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The main goal of the present paper is to obtain several fixed point theorems in the framework of #-quasi-metric spaces, which is an
extension of F-metric spaces. Also, a Hausdorff d-distance in these spaces is introduced, and a coincidence point theorem
regarding this distance is proved. We also present some examples for the validity of the given results and consider an

application to the Volterra-type integral equation.

1. Introduction and Preliminaries

In the last century, nonlinear functional analysis has experi-
enced many advances. One of these improvements is the
introduction of various spaces and is the proof of fixed point
results in these spaces along with its applications in engineer-
ing science. One of these spaces is function weighted metric
space introduced by Jleli and Samet [1]. This is a generaliza-
tion of metric spaces.

Definition 1 [1, 2]. A function f : (0, +0c0) — R is named
called a nondecreasing function if f(s;) <f(s,) for every
s, 8, €(0,+00). Also, f is said to be logarithmic-like
when every positive sequence {f,} satisfies nli_r)noo t,=0
iff lim f(¢,) =—co.

n—=~oo

In the sequel, we apply F for the set of all nondecreasing
functions that are logarithmic-like.

In 2019, some of researchers such as Alqahtani et al. [2],
Aydi et al. [3], and Bera et al. [4] discussed on the structure of
this space and on the fixed points of mappings satisfying in
various contractive conditions.

Definition 2 [1]. Consider a mapping § : X x X — [0, +00),
a constant B € [0, +00) and a f € F so that

(1) 8(x,x,) =0 © x; =x, for all x;,x, € X;

(11,) 8(x1,x,) =8(x;, x,) for all x;,x, € X; and

(1) 8(31, %,) > 0 implies that £(8(x,, x,)) < £ (25" (v,
V1)) + B for every N € N with N =2, for every x,x, € X,
and for all (v,)Y, ¢ X with (v}, vy) = (x,, %,).

Then, the function § is named as a function weighted
metric or a F-metric on X, and the pair (X, d) is called a
F-metric space.

Definition 3 [5]. Consider a mapping &, : X x X — [0, +00)
satisfies the properties (7;) and (#;) from the definition of
a F-metric. Then, §, is named a F-quasi-metric on X and
(X,6,) is called a F-quasi-metric space.

In [5], Karapinar et al. showed that 6, generally induces
other F-quasi-metrics such as 6;1, 8, : X xX — [0, +00)
defined by 8;1(5, t)=08,(ts) and & (s, t) =max {J,(s, 1),
8;1 (s,t)}. Regarding the discussion above, we conclude that
any quasi-metric is a F-quasi-metric by choosing f(t) =In
t for the axiom (r,) with B=0.
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Definition 4 [5]. Let (X,8,) be a F-quasi-metric space. For
x € X, the right (left) centered ball at x and of radius e>0
is the set B.(s,e)={teX:0,(s,t)<e} (Bi(s,e)={teX:
8,(t,s) <e}).

Definition 5 [5]. Consider a F-quasi-metric space (X,d,)
with a sequence {x,} therein. Then, {x,} is said to be
a right-convergent sequence (left-convergent sequence)
to x e X if nlinoo&%(x, x,) =0 (nl'gnm(Sq(xn,x) =0). Further,

{x,} is said to be a biconvergent sequence (in summary,
convergent sequence) when it is both right-convergent
and left-convergent.

Proposition 6 [5]. Consider a F-quasi-metric space (X, 6,)
with a sequence {x,} therein. Also, let lim J,(s,x,)=
n—~oo

nhllleq(xn, t) =0 for every s,t € X. Then s=t.

Definition 7 [5]. Consider a #-quasi-metric space (X,d,)
with a sequence {x,} therein. Then, {x,} is a right-Cauchy
sequence (a left-Cauchy sequence) if lim &,(x,,x,,)=0
( lim §,(x,,x,)=0). With this interpretation, {x, } is bi-
n,m——aoo

Cauchy sequence (in summary, Cauchy sequence) if it is both
left-Cauchy sequence and right-Cauchy sequence.

Now, a &-quasi-metric space (X,d,) is named right-
complete (left-complete) if every right-Cauchy sequence
(left-Cauchy sequence) in X is a right-convergent sequence
(left-convergent sequence) in X. Further, (X,§,) is bicom-
plete (in short, complete) if it is both left-complete and
right-complete.

Example 8. Define §, : N x N — [0, +00) by

Sq(s, t)=

0 whens=t
{ (1)

e +|s—t| otherwise,

for every s, t € N. Evidently, (N, §,) is a bicomplete #-quasi-
metric space.

On the other hand, Bhaskar and Lakshmikantham [6]
defined the notion of coupled fixed point and presented sev-
eral coupled fixed point propositions for a mixed monotone
mapping in partially ordered matric spaces. Also, they stud-
ied the existence and uniqueness of a solution to a periodic
boundary value problem. For more details on coupled, tri-
pled, and n-tupled fixed point assertions, one can see [7]
and references therein.

Definition 9 8, 9]. Let F: XxX — X and g : X — X be
two optional mappings. An element (1, v) € X x X is said to
be a coupled coincidence point of F and g if F(u,v)=gu
and F(v, u) = gv. Further, an element (1, v) € X x X is named
a common fixed point of F and g if F(u,v)=gu=u and
Fiv,u)=gv=w.
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Note that if g is the identity mapping, then (x, y) is called
a coupled fixed point of F [6].

Definition 10 [9]. Let F: XxX — X and g: X — X be
two optional mappings. Then F and g is said to be commu-
tative if F(gu, gv) = g(F(u, v)) for every u, v € X.

In this paper, we introduce several common fixed point
and common coupled fixed point theorems in such spaces
and prove them. In Section 2, we prove a common fixed point
theorem and a common coupled fixed point result in this
space. In Section 3, we obtain a coincidence point result for
single-valued and multivalued mappings regarding a Haus-
dorff §-distance. Ultimately, as an application of these
results, the existence of solution of the Volterra-type integral
equation is investigated in Section 4.

2. #-Quasi-Metric Space and Fixed
Point Theory

Theorem 11. Let (X,8,) be a bicomplete F-quasi-metric

space. Also, let g, T : X — X be two arbitrary mappings so
that T and g are commutative, T(X) C g(X), g(X) is closed,
and

8,(Tx, Ty) <kd,(gx. gy), (2)

for every x,y € X, where k€ (0,1). Then T and g contain a
unique common fixed point in X.

Proof. Due to T(X) c g(X), we select a point x, € X such
that T'x, = gx, for a given x,, € X. By continuing this process,
we can construct a sequence y, in X by y, = Tx, = gx,,,, for
n=0,1,---. First, note that T and g possess a unique coinci-
dence point. On the contrary, assume that u;, v, € X are two
different coincidence points of T and g. Then, &, (1, v,) >0

with gu; = Tu, = u, and gv, = Tv; = v,. Now, by (2), we get

8q(”2> VZ) = (Sq(TuD TVI) s kaq(gul’ gvl)
= kdg(u5, v2) <Oy (t5v),

(3)

which is a contradiction.

Assume (f,B) € F x[0,+00) so that (1) is complied.
For an arbitrary € > 0 and because of (1;), there exists y > 0
such that

0<t<y=f(t)<f(e) - B. (4)

Now, let {y, } be a sequence in X. Without loss of totality,
suppose that &,(Tx,, Tx;) > 0. Otherwise, x, is a coincidence

point of T" and g. Now, using (2), we obtain

8, (Tx > Txyyy) < kO o (g%, gXyin) = k8 (Tx, 15 Tx,)

5
= kz&q(gxn—l’ gxn)’ ( )
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which implies by induction that

8,(Tx,, Tx,,,) <K'8,(Txg, Tx) (6)

for every n in IN. Hence, for every m and n in IN so that m > n,
we get

m=1 n
Y 8,(Tx, Tx,,y) < T 04T Txy). (7)
Since
kﬂ
lim m@ (Txy, Tx,) = (8)

there is some N € N so that 0 < (k"/1-k)3,(Txo, Tx;) <y
for every n > N. Hence, from (4) and (#,), we observe that
B, (T 1) ) < (9)-

<Z 8, (Txj> Txyyy ) Sf(lk—_nk
©)

for m > n > N. Employing (17,) together with (9), we obtain

8,(Tx,, Tx,,) >0 = f(8,(Tx,, Tx,,))

<f<z 8,(Tx; Tx,y) >+B<f(s). (10)

It follows that & q(Txn, Tx,,) < €. Therefore, {y,} ={Tx,}
is right-Cauchy. Similarly, by changing the order of the pairs
(x;,1> x;) in the above process, we conclude that {y,} is also a
left-Cauchy sequence. Hence, it is a Cauchy sequence. Now,
since (X, 6,) is a bicomplete space, there exists z € X such
that {y,} is convergent to z. Since {Tx,} = {gx,.,,} € g(X)
and g(X) is closed, we have nlinOOS(gxn, gz) =0. As a next

step, we show that z is a coincidence point of T and g. On
the contrary, consider 8,(7z, gz) > 0. Then we have

f(6,(Tz g2)) <f(8,(Tz Tx,) +38,(Tx,, gz)) + B
< f(kd4(g2> gx,) + 84(g%y11> 92)) + B-
(11)

As n — o0 in the inequality above, we obtain
lim f(kd,(gz, gx,) +8,(9%,11> 92)) + B=-0co,  (12)

which is a contradiction. Hence, §,(Tz, gz) = 0; that is, z is a
unique coincidence point of T and g. Therefore, g and T
contian a unique point of coincidence w = gz = Tz. By com-
mutativity of the mapping T and g, we have gw = g(gz) =
gT(z) = Tg(z) = Tw. Hence, gw is another point of coinci-
dence of g and T. Now, by the uniqueness of the point of
coincidence of g and T, we have w=gw = Tw; that is, g

and T contain a unique common fixed point. This completes
the proof.

In the sequel, denote for simplicity X x -
is a nonempty set and n € IN.

x X by X", where X

Lemma 12. Consider a F-quasi-metric space (X, 0,). Then,

the following assertions hold:

(1) (X", 4,) is a F-quasi-metric space with

A ((”1"' s Up)s (Vz"' V)

= max |8 g(U2sV2)s oo

13
8, (uy vn)] ) (13)

q (upvy),

(2) The mapping f : X" — X and g : X — X contain
an n-tuple common fixed point iff the mapping
F:X"— X" and G: X" — X" defined by

(f (up tags oo uy)s f (135 -

f(un’ Up s un—l))

F(ul,uz,...,un): .’un’ul)’...)

G(”P”Z""’un)z "gun) (14)
possess a common fixed point in X"

(3) (X,8,) is bicomplete iff (X", A

(gus> guy, -
;) is bicomplete.

Proof. Clearly, A, satisfies in (;). We show that A, satisfies in
(). For every (x;;) X for 1 <i<N and 1 <j<n, consider
(x1j>%n-1;) = (), v;). Suppose that

8, (u;v;) = max 8, (uy,v,), 8y (thy, v3)s =+ 8y (1 v,,)] -
(15)

Then, we have

(0 (x (Z Oq (%ijp X1 ) +B;, (16)

where f; € # and B, € [0, +00). Therefore, we obtain

fj(Aq((ul’ Ups =55 Uy )s (V15 Vas oo Vn)))
(ma [8, a1, 1), 8, 1 %2), 8, (1,7,)])

=£(04(upv;)) <f; <Z 8y (%ijo Xir1 ) )

N-1
Sfj( Ay (%51 Xi25 > Xi)> (X110 X120 ""xi+1,n))> +B;.
=
(17)

The proofs of (2) and (3) are straightforward and left to
the reader.

Remember that Lemma 12 is a two-way relationship. Con-
sequently, we can establish n-tuple fixed point propositions



from fixed point assertions and conversely. Now, set n =2 in
Lemma 12. Then, we have the following theorem.

Theorem 13. Let (X,8,) be a bicomplete F-quasi-metric

space. Also, let g : X — X and T : X? — X be two arbitrary
mappings so that T and g are commutative, T(X?) c g(X),
9(X) is closed, and

8y (T(x3), T(x",y")) < 5 (84(g% 9%7) + 0,(97> 9"))>

(18)
for all (x,y) and (x*, y*) in X%, where k € (0, 1). Then, T and
g contain a unique common coupled fixed point in X2,

N

Proof. Let us define A, : X* x X*> — [0, 00) by A, ((u;, u,),
(v, v,)) = max [0, (uy, v;), 8, (1, v,)] for all uy,uy, vy, v, €
X. Further, we consider F : X* — X? by F(x, y) = (T(x, y),
T(y,x)) and G : X> — X? by G(x,y) = (gx, gy) for all x,
y € X. Using Lemma 12, (X?, 4,) is a bicomplete F-quasi-

metric space. Also, (x,y) € X* is a common coupled fixed
point of T and g iff it is a common fixed point of F and G.
On the other hand, from (18), we have either

A (F(xy), F(x',y"))
= A,(T(6 ), Ta ) (T, ), T x))

= ma [8,(T(6 ), T(x*,y*)),8,(T(4 ) T )]
= 8,(T(.7) T(x',y")) < 5 (8, (9% 95°) +3, (93 97°))

<k max [8,(gx, gx*), 8,(9y, 9")]
=kA,(G(x,7), G(x",y")), (19)

or

A, (E(x.y), F(x™,y7))
=4,((T(x%y), T(1:x)), (T(x" %), T(y", x7)))
=max [8,(T(x,y), T(x", y")), 8,(T(y»x), T(y", x"))]
=0,(T(nx), (", x")) < § (04(97> y7) +84(9% gx7))
<k max [8,(gy, gy")» 8,(gx. gx")]
= kA, (G, %), G, x")). (20)

Now, by Theorem 11, F and G have a common fixed
point and by Lemma 12, T and g have a common coupled
fixed point.

Example 14. Let X = [0, 1]. Define §, : X x X — [0, 00) by

whens=t

0
8,(s, t):{ (21)

|s| +|s—t| otherwise,
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for every x,y € X. Evidently, §, is a bicomplete F-quasi-

metric with f(¢) =In t and B=0. Consider T : X* — X by
T(x,y) = (x/2) + (y/2) and define g : X — X by g(x) = 2x.
Clearly T and g are commutative. Also, we have

8,(T(x,y), T(x",y"))
x+y_<x+y>‘>+‘x+y‘
2 2 2 2 2 2

(|2x=2x" + (2y = 2y")| + |2x + 2y|) (22)

IN

(122 =227 | + 2y = 27| + [2x] + [29])

N N R N N

* 1 *
04(9%, 9x) + 704(9y 9")-

Therefore, by letting k=1/2, all of the hypotheses of
Theorem 13 hold. Thus, T and g possess a common coupled
fixed point in X?.

3. Fixed Point Theorem and Hausdorff
1) q-Distance

Let us start with the following definition:

Consider a F-quasi-metric space (X,d,), and denote
the family of all nonempty bounded closed subsets of X by
CB(X). Then, H(,, -) is said to be a Hausdorff §,-distance
on CB(X), if

x€A x€B

H(;q (A, B) = max {suqu(x, B), sup8q(A, x)}, (23)

where §,(x, B) =inf {§,(x,y), y € B}.

Definition 15 [10]. Let X be a nonempty set, g : X — X bea
single-valued mapping, and T : X — CB(X) be a multiva-
lued mapping. Also, let w = gx € Tx for some x € X. Then
w is said to be a point of coincidence of g and T, and x is said
to be a coincidence point of g and T.

Theorem 16. Let (X,8,) be a bicomplete F-quasi-metric
space. Also, let g : X — X be a single-valued mapping and
T : X — CB(X)be a multivalued mapping so that T(X) C g
(X), g(X) is closed, and g is continuous. Assume that there
exists k € (0, 1) such that

Hs (Tx, Ty) <kd,(gx gy), (24)

for all x,yeX. Then T and g have a coincidence point
in X.

Proof. Due to T(X) c g(X), we select a point x; € X such that
gx, € Tx, for a given x, € X. By continuing this procedure,
we can construct a sequence x, in X such that gx, ., € Tx,
for n=0,1,---. Suppose that (f,B) € F x[0,+00) so that
(n7;) holds. For an arbitrary ¢>0 and due to (1;), there
exists y >0 such that
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0<t<y=f(t)<f(e)—B. (25)

Consider the sequence {gx,} ¢ X. Now, without loss of
generality, suppose that H, 5q(Tx0, Tx,) > 0. Otherwise, x, is

a coincidence point of T and g. Now, from (24), we have

aq(gxnﬂ’ gxn+2) < HcSq (Txn’ Txn+l) < k8q(gxn’ gxn+1)
< kHSq(Txn—l’ Txn) < kzaq(gxn—l’ gxn)‘
(26)
Hence, we have J,(gx,, gx,.1) <k"0,(gx,, x;) for all

n € N. Now, let m and »n be two natural numbers with m >
n. Then, we have

n

m—1
Y 0u(g% 9%in) S T 0% 9%1). (27)

On the other hand, since lim (k"/1 - k)3, (gx,, gx,) =

n—~oo

there exists N € IN so that

n

k
0 < 77794(9%0 9%1) <¥> (28)

for n > N. Hence, by (25) and (r,), we have

<Z 8,(9% 9% ) < (Togtulomam) ) <s(0)-

(29)

for all m>n>N. Employing (r;) together with (29), we
obtain

8,(g%, g%,,) > 0= £ (8,(9%,» 9X,n))

m—=1 30
Sf(z 8q(gxi’gxi+1)> +B<f(€). ( )

Now, by (17,), we have §,(gx,, gx,,) < & This proves that
{gx,} is right-Cauchy. Similarly, by changing the order of
the pairs (x;,;,%;) in the above process, we conclude that
{gx,} is also a left-Cauchy sequence. Therefore, it is a Cau-
chy sequence. Note that (X,6,) is bicomplete and g(X) is

closed. Thus, there exists x € X such that lim gx, = gx.
n—~o

Now, we shall show that gx € Tx. For this purpose, using
(24), we have

8,(g%1> Tx) Squ(Txn,Tx) <kd,(gx,, gx). (31)

Thus,

lim 8,(gx,,1> Tx)

n—~oo

=0,(gx, Tx)=0. (32)

Hence, gx € Tx. Consequently, T and g possess a point
of coincidence.

Example 17. Consider X = [0, 1]. Define T : X — CB(X) by
Tx=[0,1/16x] and g: X — X by gx=x/2. Also, define
8, : XxX— [0,00) by

ifs=t

0
8,(s,t) = ( (33)

|s| +|s—t| otherwise.
Clearly, &, is a bicomplete F-quasi-metric with f(t) =
Int and B=0. Also, evidently, T(X) c g(X) and g(X) is
closed. First, let x =y =0. Then

H; (Tx, Ty) =0<kd,(gx, gy)- (34)

Therefore, we may consider x and y are not zero. With-
out loss of totality, suppose that x < y. Then

1 ] 1
Haq(Tx, Ty) :H5q<[0, 1—6x_ , {0, Ry})
Qe )
su a, |0, — ,
Osaglﬁéx 1 16)/
M1
- sup O 0, —x|,b ). 35
om0 o) e

Due to x <y, we have [0,1/16x] c [0, 1/16y]. For every
a€[0,1/16x], we have &,(a, [0, 1/16y]) =0. Also, for every

b €0, 1/16y], we obtain

= max

X

| 0 bs -
8q<[o,ﬁx}b>= . . 9

(|°|+|§ —2b|) bz —.

This yields that

1
sup aq({o, x} , b) = ‘f - Z’ (37)
0<b<1/16y 16 8 8
We deduce that

1952 s L -2) - Sosoman.

(38)

Obviously, all other hypotheses of Theorem 16 hold.
Hence, g and T possess a coincidence point in X.

4. An Application

As an application of our results, we consider the following
Volterra-integral equation:

x(t) = J; K(t,s,x(s))ds + v(t), (39)

where t € 1=0,1], Ke C(Ix I xR, R), and v € C(I, R).



Consider a Banach space of all real continuous functions
defined on I (C(I, R)) with norm ||x|| ., = ntle}x\x(t)| for every
€

x € C(I,R). Also, let C(I xI x C(I, R), R) be the space of all
continuous functions defined on IxIxC(I,R). On the
other hand, the Banach space C(I, R) can be dedicated with
the Bielecki norm ||x||; = sup,;{|x(t)|e™™} for all x € C(I,
R) and 7>0, and the derived metric 8g(x,y) = |lx-y||;
for all x, y € C(I, R). Define §, : X x X — [0, 00) by

8,5 y) = sup{ |x(1)-y (1) . (40)
Also, define T : C(I, R) — C(I, R) by
Tx(t) :Jt K(t,s,x(s))ds +v(t), veC(I,R). (41)

Theorem 18. Consider a bicomplete F-quasi-metric space
(C(I,R), 8p) with f(¢t) = Int. Also, let T be an opemtorfrom

C(LLR) into C(I,R) with Tx(t fo (t,s,x(s))ds + v(t),

and let gx=1I(x). Assume that KeC(IxIxR,R)is an
operator such that

(i) K is continuous;

(ii) fo
(iii) for every x and y in C(I, R), and t and s in I, we have

(t,s,-) for all t,s € I is increasing and

[K(t5,%(5) = K(t,5, y(s))| < el x(s) = y(s)]. - (42)

Then, the integral equation (39) possesses an answer in
C(I,R).

Proof. By definition of T, we have

t

K(t,s,y(s))ds

0

8,(Tx, Ty) —sup{

tel

Jt K(t,s,x(s))ds - J

0

e—uxngt}

Ssup{ t|K(t,s,x(s)) —K(t,s,y(s))|e—||x||ﬁtds}

tel 0
t
< sup{
tel 0
t
<=yl sp{ [ e¥nasf <5 5)
tel 0
(43)

o Il |x(s) = y(s) |e—IIxIIBf ds}

Now, we consider that the function f(¢) =In t for every
tel, B=0, and k = e ¥Is, Therefore, all assertions of Theo-
rem 11 hold. As a result, Theorem 11 confirms the existence
of fixed point of T so that this fixed point is the answer of the
integral equation.
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