 0, 1, 2, ...

U1(φ, ψ, ζ) = −S−1
[($
ξ

)δ
S
[
(U3

0)φ + 2(U3
0)φφφ + 2(U3

0)φψψ
]]

=

(
− 3θ3 sinh2

[1
6

(φ + ψ)
]

cosh
[1
6

(φ + ψ)
]

+
3
8
θ3 cosh3

[1
6

(φ + ψ)
])

S−1
(($
ξ

)δ+1)
=

(
− 3θ3 sinh2

[1
6

(φ + ψ)
]

cosh
[1
6

(φ + ψ)
]

+
3
8
θ3 cosh3

[1
6

(φ + ψ)
]) ζδ

Γ(δ + 1)
.

Accordingly, we can derive the remaining terms as follows

U2(φ, ψ, ζ) = −S−1
[($
ξ

)δ
S
[
(3U2

0U1)φ + 2(3U2
0U1)φφφ + 2(3U2

0U1)φψψ
]]

=
3

32
θ5 sinh

[1
6

(φ + ψ)
][

765 cosh4
[1
6

(φ + ψ)
]

−729 cosh2
[1
6

(φ + ψ)
]

+ 91
]

ζ2δ

Γ(2δ + 1)
,

U3(φ, ψ, ζ) = −S−1
[($
ξ

)δ
S
[
(3U2

0U2 + 3U2
0U

2
1)φ
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+2(3U2
0U2 + 3U2

0U
2
1)φφφ + 2(3U2

0U2 + 3U2
0U

2
1)φψψ

]]
= −

3
128

cosh
[1
6

(φ + ψ)
][

171, 738 cosh6
[1
6

(φ + ψ)
]
− 349, 884 cosh4

[1
6

(φ + ψ)
]

+215, 496 cosh2
[1
6

(φ + ψ)
]
− 36, 907

]
ζ3δ

Γ(3δ + 1)
.

The approximate-analytical SDM solution is

U(φ, ψ, ζ) = U0(φ, ψ, ζ) +U1(φ, ψ, ζ) +U2(φ, ψ, ζ) +U3(φ, ψ, ζ) + ...,

U(φ, ψ, ζ) =
3
2
θ sinh

[1
6

(φ + ψ)
]
−

(
3θ3 sinh2

[1
6

(φ + ψ)
]

cosh
[1
6

(φ + ψ)
]

+
3
8
θ3 cosh3

[1
6

(φ + ψ)
]) ζδ

Γ(δ + 1)

+
3

32
θ5 sinh

[1
6

(φ + ψ)
][

765 cosh4
[1
6

(φ + ψ)
]
− 729 cosh2

[1
6

(φ + ψ)
]

+91
]

ζ2δ

Γ(2δ + 1)
−

3
128

cosh
[1
6

(φ + ψ)
][

171, 738 cosh6
[1
6

(φ + ψ)
]

−349, 884 cosh4
[1
6

(φ + ψ)
]

+215, 496 cosh2
[1
6

(φ + ψ)
]
− 36, 907

]
ζ3δ

Γ(3δ + 1)
+ ... . (4.19)

The exact solution for δ = 1 is presented by

U(φ, ψ, ζ) =
3
2
θ sinh

[1
6

(φ + ψ − θζ)
]
. (4.20)

Table 3 show the comparison results for exact, SDM, and absolute error of Uabs = ‖UE − US DM‖

solution for (4.12), when θ = 0001 and for various fractional orders δ = 0.67, 0.75, 1. It can be seen
that the proposed method closely matches the exact, and VIM [34].

Table 3. Exact (UE) and SDM-approximate (US DM) solution with absolute error (Uabs) in
comparison derived by VIM (UVIM) [34], for Example 4.2 at θ = 0.001, δ = 1, 0.67 and 0.75.

φ ψ ζ UE US DM Uabs U0.67 U0.75 UVIM

0.1 0.1 0.2 4.996×10−5 5.001×10−5 4.988×10−8 5.001×10−5 5.001×10−5 5.001×10−5

0.3 4.993×10−5 5.001×10−5 7.481×10−8 5.001×10−5 5.001×10−5 5.001×10−5

0.4 4.991×10−5 5.001×10−5 9.975×10−8 5.001×10−5 5.001×10−5 5.001×10−5

0.6 0.6 0.2 3.020×10−4 3.020×10−4 5.079×10−8 3.020×10−4 3.020×10−4 3.020×10−4

0.3 3.019×10−4 3.020×10−4 7.619×10−8 3.020×10−4 3.020×10−4 3.020×10−4

0.4 3.019×10−4 3.020×10−4 1.016×10−7 3.020×10−4 3.020×10−4 3.020×10−4

0.9 0.9 0.2 4.567×10−4 4.568×10−4 5.198×10−8 4.568×10−4 4.568×10−4 4.568×10−4

0.3 4.567×10−4 4.568×10−4 7.797×10−7 4.568×10−4 4.568×10−4 4.568×10−4

0.4 4.567×10−4 4.568×10−4 1.040×10−7 4.568×10−4 4.568×10−4 4.568×10−4
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Taking θ = 0.0005 and δ = 1, we exhibit the approximate-analytical solution of the fractional
KZEs equation up to 4 components in Figure 5 (a and b), respectively. Furthermore, we established
absolute errors at different values of δ for the exact-approximate solutions in the accompanying
Figure 6. Also, we have seen how different fractional orders perform in 2D and 3D plots in Figure 7
in (a and b) behaves. Also, Figure 8 denotes the δ1δ2-slice solutions for the exact and approximate
solutions (a and b), respectively. As a result of this behaviour, we might conclude that the
approximation solution tends to actual solution. Accordingly, as iteration increases, the absolute
inaccuracy decreases. Consequently, as the iterations expands, the SDM findings approaches the exact
result. The graphs in Figures 5–8 assist us to comprehendthe behaviour of fractional orders when
space and time scale variables fluctuate. Additionally, the findings of this study will aid
scientistsconnecting in pattern formation theory, optical designs, or mathematical modelling in
comprehending the structural phenomena of the ANOVA-test. Furthermore, theefficiency of the
projected methodcan be boosted by getting additional approximate solution expressions.

(a) (b)

Figure 5. Numerical behavior of exact and approximate solution to the U(φ, ψ, ζ) for
Example 4.2 when the parameters are θ = 0.0005, δ = 1, and ζ = 0.5.

Figure 6. Surface representation of U(φ, ψ, ζ) absolute error plot for Example 4.2 at θ =

0.005 and δ = 1.
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(a)
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(b)

Figure 7. Numerical behavior of δ1δ2-slice solution to the U(φ, ψ, ζ) for Example 4.2 (a)
exact and (b) approximate when the parameters are θ = 0.0005, δ = 1, and ζ = 0.5.

(a) (b)

Figure 8. Numerical behavior of δ1δ2-slice solution to the U(φ, ψ, ζ) for Example 4.1 (a)
exact and (b) approximate when the parameters are θ = 0.0005, δ = 1, and ζ = 0.5.

�

5. Conclusions

In this paper, the Shehu decomposition method (SDM) is effectively implemented for solving
nonlinear time-fractional ZKEs. The proposed findings illustrate that there is a strong correlation
between the projected method and the closed form solutions. Moreover, the governed approach is
reliable and pragmatic for solving other diverse linear and nonlinear PDEs appearing in various
disciplines of physics and mathematics. However, this methodology does not necessitate the condition
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matrix, Lagrange multiplier, or costly integration calculations, so the findings are noise-free, which
addresses the drawbacks of earlier techniques. It is worth mentioning that the proposed methods are
pragmatic analytical tools for identifying approximate-analytical solutions to complicated nonlinear
PDEs. Moreover, we deduce that this approach will be used to deal with other non-linear fractional
order systems of equations that are extremely complex.
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