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Abstract

In this paper, we propose a new fractional operator which is based on the weight function for
Atangana—Baleanu (AB)-fractional operators. A motivating characteristic is the generalization
of classical variants within the weighted AB-fractional integral. We aim to establish Minkowski
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and reverse Holder inequalities by employing weighted AB-fractional integral. The consequences
demonstrate that the obtained technique is well-organized and appropriate.

Keywords: Weighted AB-Fractional Operator; Minkowski Inequality; Reverse Holder Inequality.

1. INTRODUCTION

These days the fractional calculus has a significant job
in assorted logical fields because of its fertile utilities
in dynamical issues regarding engineering, informa-
tion technology, image processing, signal processing,
fluid dynamics, relativity theory, porous media and
numerous others. I8 Many researchers focused on
theories of earlier outcomes regarding the generaliza-
tions, descriptions, characterizations, design and so
forth. The nonlocal fractional derivatives are mainly
of two types, for example, the classical ones consist-
ing of singular kernels (the Riemann—Liouville and
Caputo derivatives) and the other ones have been
presented with nonsingular kernels (the Atangana—
Baleanu and Caputo—Fabrizio derivatives). Despite
the fact that there are no concrete numerical avoca-
tions of innovative types of fractional operators, they
acquired the attraction of numerous analysts in light
of their advent in various issues, for recent modifica-
tions of fractional derivatives with nonsingular ker-
nels, we recommend Refs. [19-H27.

A decade ago, the study used to generalize
integrals and derivatives of complex orders, specif-
ically, integrals including variants depend on frac-
tional calculus. Recently, a new formula with the
aid of fractional operators was proposed by Dumitru
and Fernandez?® by inserting Mittag-Leffler as ker-
nels, specifically, integrals including inequalities.
The higher-order differential equations and frac-
tional operators with several kinds of kernels (AB-
fractional operators) have been investigated in
regards of increasingly hypothetical ideas, while this
new scheme of study played a crucial role to estab-
lish the semigroup property:?2) Rashid et al5V
derived variants for a class of exponentially convex
function by means of the extended Mittag-LefHer
functions and also extended this concept in prein-
vex functions. Jarad et al3! established a class of
ordinary differential equations in the frame of AB-
fractional derivative. In Ref.[32] the authors derived
Gronwall inequality and discussed its applications
to fractional-order AB-differential equation.

The multifaceted nature of uses informs scientists
to expand the characterizations concerning the frac-
tional operators. Consequently, numerous scientists
have proposed the novel weighted versions of frac-
tional derivatives. The hypothesis and utilizations

for the weighted Caputo and Riemann-Liouville
derivatives have been investigated in Refs. 33H40l
Additionally, researchers are compelled to utilize
the weighted fractional derivatives for the explo-
ration of various kinds of variants in an exquisite
manner.?? In Ref. 22], authors contemplated the lin-
ear and nonlinear fractional differential equations
by proposing the weighted Caputo—Fabrizio frac-
tional operators and concentrated its properties
in Laplace transform. The development of classi-
cal variants in the sense of fractional operators is
supposed as an intriguing part of the information
theory. Numerous variants with various fractional
operators for the existence and uniqueness of the
solutions of fractional shérodinger equations hav-
ing kernels with singular and nonsingular have been
established. The Mittag-Leffler functions as kernel
have been used as a generalization of the classi-
cal inequalities. Additional associated work can be
searched in Refs. [41H48|

Inequality is an indispensable tool in all branches
of mathematics 275 it has wide applications in
many other natural and human social sciences.26762

Thispapermeanstostretchout theinvestigationto
the AB-fractional operators. We present the weighted
AB-fractional operators and the new approach take
into account for establishing the generalizations of
several kind of inequalities. The novelties are a com-
bination of the Minkowski inequality and reverse
Holder inequalities. Our outcomes are more broad
and pertinent than the existing results. There are
numerous descriptions of fractional operators, for
instance, Riemann—Liouville, Hadamard, Liouville,
Weyl, Erdelyi—Kober, and Katugampola, which can
be supposed for acquiring similar outcomes.

Next, we demonstrate some preliminaries con-
cerning to the AB-fractional operator and weighted
AB-fractional operator.

Definition 1.1 (Ref. [63)). For 0 < 8 < 1, then
the left-sided AB-Caputo fractional derivative of a
function F € C*(x,y) is stated as

asepary =0 [ o,
[

1—6] ds, (L.1)
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where the normalization function M(3) > 0 satisfies
the conditions M(0) = M(1) = 1 and Ejg stands for
the Mittag-LefHer function.

Definition 1.2 (Ref. [64]). For 0 < 5 < 1, then
the left-sided AB-fractional integral of a function
F € C*[z,y] is stated as

ABTBAF()) = Mﬂ)‘) + M(ﬁfl“(ﬁ)
/ F(s s)Pds, (1.2)

where the normalization function M(3) > 0 satisfies
the conditions M(0) = M(1) = 1.

We start the novel methodology and initiate the
concept of the left AB-fractional derivative of a
function F(A) in the sense of weight function w(\).

Definition 1.3. For 0 < 8 < 1, then the left-sided
weighted AB-Caputo fractional derivative of a func-
tion F € C*[z,y] in the sense of weight function
w(A) is stated as

Vst | [0

d
X g(w}"(s))ds, (1.3)

ABDIAF(N) =

where the normalization function M(5) > 0 satis-
fies the conditions M(0) = M(1) = 1 and w(\) €
C*[x,y] such that ' € L[z, y].

Definition 1.4. For 0 < 8 < 1, then the weighted

AB-fractional integral of a function F € C*[z,y] in

the sense of weight function w(\) is stated as
1-5 g 1

FTEFO) = 3TV Mg e

A
« / W($)F () (A — 5)P1ds, (1.4)

where the normalization function M(3) > 0 satisfies
the conditions M(0) = M(1) = 1.

Remark 1.1. If we choose w(\) = 1, then the
weighted AB-fractional integral, concurs with the
ordinary AB-fractional integral.

2. MINKOWSKI INEQUALITY IN
THE FRAME OF WEIGHTED
AB-FRACTIONAL

Theorem 2.1. For 0 < B < 1 and o > 1,
and suppose that two positive functions p,v €

Cglz,y] defined on [0, 00) with respect to the weight
function w such that ABTMu()) < oo and
ABE‘?@AV()\) <oo, A>x. If0 << “83 <~ for
some 0,y € Ry and Y\ € [x,y|, then the following
weighted AB-fractional integral inequality holds:

(o) + (o)
< Hi [ABE@ ((\) + v( A))a]; e

S+1)+(y+1
where H1 = 77((1%))(1(17) ).

Proof. Under the assumption o0
obtains
~
AN < [ —— A A)). 2.2
u) < (1) e e @2

Applying the ath power on both sides of (2.2), we
have

e (225) W ey

Taking product on both sides of (| . by Wﬂ)
we get

Lo < (711) L=B o + v,
(2.4)

Further, replacing A by s in and taking prod-
uct on both sides by W, and integrating

the resultant inequality with respect to the variable
s, we get

# A . ﬁflw $)u®(s)ds
M(B)L(B)w(N) / (A= )" w(s)u®(s)d
v\ B A e
= <v+1> M(ﬂ)l‘(ﬁ)w()\)/x (A=s)
x w(s) (u(s) + v(s))" ds. 25)
Summing up and (2.5)), we obtain

1—p 5
WO BT B

M(3)
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This implies

BTN o)) < (’V) ABTEN (4(0) + (V)"

“\r+1
(2.6)
Taking the éth power of both sides of (12.6|), we find
1
(572 ) "
2 AB 1B a
< A “le. .
< (25) [7 e +vonr] " @)

On the other hand, by using the condition 0 < § <

5 8\‘;, we get

1
(1+0)e
Taking product on both sides of (2.8) by I\lﬂ%ﬁﬂ)’
we get

1-8 1
()" W =

vi(A) < (1) +v(A)*. (28)

1- ﬁ [
5 ) O )"
(2.9)

Further, replacing A by s in (2.9)) and taking prod-
: BA=5)"w(s) ; :
uct on both sides by MBI B0 and integrating

the resultant inequality with respect to s, we get

B X - X
W /ac (A — 5)5 1w(8)l/ (s)ds

1 B A )

< (1+8)>M(B)T(B)w(N) L ()\—5)5 1

xw(s) (u(s) + v(s))” ds.

Summing up and , one obtains
1-08 , B
" Y METERm
A
></ (A = 5)PLw(s)v(s)ds

S | )+
:

(2.10)

= {50 M)

A -
e L O
X w(s) ((s) +1(5))° ds} |

which can be expressed as

AB:];ﬂ’&))\Va ()\)

< (57) T2 00+ @)

Applying the %th power on both sides of (2.11]),
we find

(BT )

< [T () + )]

Adding and we obtain
1
(PBTE )" + (BT )

< My BT (V) + v()°]

Ql~

(2.12)

1
a

Q=

This completes the proof. O

3. HOLDER-TYPE
INEQUALITIES FOR
WEIGHTED AB-FRACTIONAL
INTEGRAL OPERATOR

Theorem 3.1. For 0 < f < 1, aj,as > 1, with
1,1 _ o '

ar Tas = 1 and suppose that two positive functions
p,v € Cglx,y| defined on [0, 00) with respect to the
weight function w such that ABE[?JJ)‘M()\) < oo and
ABE@@AV()\) < oo forallA>x. If0<§ < % <~
for some 6,y € Ry and for all \ € [x,y], then the
following weighted AB-fractional integral inequality
holds:

1 1

(ABTEaN) ™ (BT )
< BTN (e vz ()], 3.1)

where Ho = (%)ﬁ

Proof. Utilizing the supposition 5 8) <7, we get

[\

1o (A) < 7 v (). (3.2)

1
Taking product (3.2) by p>1 and using the assump-
tion a% + a% =1, we have

1

11
u(A) < yezper(A)rez(A). (3-3)
Taking product on both sides by %, we get

1-p 11-p5 L 1
() < ez a1t (Nrez(A). (3.4
Again, replacing A by s in (3.3)) and taking product

on both sides by Wm, and integrating the
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resultant inequality with respect to s, we get

B A -
M(ﬁ)r(ﬁ)w()‘)/m (A — )P Lw(s)u(s)ds

L B A _ gyp-1
< e . O

X w(s)uaT (s)12 (5)ds. (3.5)

Now, by adding and , we find
ﬂu()\) + L
M(3) M(B)L(B)w(A)

This implies
1 1 1
ABTEN () < yo2 [ABTLAum (Awez (V)] - (3.6)

Applying the a%th power on both sides of (3.6),

we get,
1

(ABTE2 )™
< e [ABTEAuE (s ()] @)
Now, by using the supposition § < %, we have
vEL(N) < 53 pR (). (3.8)
Taking product on both sides of by V(7127 we get
V() < 65 i (\)was. (3.9)

Again, taking product on both sides of (3.9) by
1-8

Mgy Ve get
1-5 218 & e
M(B) v(\) <o I\\/JI(B)'U (Mrez (M), (3.10)

Replacing A by s in (3.9), then taking product

on both sides by , and integrating the

resultant inequality with respect to s, we get

L ’ — 8)8 1w (s)v(s)ds
WA J, O~ o
= B [ e
<% s J. 0 )
X w(s)per (s)voz (s)ds. (3.11)

Now, summing up (3.10)) and (3.12)) we find

-5 8
3N T MG
A
/ (A —5)7Lw(s)v(s)ds
2118 L= B
s0e [M(ﬁ)’“‘ AR GGy

This implies

ABTIA() < 6o BT um (wes (V)]

Applying the %th power on both sides of (3.12]), we
have
1
(7)™
1

<§ mm [ABE@MTE(A)V%(A)F. (3.13)

Finally, conducting product between (3.7) and
(3.13)), we obtain

(or22000) (5722000)
<Hy [““%ﬁ,mi(x)u%(w = (314
O

Theorem 3.2. For 0 < 8 < 1, aj,as > 1, with

1 1 _ " :
7 + = 1 and suppose that two positive functions

p,v € Cglx,y| are defined on [0, 00) with respect to
the weight function w such that ABE‘?@A;L()\) < 00
andABEé@AV(A) <oo, A>z. If0<d < % <~
for some 6,y € Ry and VA € [z,y], then the follow-
ing weighted AB-fractional integral inequality holds:

ABTEX (W) + v(N)
< Hz BT (U (N) + v (X))
+H BTN (12 () + 12 (V) (3.15)

. 2a171,ya1 . gag—1
where Hz = (T and Hq = EREESIER

Proof. Utilizing the assumption % < ~, one

N

obtains

u\) < (711) W) +rv(N).  (316)
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Taking the aith power of both sides of (3.16[), we
have

W) < (711) (u() ). (3.7)

Taking product on both sides of (| by Wﬂ)
we get

1- B aq Y “ 1- B aq
IO (,H 1) i )+ )
(3.18)

Further, replacing A\ by s in and taking prod-

5)P 1w(s)

uct on both sides by W and integrating

the resultant inequality with respect to s, we get

B A - N
G [ - 9 e s

: <v ¥ 1>a1 e ey /:“ -

X w(s) (u(s) +v(s))™ ds. (3.19)
Summing up (3.18) and (3.19), one obtains

ﬁ B
3O T
/ —5)P LW (s)p™ (s)ds

< <711) Mﬁf (5O + v(0)

This implies
AT e (V)

T\ ABBA o
<[ —— ’ A A
_<7+1) T2 (1) + ()
Multiplying (3.20)) by the constant _-
1 ABTB7)\ al()\) < i < Y >a1
Qg T o \y+1
ABTI () + v (M)

On the other hand, under the supposition 0 < § <

%, we acquire

. (3.20)

, we find

(3.21)

v (\) <

< 5y () + ).

(3.22)

Multiplying (3.22)) by 1\311%[?)7 we get

1-—- B a9 1 1- /8 a2
() < @ 1 1992 Mi(3) (1(A) +v(X)™2.
(3.23)

M(B)
Further, replacing A by s in (3.22)) and taking prod-
uct on both sides by W, and integrating
the resultant inequality with respect to s, we get
s /A 51
_— A—s w(s)v*?(s)ds
MO J, e
1 B /A -1
< A—s
G+ METEwm . Y
X w(s) (u(s) + v(s))* ds. (3.24)

Summing up and , one obtains
1
M(ﬁﬂ) v
A
/ (A — )P Lw(s)v*2(s)ds
1 1-8
< G

(1(A) + v ()

This implies

1 a2
ABB,)\ ., as <

ABTW( (A) +v(A)*. (3.25)
Multiplying (3.25) by = we have
L AB+B s 1 I
N ’ by < _—
a9 E’w v ( ) 5 +1
X ABE@ (u(A) + V(A)) (3.26)

Summing up (3.21)) and (3.26)), we get

1 1
.ABTﬁ,)\ al(/\) + OT ABE/BLJAVaz ()\)
2

aq
1 0% 1 7 L
< o <7_|_1> ABTB ((A) +v(A)”

() AT )+ O
o)

0+1
(3.27)
Taking into account Young’s inequality, we have
a1 )\ (6%) )\
pOgw(y) < B L) g 0
o1 9
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Multiplying (3.28]) by 1\141%5)7 we get

1- 5 LB (1™ () v\
0 < (o )

(3.29)

Again, replacing A by s in (3.28|) and taking product
on both sides by W, and integrating the
resultant inequality with respect to s, we get

# A s fB_lOJ s Sw(s)ds
M(B)F(B)w()\)/m (A=) (s)u(s)v(s)d
’ ﬁ( )/5*1&)(8) [e31 s)das
:rmMWWwqu (s)d

BO - 9 Nals)
‘*mcwa><><n” (s)ds. (3.30)

Summing up (3.29)) and (3.30)), we obtain

- 8
e NN T B e

A
></z (A —5)P 7 w(s)puls)v(s)ds
_1-8 (uw) N uw))

- M(ﬁ) aq Qs
B = )" w(s)
*'mammmnmwuw He)ds
BO— )" uls)
*‘x<mM@n<Mw@> s)ds. (331)
This implies that
ABTIA ) < - ABTEA ()
1
L L aspsae ). (3.32)
Qa9 ’
Utilizing and , we have
ABTIN (A1)
1\ [asrea o
<o (o) P e von]
1 1 a2
s (i) TR e ).
(3.33)

Using the inequality (a1 + a2)? < 2P~ 1(al + db),
ai,as > 0, p > 1, we have

() +(A)* < 27 ()™ +v(N)*). (3.34)

Multiplying (3.34) by 1@11%5) we find
1-6
M(3)

a— 1_5 aq aq
<2 1@(#()\) +v(A)*). (3.35)

Again, replacing A by s in (3.34]) and taking product

on both sides by %ﬁm, and integrating the

(B(A) +v(X)™

resultant inequality with respect to s, we get

A
MW)F?M / (A= )7 " (s) (u(s) + v(s))ds

a1—1 B A — 3 ps—1
e . ¢

X w(s)(u(s)™ +v(s)*)ds. (3.36)

Summing up (3.35)) and (3.36)), we obtain

1-5 B
M(p) M(B)T(B)w(M)

A
/(A—@&ﬂd$W@%+W@W%s

<2t (LR ) )

B[ g
*Mm%nmwu>A(A )

X w(s)(u(s)™ + V(s)al)] ds.

(1(A) +v(A)* +

This implies
ABTEN (u(N) + v(X)™
< 20 TABTE (u(5)e 4 u(s)®). (3.37)
Adopting the same procedure, we get
ABTIN (u(A) + ()
< 2&2—1v43722?<u<s>a2+—L«s>“2>-<3-38>

Substituting (3.37)) and ( into - ) leads to

the desired mequahty 1) This completes the
proof. O

Theorem 3.3. For0 < fp <1, aj,as > 1, with
le + —2 =1 and suppose that two positive functzons

p,v € Cgla,y| defined on [0,00) with respect to the
weight function w such that AB’Tﬂ’)‘ pu(A) < oo and

ABE[?&;)\V( )<OO A>z. If0< < ugi; <’7f0r

2040003-7
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some 8,7 € Ry and VA € [x,y], then the following
weighted AB-fractional integral inequality holds:

if‘%‘?f ey
ABTEN (u(N) + v(N))?

< ABTEA (U (V).

IN

(3.39)

Proof. Utilizing the assumption

0<5§58§§% (3.40)

we conclude that
I+ 1v(\) < pu(A) +rv(A) <14+v(N). (3.41)
Also,

L) < ) 40 < 222

“Sp(n). (342)

Y
By (3.41)) and (3.42)), we obtain

! () +rv(N)* _ 1
;M()‘)V(/\) < m < gﬂ@\)’/()\)- (3.43)

Multiplying (3.43]) by 1\%1%5)7 we have

1-p 1- B (u(N) +r()?
()" MY = 3y (11 81+ )
S%&éu@»@» (3.44)

Now, replacing A\ by s in (3.43) and taking product
: BA=s)w(s) : :

on both sides by MBI (Bw0Y) and integrating the

resultant inequality with respect to s, we get

L A . /3—10} s u(s)ds
M(A)T (B (V) / (A = )" Tw(s)u(s)v(s)d

B[
< w0 ). O

(u(s) + v(s))?
Xw@&1+&ﬂ+7)

g Ay 581
< A0 J, O

X w(s)u(s)v(s)ds.
Summing up (3.44) and (3.45)), we have

1-8 B
w3 MY MGG
x oL

/:()\—s

(3.45)

+
B=1u(s)p(s)v(s)ds

(u(s) + v(5))?
X“(%1+®u+v)
1-4 B
< (3" NN SMBT ey

< < PTEN (v (V).

This completes the proof. O

4. CONCLUSION

In this work, we have employed the newly defined
weighted AB-fractional operators for Minkowski’s
and reverse Holder inequalities. To illustrate the
applicability and effectiveness of the presented oper-
ator, the established variants are the generalizations
of classical inequalities under certain conditions. On
account of the sort of the kernel, it is notable that
dealing with AB-fractional operators is quite trou-
blesome than managing the Caputo—Fabrizio opera-
tors. Subsequently, the issue of presenting and con-
sidering the weighted AB-fractional operators in the
sense of the weight function w(A) with their high-
lights is as yet open. With the aid of this study, we
derived more general variants than in the classical
cases. For conceivable futuristic research, we pro-
pose applying the acquired inequalities to demon-
strate the existence of solutions of fractional differ-
ential equations.
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