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Abstract

In this paper, the newly proposed concept of the generalized proportional fractional integral
operator with respect to another function ® has been utilized to generate integral inequalities
using convex function. This new concept will have the option to reduce self-similitudes in the
fractional attractors under investigation. We discuss the implications and other consequences
of the integral inequalities concerning the generalized proportional fractional integral operator
with respect to another function ® are derived here and these outcomes permit us specifically
to generalize some classical inequalities. Certain intriguing subsequent consequences of the
fundamental hypotheses are also figured. It is to be supposed that this investigation will provide
new directions in the quantum theory of capricious nature.

Keywords: Convex Functions; Generalized Proportional Fractional Integral Operator With
Respect To Another Function; Integral Inequalities.

1. INTRODUCTION

Fractional calculus and its extensive utilities have
lately been paid to a regularly expanding degree
considerations. A fascinating specialty of this paper
is that there are several fractional operators. The
attractors with numerical simulations for vary-
ing values and this permits the readers to choose
the most appropriate operator for demonstrating
the issue under investigation. In addition, as a
result of its effortlessness in applications, ana-
lysts have given more consideration to presently
determined fractional operators without singular
kernels 1HOALE2325RTIS6.3T49 91 afterward numer-
ous articles considering these sorts of fractional
operators nowadays turn out to be noticeable.
Almeida? explored a new fractional derivative called
Caputo derivative with respect to another func-
tion ® and Kilbas et al®? contemplated the con-
cept of Riemann—Liouville fractional integrals with
respect to another function ®, which is the extraor-
dinary generalization of all fractional integral oper-
ators. It is fairly well-known that there are a num-
ber of different definitions of fractional integrals
and their applications. Each definition has its own
advantages and appropriate for utilities to diverse
kinds of issues. Currently, Atangana and Baleanu
provided one more direction to this investigation
by introducing a new operator that depends on
the generalized Mittag—Lefller function, since the
Mittag—Leffler function is more reasonable in com-
municating nature than control work. Within the
structure of applied science and mathematical mod-
eling, there exists an outstanding kind of opera-
tor known as generalized proportional fractional

integral operator in which the variable is a scaled
according to proportionality index ¢. This diver-
sified operator was introduced by Rashid et al. 47
to the conceivable role those physical problems
for which classical physical law, for example, the
well-known Mellin transform, Fourier transform and
probability theory is suitable, such physical issue
is accepted to be found on the fractional calculus
and pertinent to the media of non-integral fractional
OperatorS.QfEJ,19,26,30,32,34,46,48

Integral inequalities are considered to be sig-
nificant as these are helpful in the investiga-
tion of various classes of differential and inte-
oral equations TOI2IA20R22ABTB5ESAISIEIG6 Foy,
decades ago, numerous scientists have acquired dif-
ferent fractional integral inequalities encompassing
the diverse fractional differential and integral oper-
ators. There is countless fractional integral opera-
tors mentioned within the literature, however, due
to their utilities in numerous areas of sciences, the
Riemann—Liouville and Hadamard fractional inte-
gral operators have been contemplated broadly 2423

Recently, the authors introduced numerous
variants via fractional integral operator such
as Hermite-Hadamard inequalities, Gruss type
and certain Gronwall variants with applications
by employing Riemann-Liouville, Hadamard frac-
tional operators and generalized proportional
Hadamard fractional integral C81U2284 Ty Ref. 21
Dahmani established certain classes of fractional
integral inequalities by using a family of n pos-
itive functions. In Ref. [8 Aldhaifallah et al
derived several extended versions for a class of
family of n(n € N) positive continuous and
decreasing functions on an interval by introducing
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the concept of combination of two classes via frac-
tional integral operators. Currently, the well-known
fractional operators have taken considerable atten-
tion of several researchers for deriving remark-
able speculations, modifications, exploring proper-
ties and utilities for several fractional integrals can
be found in the literature 18434550

In this paper, a new concept of the general-
ized proportional fractional integral operator with
respect to another function @ is introduced. This
new concept takes into account the fractional cal-
culus. These novelties are a combination of convex
functions based on several variants that correlate
with the generalized proportional fractional integral
operator with respect to another function . New
results are presented and new theorems are estab-
lished. In addition to this, the numerical approxi-
mations for the new Definition in fractional cal-
culus are presented. The newly introduced numeri-
cal approximation is used to solve problems in inte-
grodifferential equations, aerodynamics, and opti-
mization theory. The new definition could open new
doors of investigation toward convexity and frac-
tional calculus.

2. PRELIMINARIES

This segment is dedicated to some recognized def-
initions and outcomes associated with the general-
ized proportional fractional integral operator with
respect to another function ®.

Definition 2.1 (Refs. 30/ and [33)). A function
U(E) is said to be in L, [0, 00] if

LwWMZ{UWW%mM

1
Vo =
= (/ \U(A)\quA>q < 0,
U1

1§q<oo,r20}.

For r =0,
LQ[07OO) = {Z/{ Hu”Lq[0,00)

_ (/U |L{(>\)|qd)\); < 0,

1§q<oo}.

Definition 2.2 (Ref. 28)). Let U € L1[0,00) and
¥ be an increasing and positive monotone function

New Integral Inequalities via Fractional Integral Operator

on [0,00) and also derivative ¥’ is continuous on
0, 00) and ¥(0) = 0. The space x§(0,00) (1 <g¢ <
00) of those real-valued Lebesgue measureable func-
tions U on [0, c0) for which

1
uwﬁz(/nmw@mﬁy<m,
0
I<g<oo
and for the case ¢ = 0o

sup [T (AUN)].

[U]lyge = ess
0< <00

Specifically, when U(§) = ¢ (1 < g < 00) the space
x4 (0, 00) coinsides with the Lq[0, co)-space and also
if we choose ¥(§) = In¢ (1 < ¢ < o0) the space
x5 (0,00) coincides with Ly ,[1, 00)-space.

Now, we present a new fractional operator which
is known as the GPF-integral operator of a function
in the sense of another function ¥, which is mainly
due to Rashid et al“”

Definition 2.3 (Ref. 47). Let U € x%(0,00),
there is an increasing, positive monotone function
U defined on [0,00) having continuous derivative
U’'(€) on [0,00) with ¥(0) = 0. Then, the left-sided
and right-sided GPF-integral operator of a function
U in the sense of another function ¥ of order n > 0
are stated as follows:

. 1 [Sexp[S(T(E) — T(N)]
CTEUNO = 5o et —wou
UNT' (NN, v <€ (2.1)
and
. 1 vz exp[SH(T(N) — ¥ (€))]
(‘1’7;52 u)(&) - g5r(5) /£ (\I’()\) _ \I,(g))lfzS
XUN)T' (NN, € < v, (2.2)

where the proportionality index ¢ € (0,1],§ €
C,R(6) > 0, and T'(§) = [;°Ate MdA is the

Gamma function.

Remark 2.4. Several existing fractional operators

are just special cases of (2.1]) and ([2.2)).

(1) Choosing ¥(§) = ¢ in (21) and (2.2]), then we
acquire the left- and right-sided GPF operator pro-
posed by Jarad et al.?% stated as follows:

1 [Eexp[H(E— )]
TEUE = 375 [, e

X UN)dA,

vy <& (2.3)
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and

o exp[=H (1 — ¢)
FTO) Je A=W

XUN)AN, & < va. (2.4)
(2) Choosing ¢ = 1 in (2I) and (Z2), then we
acquire the left- and right-sided generalized RL-

fractional integral operator introduced by Kilbas et
al. 33 stated as follows:

(T U)E) =

1 [& WOUN
(a0 = 15, / @@ — vy
vy < €& (2.5)
and
I TR YION 20N
(T = 575 /5 W) — ()

& < . (2.6)

(3) Choosing ¥(§) = In¢ in (Z1) and (22)), then we
acquire the left- and right-sided generalized propor-
tional Hadamard fractional integral operator estab-
lished by Rahman et al.* stated as follows:

€ exp[s=L(In$
(7—5,<u)(£) — 1 / p[ ( 5)\)]

" OT(0) Jo, (1n§)1*
x uy\)d)\, v <€ (2.7)

and

v2 exp[<=L(1n 2
(ToUN(E) = — /5 L ()]

s°I'(6) (In %)1—5
X L@d)\, & <. (2.8)

(4) Choosing ¥(¢) = In& along with ¢ = 1 in (2.1))
and (2.2)), then we acquire the left- and right-sided
Hadamard fractional integral operator obtained by
Kilbas et al®® and Samko et al. 2 stated as follows:

5 _ 1 €U
U = 55 /. o e
(2.9)
and
TOUE) = / i ———d\, {<uy
(2.10)

(5) Choosing ¥(§) = % (p>0)in ZI) and 22),
then we acquire the left- and right-sided generalized
fractional integral operator obtained by Katugam-
pola,?? stated as follows:

mu© - 05 [ (=)
><U(>\)%, v <€ (2.11)
and
TOUE) = ﬁ /£ ” (A”;£p>6—1
><UO\)%, £<uvy  (2.12)

(6) Choosing ¥ (&) = ¢ along with ¢ = 1 in (2.1])
and (2.2)), then we get the left- and right-sided RL-

fractional integral operator stated as follows:

3
TSUEO = 15 || temamsdh 1<
(2.13)
and
1 2 U
7:;622/1(5) = 0) /f 0 _(6))15d>\, £ < vy
(2.14)

Definition 2.5. Let U € xF,(0,00) and there is an
increasing, positive monotone function ¥ defined on
[0, 00) having continuous derivative ¥’(£) on [0, 00)
with ¥(0) = 0. Then, the one-sided GPF-integral
operator of a function I/ in the sense of another
function ¥ of order § > 0 and proportionality index
¢ € [0,1] is stated as follows:

1 /f exp[*H(P(E) — ¥(N)]
<°T'(9) (W(&) =)
x U (A)dA,

(TEEUN(E) =

A>0.  (2.15)

3. MAIN RESULTS

This section is devoted to establishing generaliza-
tions of some classical inequalities by employing
GPF integral with respect to another function ¥

defined in (2.15]).

Theorem 3.1. For ¢ € (0,1],0 € C,R(J) > 0 and
there are two positive continuous functions U and
V defined on [0,00) and U <V on [0,00). If% is
decreasing, U is increasing on [0,00), then for any
convex function © having ©(0) = 0. Assume that, ®
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is an increasing and positive monotone function on
[0,00), derivative ® is continuous on [0,00) with
®(0) = 0, then the generalized proportional frac-
tional integral operator with respect to another func-
tion @ given by (2.7) satisfies the inequality

MTos ME]  *To¢ [0 UE))]
Moe VOL T *Tog [0 (Ve

Proof. Since U is increasing along with the func-

tion %, moreover, using convexity of © having

©(0) = 0, and the function w is increasing.
Thus, for all A, p € [0,00), we have

(@ @) <Lf<p>>> <U<p> _ UW) >0,

UN) U(p) Vip) YN/~
(3.2)
It follows that
OUMN)Up)  ©UP)UN)  ©U(p)Up)
umr) Vip)  Ulp) v Ulp) Vip)
©UMN) UML)
~=u0) v 2 (3.3)
Multiplying (83) by V(A)V(p), we have
e UK) © U(p))
WU(P)W}\) + WU(A)WP)
© U(p)) O UML)

(3.4)

S 1 ep[STH(@E©-2(\)P' (V)
Multiplying @) by o157 — (a@-eonrts
which is positive because A € (0,€), £ > 0 and inte-
grating with respect to A from 0 to &, we have

1 /5 exp[*H(2(€) — 2(V))]'(N)
0

$°'(d) (&) = @(N)+°
© ZE{Z/([;;\))L{(p)V(A)d)\
L1 /f exp[SH(D(E) — D(N))]'(A)
OT(6) Jo (®(&) = @(N)1°
© g’(’g’ Duiyv(p)ax
L exp[<ZL(B(€) — 2(N)))2'(A)
OT(6) Jo (®(&) = @(N)1°
e U(p))

New Integral Inequalities via Fractional Integral Operator

B /sexp[%@(s)—w))@/(x)
GG Jo (@@ e

=2 U(A)V(p)dA > 0. (3.5)
This follows that
o) *7¢ (Fvio)

O U(p)) O 49,
+< U(p) Wp)) 7

a2
_
<
—
)
~—
~—

_ O (U(p)) 40,5
(s u) 7z )

v 7 (T lue) 0. 6o
Again, multiplying both sides of

s—1 _ /
(m) by gé 1 exp[ < (é(f) <I>(p))]<1> (p)’ Wthh iS pOS—

() (2(8)—2(p))' 0
itive because p € (0,¢), £ > 0 and integrating with

respect to p from 0 to &, we have

o U(9))
U()

*s i) T v©)

£
+ M

It follows that
"Tog U©)
T V()

Now, sinceld <V on [0, 00) and % is an increasing
function, for A, p € [0,£), we have
oM _0MVM)

un) - v o

Multiplying both sides of B3)

1 ep[SH(@E) -2 (N) a1

by 3T0) @02 V(A) , which is pos-

itive because A € (0,&), £ > 0 and integrating with

respect to A from 0 to &, we have

(3.9)

1 /5 exp[*H(2(€) — 2(N))]2'(N)
1) Jo (®(&) — (A))1=°
e UMW)
i) V(A)dA
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which, in view of (2.7), can be written as

. (Ow©) .
'7s (T vo) < T e ).
(3.11)

Hence from [B.8) and BI1), we get (B.3). O

We give also the following result.

(I) Letting ®(\) = A, then we have a new result for
generalized proportional fractional integral.

Corollary 3.2. For¢ € (0,1],6 € C,R(d) > 0 and
there are two positive continuous functions U and
V defined on [0,00) and U <V on [0,00). If% is
decreasing, U is increasing on [0,00), then for any
convex function © having ©(0) = 0, we have the
nequality

a)

Toe U] _ T5£ [0 U©)
T VE)] ~ Tes e )]

(IT) Letting ®(A) = A along with ¢ = 1, then we
have a new result for Riemann-—Liouville fractional
integral.

Corollary 3.3. For § € C,R(6) > 0 and there are
two positive continuous functions U and V defined

n [0,00) and U <V on [0,00). If% is decreas-
ing, U is increasing on [0,00), then for any convex
function © having ©(0) = 0, we have the inequality

TocU©)] _ Toe 6 U©)]
T V©] ~ Toe [0 V@)

Remark 3.4. If we choose ®(\) = In A, then The-
orem 3.1 in this paper reduces to Theorem 3.1 in
Ref. [42] and choosing ®(\) = In A along with ¢ = 1,
then we get Theorem 3.1 in Ref. [18

Theorem 3.5. For¢ € (0,1],6,n € C, R(d),R(n) >
0 and there are two positive continuous functions
U and V defined on [0,00) and U <V on [0,00).
If% is decreasing, U is increasing on [0,00) and
© is a conver function having ©(0) = 0. Assume
that, ® is an increasing and positive monotone func-
tion on [0,00), derivative ® is continuous on [0, c0)
with ®(0) = 0, then the generalized proportional
fractional integral operator with respect to another

function ® given by (2.7) satisfies the inequality

T UE)] PTYE [O (VE)+ TTyE UE©)] T [0 (V(©))]
T [V(f)]‘l’ SO ME)+ 2T VE)] 2Ty [0 U(9))]
> 1, (3.12)

Proof. Since U is increasing along with the func-
-0

©(0) = 0, and the function w is increasing.
Thus, for all A\,p € [0,&). Multiplying (B.0)
b exp[ (8 (6)— ()2’ ()

Y ) (@@=
because p € (0,£),§ > 0 and integrating with
respect to p from 0 to &, we have

tion , moreover, using convexity of © having

, which is positive

@Tn,c <I>7—6§ < (£§))V(£)>
+¢m§<9%%mvgﬁ PTaE ()

> P70 (V(E) T (O WU(E)))
+ 2T (O UE) PTo (V(€).-

Now, sinceld <V on [0, 00) and ( ) is an increasing

(3.13)

function, for A, p € [0,§), we have
oUM) _ewv©)

upn — vy

Multiplying both sides of (@BI4) by 1

NG
exp[ T2 (2()—2(\)] (V) . _
BEe—sopr Y which is

positive because A € (0,£),€ > 0 and integrating
with respect to A from 0 to &, we have

1 /f exp[<TH(@(§) — 2(N)]2'(N)
Q) (®

(3.14)

T (&) —2(A)?
e U\)
WV()\)CZ)\
1 /f exp[TH(B(E) — (V)] P'(\)
~ <°T(9) Jo (P(§) — 2(A)'°
e (VM)
Vo) V(A)dA, (3.15)

which, in view of (2.7), can be written as

¢%§<9@§DW@><¢7“<<<0»

u(e)
(3.16)
Hence from BII)), I3) and @B.I6), we get our
desired result. O

2040027-6
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We give the following generalizations of as
follows.

(I) Letting ®(\) = A, then we have a new result for
generalized proportional fractional integral.

Corollary 3.6. For ¢ € (0,1,6,n € C,
R(0),R(n) > 0 and there are two positive con-
tinuous functions U and V defined on [0,00) and

U<V onl0,o00). If% is decreasing, U s increasing
on [0,00), then for any conver function © having
©(0) = 0, we have the inequality

TS O TS [0 (V)] + ToIs 1(©)

s MO TS [0 W) + T3 ()

(IT) Letting ®(A) = A along with ¢ = 1, then we
have a new result for Riemann-Liouville fractional
integral.

Corollary 3.7. For §,n € C, R(5),R(n) > 0 and
there are two positive continuous functions U and

V defined on [0,00) and U <V on [0,00). If% is
decreasing, U is increasing on [0,00) then for any

convex function © having ©(0) = 0, we have the
nequality
Tog UOI 5l [0 VO + Tole U Toe O VED]
Toe VO] Tl [© U] + Tyl VO] Tge [© U(E))] ~

Remark 3.8. If we choose ®(\) = In A, then The-
orem in this paper reduces to Theorem 3.2 in
Ref. 42 and choosing ®(\) = In A along with ¢ =1,
then we get Theorem 3.2 in Ref. [I8 Also, if we con-
sider 0 = 7, then Theorem [B.] will lead to Theorem
B

We further have the following main theorem.

Theorem 3.9. For¢ € (0,1],6 € C,R(5) > 0 and
there are three positive continuous functions U,V
and W defined on [0,00) and U <V on [0,00). If
Y is decreasing, U is increasing on [0,00) and © is
a convex function having ©(0) = 0. Assume that, ®
is an increasing and positive monotone function on
[0,00), derivative ® is continuous on [0,00) with
®(0) = 0, then the generalized proportional frac-
tional integral operator with respect to another func-

tion ® given by (2.7) satisfies the inequality

"o MO “Tok [0 WE)W©)]
T VO] T TR O (VE)W(9)]

>

(3.17)

New Integral Inequalities via Fractional Integral Operator

Proof. Since Y < V on [0,00) and % is an
increasing function, for A, p € [0,&), we have
eun) _ e(vVW)
ur = v

(3.18)

Multiplying both sides of (@BI8) by L

¢OT(3)
exp[S=2 (B (x)—B(N))] @’ (A . . o
ul gq)((w)(fé(x)()l),)l ( )V()\)W()\), which is positive

because A € (0,£),£ > 0 and integrating with
respect to A from 0 to &, we get

1 /5 exp[H(B(€) — ¢(V)]P'(V)
T (8) Jo o(§) — 2(N)°
e UMW)
i VOW(A)dA
o1 /5 exp[*(2(£) — 2(V))]2'(N)
= T() Jo O(§) — 2(N)°
GS&;\))V(A)W(A)d)\, (3.19)

which, in view of (2.7), can be written as

v (9 U©))

D 70,8
vy < "z 0 M(6)

W(E)) -

Also, since © is convex with ©(0) = 0, the function
% is increasing. As U is increasing, so is the func-

tion % Obviously, the function % is decreas-

ing for all A\, p € [0,£),£ > 0. We have

W) O
(uu> Ulp) Ww)

(3.20)

UP)Y(A) =UN)V(p)) = 0. (3.21)

It follows that

2040027-7



Fractals 2020.28. Downloaded from www.worldscientific.com
by CANKAYA UNIVERSITY on 06/28/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

S. Rashid et al.

iplyi exp[=L(®(£)—B(N))]®' (A
Muliplying @22 by i s aoyrs

which is positive because A € (0,£),£ > 0 and inte-
grating with respect to A from 0 to £, we have

1 /5 exp[SH(@(€) — B(N)]1P'(N) © (U(N)
$OT(d)

12'(A) © U(N))
5) —d(N))L-° UA)
d\ > 0. (3.23)

o <u$(>;)W<A)u<,o>V<A>

L0 (U(L,;()/)))W(P)U(A)V(p)

- ORIy 0

NG, (ugj();)W(A)u(A)V(p) > 0. (3.24)

L exp[SZ(@(6)— (M) 2 (A
Multiplying ([B3:22]) by <51}(6) bl (<¢((£)(,<)1>(>\)§1),); ( )7

which is positive because A € (0,€), £ > 0 and inte-
grating with respect to A from 0 to &, we have

L /ﬁ exp[S=L(() — BN)JP'(N) © U(p))
STG) Jo (B - ) ? )
X< UNV(p)W(p)dA

| /f exp[S=L(8() — B))JP'(N) © U(p))
STG) Jo (@) — BN )
X U(p)V(N)W(p)dA

i 12N 6 UM)
(®(&) —2(N)'—° UR)

)
X ()\)V(p)W()\)d)\ > 0. (3.25)
This follows that

u) *73s (T v

u(e)

+ <@£{L([£[))))V(p)w(ﬂ)> PTof U©)

_ (9 gf(’ g’))mp)mp)) BT (V(©))

V) T (T ewee) 2o
(3.26)

Again, multiplying both sides of (3.20) by 5F

exp[ S (2(6)—2(0)]®' (p)
(<1>(§)—<1>(p))1*5
€ (0,8), &€ > 0 and integrating with respect to

p from 0 to &, we have

T e T

(9)
, which is positive because

O (U(©))
U()

T (9 (L(’S))V@)VV(&)) v U(E))

> M V©) M5 (UEOWIE))

+ ‘1’75‘?5 (OUEW(E)) ‘1’7'0?;; V(). (3.27)
It follows that

VEWE)

"o UE) > PTos (6 U(E) W)
oe UE) T T (@u VEIWE)
(3.28)
Hence from ([3.20) and ([B:28), we get our required
result. |

At the end, we give the following corollaries.

(I) Letting ®(\) = A, then we have a new result for
generalized proportional fractional integral.

Corollary 3.10. For¢ € (0,1],6 € C,R(6) > 0 and
there are three positive continuous functions U,V
and W defined on [0,00) and U <V on [0,00). If
% is decreasing, U is increasing on [0,00), then for
any convex function © having ©(0) = 0, we have
the inequality

Tox ()]
Tos V()]

Tos [© UE)W (&)]

> 3, .
Toe O V()W (&)]

(3.29)
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(IT) Letting ®(A) = A along with ¢ = 1, then we
have a new result for Riemann-Liouville fractional
integral.

Corollary 3.11. Forc € (0,1],6 € C,R(d) > 0 and
there are three positive continuous functions U,V
and W defined on [0,00) and U <V on [0,00). If
% is decreasing, U is increasing on [0,00) then for
any convez function © having ©(0) = 0, we have
the inequality

Toe UE)] _ To: [ U)W (6)]
e - mevowe
Remark 3.12. If we choose ®(A) = In A, then The-

orem in this paper reduces to Theorem 3.3 in
Ref. [42] and choosing ®(\) = In A along with ¢ = 1,
then we get Theorem 3.3 in Ref. [18

Theorem 3.13. For ¢ € (0,1], o,n € C,
R(6),R(n) > 0 and there are three positive contin-
uous functions U,V and W defined on [0,00) and
U<V onl0,0). If% is decreasing, U 1is increas-
ing on [0,00) and © is a convex function having
©(0) = 0. Assume that, ® is an increasing and pos-
itive monotone function on [0,00), derivative @ is
continuous on [0, 00) with ®(0) = 0, then the gener-
alized proportional fractional integral operator with
respect to another function ® given by (2.7) satisfies
the inequality

ST S UE) T [OUE))W(E))
TS U T E [OWUE))W(E)]
2T V(O] 2T OUE)W(E)]
[

)

3
+ETIE VIR T S [OUE)W(E)]
> 1. (3.31)

Proof. Multiplying both sides of (3:26]) by

exp[ <=L (D(€)— ()]’ (p)
(@E)—-2(p)—"
€ (0,¢), &€ > 0 and integrating with respect to
p from 0 to &, we have

_ 1
s1(n)

, which is positive because

v e *TE (S vowo)

0 (U(©) -
e lvewe) s wie)

> PTos (V(©) Ty (O UE) W(E))
+ PTos (O UE©) W) *ToE (V(©)).

)

¢ b
+ T&?(

(3.32)

New Integral Inequalities via Fractional Integral Operator

Now, sinceld <V on [0, 00) and % is an increasing
function, for A, p € [0,£), we have
ewM») _ oK)

U) vy

Multiplying both sides of (@B33) by 1

¢OT(3)
exp[ < (B(£)—P(N))]P' (A Do .
ul gq)((g)ﬂé(x)()l),)l ( )V()\)W()\), which is positive

because A € (0,€), & > 0 and integrating the
obtained inequality with respect to A from 0 to &,

we get

‘PT‘“( O (V(£)) W(€)).

Similarly, multiplying both sides of (8:33]) by

C”F( )
exp[ (D) —2(N))] @' (V)
P ORI UNW(N), which is positive

because A € (0,&), & > 0 and integrating with
respect to A from 0 to &, we get

*7s (S V)

< OIS @ (VE)WE).  (335)
Hence from B32)), (334) and (B.35]), we get our

desired result. O

< (3.33)

(3.34)

Similar results can be concluded by using

Remark 2.4]

4. CONCLUSION

The endurance of any area of research, pure and
applied mathematics relies upon the capability of
the specialists progressing in the direction of yet
to be addressed inquiries and to update the exist-
ing hypothesis and practice. Several generalizations
are predominantly because of the fact that ana-
lysts might want to explore a new scheme of study,
they have to comprehend its tendency, dissect and
anticipate it well. The prediction requires its utili-
ties in the real-world. The main aim of this paper
is to introduce new variants related to the newly
proposed operator for generalized proportional frac-
tional integral with respect to another function ®.
It is intriguing to specify here that, at whatever
point the generalized proportional fractional inte-
gral with respect to another function ® converted to
other-concerning operators (by appropriately pick-
ing the estimations of proportionality index <), the

2040027-9
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outcomes become generally increasingly significant
from the application perspective. several special
cases for changing parametric values for ¢ are pre-
sented. These new investigations will be displayed
in future research work being handled by authors of
this paper. We close this paper with the comment
that the fractional integral inequalities determined
in Sec. 3 can productively be utilized in building up
the uniqueness of solutions in fractional boundary
value problems.
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