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The main goal of the present paper is to obtain several fixed point theorems in the framework ofF-quasi-metric spaces, which is an
extension of F-metric spaces. Also, a Hausdorff δ-distance in these spaces is introduced, and a coincidence point theorem
regarding this distance is proved. We also present some examples for the validity of the given results and consider an
application to the Volterra-type integral equation.

1. Introduction and Preliminaries

In the last century, nonlinear functional analysis has experi-
enced many advances. One of these improvements is the
introduction of various spaces and is the proof of fixed point
results in these spaces along with its applications in engineer-
ing science. One of these spaces is function weighted metric
space introduced by Jleli and Samet [1]. This is a generaliza-
tion of metric spaces.

Definition 1 [1, 2]. A function f : ð0, +∞Þ⟶ℝ is named
called a nondecreasing function if f ðs1Þ ≤ f ðs2Þ for every
s1, s2 ∈ ð0, +∞Þ. Also, f is said to be logarithmic-like
when every positive sequence ftng satisfies lim

n⟶∞
tn = 0

iff lim
n⟶∞

f ðtnÞ = −∞.

In the sequel, we apply F for the set of all nondecreasing
functions that are logarithmic-like.

In 2019, some of researchers such as Alqahtani et al. [2],
Aydi et al. [3], and Bera et al. [4] discussed on the structure of
this space and on the fixed points of mappings satisfying in
various contractive conditions.

Definition 2 [1]. Consider a mapping δ : X × X ⟶ ½0, +∞Þ,
a constant B ∈ ½0, +∞Þ and a f ∈F so that

(η1) δðx1, x2Þ = 0⇔ x1 = x2 for all x1, x2 ∈ X;
(η2) δðx1, x2Þ = δðx1, x2Þ for all x1, x2 ∈ X; and
(η3) δðx1, x2Þ > 0 implies that f ðδðx1, x2ÞÞ ≤ f ð∑N−1

i=1 δðvi,
vi+1ÞÞ + B for every N ∈ℕ with N ≥ 2, for every x1, x2 ∈ X,
and for all ðviÞNi=1 ⊂ X with ðv1, vNÞ = ðx1, x2Þ.

Then, the function δ is named as a function weighted
metric or a F-metric on X, and the pair ðX, δÞ is called a
F-metric space.

Definition 3 [5]. Consider a mapping δq : X × X⟶ ½0, +∞Þ
satisfies the properties ðη1Þ and ðη3Þ from the definition of
a F-metric. Then, δq is named a F-quasi-metric on X and
ðX, δqÞ is called a F-quasi-metric space.

In [5], Karapinar et al. showed that δq generally induces
other F-quasi-metrics such as δ−1q , δ∗q : X × X⟶ ½0, +∞Þ
defined by δ−1q ðs, tÞ = δqðt, sÞ and δ∗q ðs, tÞ =max fδqðs, tÞ,
δ−1q ðs, tÞg. Regarding the discussion above, we conclude that
any quasi-metric is a F-quasi-metric by choosing f ðtÞ = ln
t for the axiom ðη3Þ with B = 0.
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Definition 4 [5]. Let ðX, δqÞ be a F-quasi-metric space. For
x ∈ X, the right (left) centered ball at x and of radius e > 0
is the set Brðs, eÞ = ft ∈ X : δqðs, tÞ < eg (Blðs, eÞ = ft ∈ X :

δqðt, sÞ < eg).

Definition 5 [5]. Consider a F-quasi-metric space ðX, δqÞ
with a sequence fxng therein. Then, fxng is said to be
a right-convergent sequence (left-convergent sequence)
to x ∈ X if lim

n⟶∞
δqðx, xnÞ = 0 ( lim

n⟶∞
δqðxn, xÞ = 0). Further,

fxng is said to be a biconvergent sequence (in summary,
convergent sequence) when it is both right-convergent
and left-convergent.

Proposition 6 [5]. Consider a F-quasi-metric space ðX, δqÞ
with a sequence fxng therein. Also, let lim

n⟶∞
δqðs, xnÞ =

lim
n⟶∞

δqðxn, tÞ = 0 for every s, t ∈ X. Then s = t.

Definition 7 [5]. Consider a F-quasi-metric space ðX, δqÞ
with a sequence fxng therein. Then, fxng is a right-Cauchy
sequence (a left-Cauchy sequence) if lim

n,m⟶∞
δqðxn, xmÞ = 0

( lim
n,m⟶∞

δqðxm, xnÞ = 0). With this interpretation, fxng is bi-

Cauchy sequence (in summary, Cauchy sequence) if it is both
left-Cauchy sequence and right-Cauchy sequence.

Now, a F-quasi-metric space ðX, δqÞ is named right-
complete (left-complete) if every right-Cauchy sequence
(left-Cauchy sequence) in X is a right-convergent sequence
(left-convergent sequence) in X. Further, ðX, δqÞ is bicom-
plete (in short, complete) if it is both left-complete and
right-complete.

Example 8. Define δq : ℕ ×ℕ⟶ ½0, +∞Þ by

δq s, tð Þ =
0 when s = t

es + ∣s − t∣ otherwise,

(
ð1Þ

for every s, t ∈ℕ. Evidently, ðℕ, δqÞ is a bicompleteF-quasi-
metric space.

On the other hand, Bhaskar and Lakshmikantham [6]
defined the notion of coupled fixed point and presented sev-
eral coupled fixed point propositions for a mixed monotone
mapping in partially ordered matric spaces. Also, they stud-
ied the existence and uniqueness of a solution to a periodic
boundary value problem. For more details on coupled, tri-
pled, and n-tupled fixed point assertions, one can see [7]
and references therein.

Definition 9 [8, 9]. Let F : X × X ⟶ X and g : X ⟶ X be
two optional mappings. An element ðu, vÞ ∈ X × X is said to
be a coupled coincidence point of F and g if Fðu, vÞ = gu
and Fðv, uÞ = gv. Further, an element ðu, vÞ ∈ X × X is named
a common fixed point of F and g if Fðu, vÞ = gu = u and
Fðv, uÞ = gv = v.

Note that if g is the identity mapping, then ðx, yÞ is called
a coupled fixed point of F [6].

Definition 10 [9]. Let F : X × X ⟶ X and g : X⟶ X be
two optional mappings. Then F and g is said to be commu-
tative if Fðgu, gvÞ = gðFðu, vÞÞ for every u, v ∈ X.

In this paper, we introduce several common fixed point
and common coupled fixed point theorems in such spaces
and prove them. In Section 2, we prove a common fixed point
theorem and a common coupled fixed point result in this
space. In Section 3, we obtain a coincidence point result for
single-valued and multivalued mappings regarding a Haus-
dorff δ-distance. Ultimately, as an application of these
results, the existence of solution of the Volterra-type integral
equation is investigated in Section 4.

2. F-Quasi-Metric Space and Fixed
Point Theory

Theorem 11. Let ðX, δqÞ be a bicomplete F-quasi-metric
space. Also, let g, T : X⟶ X be two arbitrary mappings so
that T and g are commutative, TðXÞ ⊂ gðXÞ, gðXÞ is closed,
and

δq Tx, Tyð Þ ≤ kδq gx, gyð Þ, ð2Þ

for every x, y ∈ X, where k ∈ ð0, 1Þ. Then T and g contain a
unique common fixed point in X.

Proof. Due to TðXÞ ⊂ gðXÞ, we select a point x1 ∈ X such
that Tx0 = gx1 for a given x0 ∈ X. By continuing this process,
we can construct a sequence yn in X by yn = Txn = gxn+1 for
n = 0, 1,⋯. First, note that T and g possess a unique coinci-
dence point. On the contrary, assume that u1, v1 ∈ X are two
different coincidence points of T and g. Then, δqðu2, v2Þ > 0
with gu1 = Tu1 = u2 and gv1 = Tv1 = v2. Now, by (2), we get

δq u2, v2ð Þ = δq Tu1, Tv1ð Þ ≤ kδq gu1, gv1ð Þ
= kδq u2, v2ð Þ < δq u2, v2ð Þ,

ð3Þ

which is a contradiction.
Assume ð f , BÞ ∈F × ½0, +∞Þ so that (η3) is complied.

For an arbitrary ε > 0 and because of (η3), there exists γ > 0
such that

0 < t < γ⟹ f tð Þ < f εð Þ − B: ð4Þ

Now, let fyng be a sequence in X. Without loss of totality,
suppose that δqðTx0, Tx1Þ > 0. Otherwise, x1 is a coincidence
point of T and g. Now, using (2), we obtain

δq Txn, Txn+1ð Þ ≤ kδq gxn, gxn+1ð Þ = kδq Txn−1, Txnð Þ
≤ k2δq gxn−1, gxnð Þ,

ð5Þ
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which implies by induction that

δq Txn, Txn+1ð Þ ≤ knδq Tx0, Tx1ð Þ ð6Þ

for every n inℕ. Hence, for everym and n inℕ so thatm > n,
we get

〠
m−1

i=n
δq Txi, Txi+1ð Þ ≤ kn

1 − k
δq Tx0, Tx1ð Þ: ð7Þ

Since

lim
n⟶∞

kn

1 − k
δq Tx0, Tx1ð Þ = 0, ð8Þ

there is some N ∈ℕ so that 0 < ðkn/1 − kÞδqðTx0, Tx1Þ < γ

for every n ≥N . Hence, from (4) and (η1), we observe that

f 〠
m−1

i=n
δq Txi, Txi+1ð Þ

 !
≤ f

kn

1 − k
δq Tx0, Tx1ð Þ

� �
< f εð Þ − B,

ð9Þ

for m > n ≥N . Employing (η3) together with (9), we obtain

δq Txn, Txmð Þ > 0⟹ f δq Txn, Txmð Þ� �
≤ f 〠

m−1

i=n
δq Txi, Txi+1ð Þ

 !
+ B < f εð Þ:

ð10Þ

It follows that δqðTxn, TxmÞ < ε. Therefore, fyng = fTxng
is right-Cauchy. Similarly, by changing the order of the pairs
ðxi+1, xiÞ in the above process, we conclude that fyng is also a
left-Cauchy sequence. Hence, it is a Cauchy sequence. Now,
since ðX, δqÞ is a bicomplete space, there exists z ∈ X such
that fyng is convergent to z. Since fTxng = fgxn+1g ⊂ gðXÞ
and gðXÞ is closed, we have lim

n⟶∞
δðgxn, gzÞ = 0. As a next

step, we show that z is a coincidence point of T and g. On
the contrary, consider δqðTz, gzÞ > 0. Then we have

f δq Tz, gzð Þ� �
≤ f δq Tz, Txnð Þ + δq Txn, gzð Þ� �

+ B

≤ f kδq gz, gxnð Þ + δq gxn+1, gzð Þ� �
+ B:

ð11Þ

As n⟶∞ in the inequality above, we obtain

lim
n⟶∞

f kδq gz, gxnð Þ + δq gxn+1, gzð Þ� �
+ B = −∞, ð12Þ

which is a contradiction. Hence, δqðTz, gzÞ = 0; that is, z is a
unique coincidence point of T and g. Therefore, g and T
contian a unique point of coincidence w = gz = Tz. By com-
mutativity of the mapping T and g, we have gw = gðgzÞ =
gTðzÞ = TgðzÞ = Tw. Hence, gw is another point of coinci-
dence of g and T . Now, by the uniqueness of the point of
coincidence of g and T , we have w = gw = Tw; that is, g

and T contain a unique common fixed point. This completes
the proof.

In the sequel, denote for simplicity X ×⋯× X by Xn, where X
is a nonempty set and n ∈ℕ.

Lemma 12. Consider a F-quasi-metric space ðX, δqÞ. Then,
the following assertions hold:

(1) ðXn, ΔqÞ is a F-quasi-metric space with

Δq u1,⋯, unð Þ, v1,⋯, vnð Þð Þ
=max δq u1, v1ð Þ, δq u2, v2ð Þ,⋯, δq un, vnð Þ� �

:
ð13Þ

(2) The mapping f : Xn ⟶ X and g : X ⟶ X contain
an n-tuple common fixed point iff the mapping
F : Xn ⟶ Xn and G : Xn ⟶ Xn defined by

F u1, u2,⋯, unð Þ = f u1, u2,⋯, unð Þ, f u2,⋯, un, u1ð Þ,⋯,ð
f un, u1,⋯, un−1ð ÞÞ

G u1, u2,⋯, unð Þ = gu1, gu2,⋯, gunð Þ ð14Þ
possess a common fixed point in Xn.

(3) ðX, δqÞ is bicomplete iff ðXn, ΔqÞ is bicomplete.

Proof.Clearly, Δq satisfies in (η1). We show that Δq satisfies in
(η3). For every ðxi,jÞ ⊂ X for 1 ≤ i ≤N and 1 ≤ j ≤ n, consider
ðx1j, xN−1jÞ = ðuj, vjÞ. Suppose that

δq uj, vj
� �

=max δq u1, v1ð Þ, δq u2, v2ð Þ,⋯, δq un, vnð Þ� �
:

ð15Þ

Then, we have

f j δq uj, vj
� �� �

≤ f j 〠
N−1

i=1
δq xi,j, xi+1,j
� � !

+ Bj, ð16Þ

where f j ∈F and Bj ∈ ½0, +∞Þ. Therefore, we obtain

f j Δq u1, u2,⋯, unð Þ, v1, v2,⋯, vnð Þð Þ� �
= f j max δq u1, v1ð Þ, δq u2, v2ð Þ,⋯, δq un, vnð Þ� �� �
= f j δq uj, vj

� �� �
≤ f j 〠

N−1

i=1
δq xi,j, xi+1,j
� �

+ Bj

 !

≤ f j 〠
N−1

i=1
Δq xi,1, xi,2,⋯, xi,nð Þ, xi+1,1, xi+1,2,⋯, xi+1,nð Þð Þ

 !
+ Bj:

ð17Þ

The proofs of (2) and (3) are straightforward and left to
the reader.

Remember that Lemma 12 is a two-way relationship. Con-
sequently, we can establish n-tuple fixed point propositions
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from fixed point assertions and conversely. Now, set n = 2 in
Lemma 12. Then, we have the following theorem.

Theorem 13. Let ðX, δqÞ be a bicomplete F-quasi-metric
space. Also, let g : X ⟶ X and T : X2 ⟶ X be two arbitrary
mappings so that T and g are commutative, TðX2Þ ⊂ gðXÞ,
gðXÞ is closed, and

δq T x, yð Þ, T x∗, y∗ð Þð Þ ≤ k
2

δq gx, gx∗ð Þ + δq gy, gy∗ð Þ� �
,

ð18Þ

for all ðx, yÞ and ðx∗, y∗Þ in X2, where k ∈ ð0, 1Þ. Then, T and
g contain a unique common coupled fixed point in X2.

Proof. Let us define Δq : X
2 × X2 ⟶ ½0,∞Þ by Δqððu1, u2Þ,

ðv1, v2ÞÞ =max ½δqðu1, v1Þ, δqðu2, v2Þ� for all u1, u2, v1, v2 ∈
X. Further, we consider F : X2 ⟶ X2 by Fðx, yÞ = ðTðx, yÞ,
Tðy, xÞÞ and G : X2 ⟶ X2 by Gðx, yÞ = ðgx, gyÞ for all x,
y ∈ X. Using Lemma 12, ðX2, ΔqÞ is a bicomplete F-quasi-
metric space. Also, ðx, yÞ ∈ X2 is a common coupled fixed
point of T and g iff it is a common fixed point of F and G.
On the other hand, from (18), we have either

Δq F x, yð Þ, F x∗, y∗ð Þð Þ
= Δq T x, yð Þ, T y, xð Þð Þ, T x∗, y∗ð Þ, T y∗, x∗ð Þð Þð Þ
=max δq T x, yð Þ, T x∗, y∗ð Þð Þ, δq T y, xð Þ, T y∗, x∗ð Þð Þ� �
= δq T x, yð Þ, T x∗, y∗ð Þð Þ ≤ k

2
δq gx, gx∗ð Þ + δq gy, gy∗ð Þ� �

≤ k max δq gx, gx∗ð Þ, δq gy, gy∗ð Þ� �
= kΔq G x, yð Þ,G x∗, y∗ð Þð Þ, ð19Þ

or

Δq F x, yð Þ, F x∗, y∗ð Þð Þ
= Δq T x, yð Þ, T y, xð Þð Þ, T x∗, y∗ð Þ, T y∗, x∗ð Þð Þð Þ
=max δq T x, yð Þ, T x∗, y∗ð Þð Þ, δq T y, xð Þ, T y∗, x∗ð Þð Þ� �
= δq T y, xð Þ, T y∗, x∗ð Þð Þ ≤ k

2
δq gy, gy∗ð Þ + δq gx, gx∗ð Þ� �

≤ k max δq gy, gy∗ð Þ, δq gx, gx∗ð Þ� �
= kΔq G y, xð Þ,G y∗, x∗ð Þð Þ: ð20Þ

Now, by Theorem 11, F and G have a common fixed
point and by Lemma 12, T and g have a common coupled
fixed point.

Example 14. Let X = ½0, 1�. Define δq : X × X⟶ ½0,∞Þ by

δq s, tð Þ =
0 when s = t

∣s∣ + ∣s − t∣ otherwise,

(
ð21Þ

for every x, y ∈ X. Evidently, δq is a bicomplete F-quasi-
metric with f ðtÞ = ln t and B = 0. Consider T : X2 ⟶ X by
Tðx, yÞ = ðx/2Þ + ðy/2Þ and define g : X⟶ X by gðxÞ = 2x.
Clearly T and g are commutative. Also, we have

δq T x, yð Þ, T x∗, y∗ð Þð Þ

=
x
2
+
y
2
−

x∗

2
+
y∗

2

� �����
����

� �
+

x
2
+
y
2

��� ���
=
1
4

2x − 2x∗ + 2y − 2y∗ð Þj j + 2x + 2yj jð Þ

≤
1
4

2x − 2x∗j j + 2y − 2y∗j j + 2xj j + 2yj jð Þ

=
1
4
δq gx, gx∗ð Þ + 1

4
δq gy, gy∗ð Þ:

ð22Þ

Therefore, by letting k = 1/2, all of the hypotheses of
Theorem 13 hold. Thus, T and g possess a common coupled
fixed point in X2.

3. Fixed Point Theorem and Hausdorff
δq-Distance

Let us start with the following definition:
Consider a F-quasi-metric space ðX, δqÞ, and denote

the family of all nonempty bounded closed subsets of X by
CBðXÞ. Then, Hð·, · Þ is said to be a Hausdorff δq-distance
on CBðXÞ, if

Hδq
A, Bð Þ =max sup

x∈A
δq x, Bð Þ, sup

x∈B
δq A, xð Þ

	 

,   ð23Þ

where δqðx, BÞ = inf fδqðx, yÞ, y ∈ Bg.

Definition 15 [10]. Let X be a nonempty set, g : X ⟶ X be a
single-valued mapping, and T : X⟶ CBðXÞ be a multiva-
lued mapping. Also, let w = gx ∈ Tx for some x ∈ X. Then
w is said to be a point of coincidence of g and T , and x is said
to be a coincidence point of g and T .

Theorem 16. Let ðX, δqÞ be a bicomplete F-quasi-metric
space. Also, let g : X⟶ X be a single-valued mapping and
T : X⟶ CBðXÞbe a multivalued mapping so that TðXÞ ⊂ g
ðXÞ, gðXÞ is closed, and g is continuous. Assume that there
exists k ∈ ð0, 1Þ such that

Hδq
Tx, Tyð Þ ≤ kδq gx, gyð Þ, ð24Þ

for all x, y ∈ X. Then T and g have a coincidence point
in X.

Proof. Due to TðXÞ ⊂ gðXÞ, we select a point x1 ∈ X such that
gx1 ∈ Tx0 for a given x0 ∈ X. By continuing this procedure,
we can construct a sequence xn in X such that gxn+1 ∈ Txn
for n = 0, 1,⋯. Suppose that ð f , BÞ ∈F × ½0, +∞Þ so that
(η3) holds. For an arbitrary ε > 0 and due to (η3), there
exists γ > 0 such that
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0 < t < γ⟹ f tð Þ < f εð Þ − B: ð25Þ

Consider the sequence fgxng ⊂ X. Now, without loss of
generality, suppose that Hδq

ðTx0, Tx1Þ > 0. Otherwise, x1 is

a coincidence point of T and g. Now, from (24), we have

δq gxn+1, gxn+2ð Þ ≤Hδq
Txn, Txn+1ð Þ ≤ kδq gxn, gxn+1ð Þ

≤ kHδq
Txn−1, Txnð Þ ≤ k2δq gxn−1, gxnð Þ:

ð26Þ

Hence, we have δqðgxn, gxn+1Þ ≤ knδqðgx0, x1Þ for all
n ∈ℕ. Now, let m and n be two natural numbers with m >
n. Then, we have

〠
m−1

i=n
δq gxi, gxi+1ð Þ ≤ kn

1 − k
δq gx0, gx1ð Þ: ð27Þ

On the other hand, since lim
n⟶∞

ðkn/1 − kÞδqðgx0, gx1Þ = 0,
there exists N ∈ℕ so that

0 <
kn

1 − k
δq gx0, gx1ð Þ < γ, ð28Þ

for n ≥N. Hence, by (25) and (η1), we have

f 〠
m−1

i=n
δq gxi, gxi+1ð Þ

 !
≤ f

kn

1 − k
δq gx0, gx1ð Þ

� �
< f εð Þ − B,

ð29Þ

for all m > n ≥N. Employing (η3) together with (29), we
obtain

δq gxn, gxmð Þ > 0⟹ f δq gxn, gxmð Þ� �
≤ f 〠

m−1

i=n
δq gxi, gxi+1ð Þ

 !
+ B < f εð Þ:

ð30Þ

Now, by (η1), we have δqðgxn, gxmÞ < ε. This proves that
fgxng is right-Cauchy. Similarly, by changing the order of
the pairs ðxi+1, xiÞ in the above process, we conclude that
fgxng is also a left-Cauchy sequence. Therefore, it is a Cau-
chy sequence. Note that ðX, δqÞ is bicomplete and gðXÞ is
closed. Thus, there exists x ∈ X such that lim

n⟶∞
gxn = gx.

Now, we shall show that gx ∈ Tx. For this purpose, using
(24), we have

δq gxn+1, Txð Þ ≤Hδq
Txn, Txð Þ ≤ kδq gxn, gxð Þ: ð31Þ

Thus,

lim
n⟶∞

δq gxn+1, Txð Þ = δq gx, Txð Þ = 0: ð32Þ

Hence, gx ∈ Tx. Consequently, T and g possess a point
of coincidence.

Example 17. Consider X = ½0, 1�. Define T : X ⟶ CBðXÞ by
Tx = ½0, 1/16x� and g : X⟶ X by gx = x/2. Also, define
δq : X × X⟶ ½0,∞Þ by

δq s, tð Þ =
0 if s = t

sj j + s − tj j otherwise:

 
ð33Þ

Clearly, δq is a bicomplete F-quasi-metric with f ðtÞ =
ln t and B = 0. Also, evidently, TðXÞ ⊂ gðXÞ and gðXÞ is
closed. First, let x = y = 0. Then

Hδq
Tx, Tyð Þ = 0 ≤ kδq gx, gyð Þ: ð34Þ

Therefore, we may consider x and y are not zero. With-
out loss of totality, suppose that x ≤ y. Then

Hδq
Tx, Tyð Þ =Hδq

0,
1
16

x
� �

, 0,
1
16

y
� �� �

=max sup
0≤a≤1/16x

δq a, 0,
1
16

y
� �� �

,

� sup
0≤b≤1/16y

δq 0,
1
16

x
� �

, b
� �

: ð35Þ

Due to x ≤ y, we have ½0, 1/16x� ⊂ ½0, 1/16y�. For every
a ∈ ½0, 1/16x�, we have δqða, ½0, 1/16y�Þ = 0: Also, for every
b ∈ ½0, 1/16y�, we obtain

δq 0,
1
16

x
� �

, b
� �

=
0 b ≤

x
16

∣0∣+∣
x
8
− 2b ∣


 �
b ≥

x
16

:

0
B@ ð36Þ

This yields that

sup
0≤b≤1/16y

δq 0,
1
16

x
� �

, b
� �

=
x
8
−
y
8

��� ���: ð37Þ

We deduce that

Hδq
Tx, Tyð Þ = x

8
−
y
8

��� ��� ≤ 1
4

x
2

��� ��� + x
2
−
y
2

��� ���
 �
=
1
4
δq gx, gyð Þ:

ð38Þ

Obviously, all other hypotheses of Theorem 16 hold.
Hence, g and T possess a coincidence point in X.

4. An Application

As an application of our results, we consider the following
Volterra-integral equation:

x tð Þ =
ðt
0
K t, s, x sð Þð Þds + v tð Þ, ð39Þ

where t ∈ I = ½0, 1�, K ∈ CðI × I ×ℝ,ℝÞ, and v ∈ CðI,ℝÞ.
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Consider a Banach space of all real continuous functions
defined on I (CðI,ℝÞ) with norm kxk∞ =max

t∈I
jxðtÞj for every

x ∈ CðI,ℝÞ. Also, let CðI × I × CðI,ℝÞ,ℝÞ be the space of all
continuous functions defined on I × I × CðI,ℝÞ. On the
other hand, the Banach space CðI,ℝÞ can be dedicated with
the Bielecki norm kxkB = supt∈IfjxðtÞje−τtg for all x ∈ CðI,
ℝÞ and τ > 0, and the derived metric δBðx, yÞ = kx − ykB
for all x, y ∈ CðI,ℝÞ. Define δq : X × X⟶ ½0,∞Þ by

δq x, yð Þ = sup
t∈I

x tð Þ−y tð Þj je−∥x∥Bt
n o

: ð40Þ

Also, define T : CðI,ℝÞ⟶ CðI,ℝÞ by

Tx tð Þ =
ðt
0
K t, s, x sð Þð Þds + v tð Þ,  v ∈ C I,ℝð Þ: ð41Þ

Theorem 18. Consider a bicomplete F-quasi-metric space
ðCðI,ℝÞ, δBÞ with f ðtÞ = lnt. Also, let T be an operator from
CðI,ℝÞ into CðI,ℝÞ with TxðtÞ = Ð t0 Kðt, s, xðsÞÞds + vðtÞ,
and let gx = IðxÞ. Assume that K ∈ CðI × I ×ℝ,ℝÞis an
operator such that

(i) K is continuous;

(ii)
Ð t
0 Kðt, s, ·Þ for all t, s ∈ I is increasing; and

(iii) for every x and y in CðI,ℝÞ, and t and s in I, we have

K t, s, x sð Þð Þ − K t, s, y sð Þð Þj j ≤ e− xk kB x sð Þ − y sð Þj j: ð42Þ

Then, the integral equation (39) possesses an answer in
CðI,ℝÞ.

Proof. By definition of T , we have

δq Tx, Tyð Þ = sup
t∈I

ðt
0
K t, s, x sð Þð Þds −

ðt
0
K t, s, y sð Þð Þds

����
����e−∥x∥Bt

	 


≤ sup
t∈I

ðt
0
K t, s, x sð Þð Þ − K t, s, y sð Þð Þj je−∥x∥Bt ds

	 


≤ sup
t∈I

ðt
0
e−∥x∥B x sð Þ − y sð Þj je−∥x∥Bt ds

	 


≤ x − yk kBð Þ sup
t∈I

ðt
0
e−∥x∥Bds

	 

≤ e−∥x∥Bδq x, yð Þ:

ð43Þ

Now, we consider that the function f ðtÞ = ln t for every
t ∈ I, B = 0, and k = e−∥x∥B . Therefore, all assertions of Theo-
rem 11 hold. As a result, Theorem 11 confirms the existence
of fixed point of T so that this fixed point is the answer of the
integral equation.
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