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Abstract. This paper develops a numerical scheme for finding the approx-

imate solution of space fractional order of the diffusion equation (SFODE).
Firstly, the compact finite difference (CFD) with convergence order O(δτ2) is

used for discretizing time derivative. Afterwards, the spatial fractional deriva-

tive is approximated by the Chebyshev collocation method of the fourth kind.
Furthermore, time-discrete stability and convergence analysis are presented.

Finally, two examples are numerically investigated by the proposed method.

The examples illustrate the performance and accuracy of our method compared
to existing methods presented in the literature.

1. Introduction. One of the issues which have garnered researchers’ attention
these days is the fractional differential equations (FDEs) and have been numeri-
cally investigated by a huge number of authors [2, 3, 8, 9, 16, 21, 23, 25, 28, 29].
Fractional calculus is involved in many applications of science and engineering such
as economics, physics, optimal control, and other applications, see [10, 11, 13, 19,
22, 26, 33, 34, 35]. A case in point is the diffusion and reaction-diffusion models in
the physical environment.

These models in physics explain the action of the plural motion of micro-particles
in a material eventuating arising from the random motion of each micro-particle.
Moreover, it is suitable as a topic related to the Markov process in mathematics as
well as in various fields, such as social science, life science, materials sciences, infor-
mation science, etc. These subjects can be explained using the diffusion equations
named Brown equations.
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Space fractional order of the diffusion equations (SFODEs) as fractional partial
differential equations are numerically investigated by a large number of research
papers, see for instance [15, 29, 30, 31].

In the last decades, spectral methods are increasingly used for approximating
the solution of the ordinary differential equations (ODEs) and partial differential
equations (PDEs), etc. The spectral methods have become popular because of
finding accurate results with fewer degrees of freedom for solving the PDEs [4, 5, 20].

The Chebyshev polynomials (CPs) as the orthogonal polynomials, in spectral
methods, are used for finding the approximation of functions on the interval [−1, 1],
see [1, 12, 14]. Because there is the powerful relation of these polynomials with
Laurent and Fourier series, they have many applications in ODEs and PDEs. The
CPs have four kinds, see [20], that we are dealing with the fourth one and call it
CPF.

In recent years, the various methods have been implemented for solving SFODEs.
Tadjeran et al. in [32] combined the classical Crank-Nicholson method and spatial
extrapolation to get the approximate solution of the SFODE. In [27], authors uti-
lized the shifted Legendre-tau for solving SFODE. The references [15], [30], as well
as [31] applied new closed formulae for approximating SFODEs by shifted CPs of
the first, second, and third kinds, respectively. They obtained a linear order for the
time derivative.

We consider the following of SFODE with the initial and boundary conditions as
follows

∂u(x, t)

∂t
= q(x)

∂αu(x, t)

∂xα
+ p(x, t), 0 < x < 1, 0 < t ≤ T, (1)

u(x, 0) = g(x), 0 < x < 1, (2)

u(0, t) = ϕ0(t), u(1, t) = ϕ1(t), 0 < t ≤ T, (3)

where p(x, t) and the parameter α (1 < α < 2) are the source term and fractional
order, respictively. We should mentioned that with α = 2, Eq. (1) will be the

classical diffusion equation. Here ∂αu(x,t)
∂xα is the Caputo fractional derivative of

order α. The left Caputo’s derivative of fractional order α ∈ R+ is defined as

C
0 Dαxu(x, t) =


1

Γ(n−α)

∫ x
0

(x− y)n−α−1 ∂
nu(y,t)
∂yn dy, n− 1 < α ≤ n, n ∈ N,

∂nu(x,t)
∂xn , α = n.

For simplicity, we use Dα instead of C
0 Dαx . It is listed some properties of the

Caputo fractional derivative Dα as [6, 17, 24]:

1. Dαxβ = Γ(1+β)
Γ(1+β−α)x

β−α, 0 < α < β + 1, α > −1,

2. Dα(γf(x, t) + ςg(x, t)) = γDαf(x, t) + ςDαg(x, t),

3. Dα(C) = 0, C is a constant.

The motivation of this paper is based on applying compact finite difference (CFD)
for time-discretizing of SFODEs and displaying the unconditional stability of the
method as well as proving the convergence order of O(δτ2), while the existing meth-
ods give the order O(δτ2). We formulate the fractional derivative of the Chebyshev
polynomials of the fourth-kind by the properties of the Caputo derivative. We
next implement the CPF by collocation method for spatial-discretizing to obtain a
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full-discretization relation. The presented stability, convergence analysis and solved
numerical examples display the excellent performance of our method.

The structure of the paper is outlined as follows. Section 2 summarizes some
properties of the CPF and presents a closed formula of the fractional derivative. In
Section 3, we approximate the fractional derivative ∂αu

∂xα and explain the application
of the Chebyshev collocation method for solving Eq. (1). Moreover, the CFD
and shifted Chebyshev polynomials of the fourth kind (SCPF) are implemented
to discrete in time and space direction, respectively. In Section 4, we discuss the
convergence analysis and stability of the proposed method and display the stability
of the method is unconditional and the convergence order of the time derivative is
O(δτ2). Section 5 illustrates the accuracy and efficiency of the proposed method
with two numerical experiments.

2. Some properties of CPF. In this section, we list some properties of the CPs

of the fourth kind. We first define the Jacobi polynomials P(a,b)
i (x) as

P(a,b)
i =

Γ(a+ i+ 1)

i!Γ(a+ b+ i+ 1)

i∑
m=0

(
i

m

)
Γ(a+ b+ i+m+ 1)

Γ(a+m+ 1)
× (

x− 1

2
)m.

These polynomials are orthogonal with respect to the Jacobi weight function
ω(a,b)(x) = (1 − x)a(1 + x)b on the interval [−1, 1]. The CPFs Wi(x) are defined

based on the Jacobi polynomials P(a,b)
i (x) as below

Wi(x) =
22i(
2i
i

)P( 1
2 ,
−1
2 )

i (x).

Using analytical form of the the above equation, the CPFs Wi(x) of degree i can
be rewritten as follows:

Wi(x) =
(22i−2)Γ(i+ 0.5)(i− 1)!

(2i− 2)!

×
i−1∑
k=0

k∑
ξ=0

(−1)ξΓ(i+ k)

2kk!× (i− k − 1)Γ(k + 1.5)
×
(
k

ξ

)
× xk−ξ

= Ψi

i−1∑
k=0

k∑
ξ=0

Υi,k,ξ × xk−ξ, i = 1, 2, . . . , N + 1,

where x ∈ [−1, 1] and

Ψi =
(22i−2)Γ(i+ 0.5)(i− 1)!

(2i− 2)!
,

Υi,k,ξ =
(−1)ξΓ(i+ k)

2kk!× (i− k − 1)Γ(k + 1.5)
×
(
k

ξ

)
.

We use the SCPF W ∗
i (x) = Wi(2x− 1) defined by

W ∗
i (x) = Ψi

i−1∑
k=0

k∑
ξ=0

Υi,k,ξ × 2k × xk−ξ, x ∈ [0, 1], i = 1, 2, . . . .

In addition, the SCPF is orthogonal on [0, 1] with the inner product

〈W ∗
i (x),W ∗

j (x)〉 =

∫ 1

0

√
1− x
x

W ∗
i (x)W ∗

j (x)dx =

{
0, i 6= j,
π
2 , i = j.
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If g(x) be a square-integrable on the interval [0, 1], then it can be expanded in series
of the SCPF as follows [30]

g(x) =

∞∑
i=0

wiW
∗
i (x), x ∈ [0, 1], (4)

where the coefficients wi, i = 0, 1, 2, . . . , are defined by

wi =
2

π

∫ 1

0

√
1− x
x

g(x)W ∗
i (x)dx. (5)

It should be mentioned that in practice only N -terms of Eq. (4) are considered and
explained more in the next section.

Now, we formulate the fractional derivative of W ∗
i (x) by the properties of the

Caputo derivative as

Dα(W ∗
i (x)) =

i−dαe∑
k=0

k∑
ξ=0

N
α,dαe
i,k,ξ × x

k−ξ−α+dαe, x ∈ [0, 1], i = 0, 1, 2, . . . , (6)

where dαe is the ceiling of α and N
α,dαe
i,k,ξ is defined by

N
α,dαe
i,k,ξ =

(−1)ξ 22i (i)! Γ(i+ 0.5) Γ(i+ k + dαe+ 1) Γ(k − ξ + dαe+ 1)

(2i)! (i− k − dαe)! (k + dαe)! Γ(k + dαe+ 1.5) Γ(k − ξ − α+ dαe+ 1)

×
(
k + dαe

ξ

)
.

Notice that we have

Dα(W ∗
i (x)) = 0, i = 0, 1, 2, . . . , dαe − 1, α > 0. (7)

Combininig Eqs. (4) and (6), one can obtain

Dα(g(x)) =

∞∑
i=dαe

i−dαe∑
k=0

k∑
ξ=0

wi ×Nα,dαe
i,k,ξ × x

k−ξ−α+dαe, x ∈ [0, 1]. (8)

3. Description of the numerical method for SFODE. In this section, we
apply a method for solving Eq. (1) based on the CFD and using the Chebyshev
collocation method of the fourth kind. For given two positive integers M and N ,
we introduce time-mesh points as τj−1 = (j− 1)δτ for j = 1, 2, . . . ,M + 1, in which

δτ = T
M . Also, we consider the collocation points {xr−1}N+1−dαe

r=1 using the roots
of the SCPF W ∗

N+1−dαe(x).

For time-descretizing, we fisrt write u(x, t) ∈ C3(0, 1), based on Taylor expansion,
as

∂u(xr, tj)

∂t
= δτu(xr, tj) +

δτ

2

∂2u(xr, tj)

∂t2
+O(δτ2), (9)

where δτu(xr, tj) =
ujr−u

j−1
r

δτ . Now, substituting (9) into (1), we get

δτu(xr, tj) +
δτ

2

∂2u(xr, tj)

∂t2
+O(δτ2) = q(xr)

∂αu(xr, tj)

∂xα
+ p(xr, tj). (10)

Also, the second time derivative of Eq. (1) will be obtained as

∂2u(xr, tj)

∂t2
= q(xr)δτ

∂αu(xr, tj)

∂xα
+ δτp(xr, tj). (11)
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Substituting Eq. (11) into Eq. (10), we have

δτu(xr, tj) = q(xr)
∂αu(xr, tj)

∂xα
+ p(xr, tj)

− δτ

2

(
q(xr)δτ

∂αu(xr, tj)

∂xα
+ δτp(xr, tj)

)
+ . . . .

(12)

After time-discretizing Eqs. (12), denoting u(xr, tj) = U jr , p(xr, tj) = pjr, and
sorting, we obtain the following semi-discrete form

U jr −
δτ

2
q(xr)

∂αU jr
∂xα

= U j−1
r +

δτ

2
q(xr)

∂αU j−1
r

∂xα
+
δτ

2
(pjr+pj−1

r )+Rj(x)(δτ)
3
, (13)

where Rj(x) is the truncation term. For obtaining full-discrete form we require to

approximate the Caputo derivative in
∂αUjr
∂xα . The approximate solution u(x, t) is

constructed by using the following Chebyshev collocation technique

uN (x, t) =

N∑
i=0

ui(t)W
∗
i (x). (14)

Based on Eqs. (8), (13), (14), and using the roots of SCPF {xr}N−1
r=1 , one can simply

obtain

N∑
i=0

ujiW
∗
i (xr)−

δτ

2
q(xr)

N∑
i=2

i−2∑
k=0

k∑
ξ=0

uji ×N
α,2
i,k,ξ × x

k−ξ−α+2
r

=

N∑
i=0

uj−1
i W ∗

i (xr) +
δτ

2
q(xr)

N∑
i=2

i−2∑
k=0

k∑
ξ=0

uj−1
i ×Nα,2

i,k,ξ × x
k−ξ−α+2
r

+
δτ

2
(p(xr, tj) + p(xr, tj−1)).

(15)

where uji denotes the coefficients in the point of tj . Afterwards, by substituting the
boundary conditions (3), we have

u(0, t) =

N∑
i=0

(−1)iui(t) = ϕ0(t), u(1, t) =

N∑
i=0

(2i+ 1)ui(t) = ϕ1(t). (16)

Eq. (15) along with Eq. (16), give N + 1 of linear algebraic equations which can
be solved for obtaining the unknown ui, i = 0, 1, 2, . . . , N . It should be mentioned
that for getting the initial solution u0

i of Eq. (15), we use the initial condition of
the problem i.e., u(x, 0) combining Eq. (5).

4. Convergence analysis and stability of the method. In this section, we
investigate the convergence and stability of the proposed numerical method. Let Ω
denotes an open and bounded domain in R2 space. Also, L2(Ω) represents a Hilbert
space with the following inner product

〈u(x), v(x)〉 =

∫
Ω

u(x)v(x)dx,

and the Euclidean norm ‖u(x)‖ = 〈u(x), u(x)〉 12 . In this paper, we define Sobolev
space as

Hs(Ω) = {u ∈ L2(Ω),
dsu

dxs
∈ L2(Ω)}.
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In this section, we suppose that q(x) is nonnegative in SFODE for 0 ≤ x ≤ 1. for
investigating the stability and convergence analysis, we first begin by some following
lemmas required.

Lemma 4.1. For any u, ν ∈ H α
2 (Ω), we have

〈aDαxu, ν〉 = 〈aD
α
2
x u, xD

α
2

b ν〉, 〈xDαb u, ν〉 = 〈xD
α
2

b u, aD
α
2
x ν〉, for 1 < α < 2,

〈aDαxu, xDαb u〉 = cos(απ)‖aDαxu‖2 = cos(απ)‖xDαb u‖2, for α > 0.

Proof. See [7].

Lemma 4.2. For the functions g(x) and aDαx g(x) ∈ Hα(Ω), there exists a suffi-
ciently small enough δτ such that it holds

‖g(x) +
δτ

2
q(xr) aDαx g(x)‖ ≤ ‖g(x)‖, for 1 < α < 2.

Proof. According to Lemma 4.1, one obtains

‖g(x) +
δτ

2
q(xr) aDαx g(x)‖2 = 〈g(x) +

δτ

2
q(xr) aDαx g(x), g(x) +

δτ

2
q(xr)aDαx g(x)〉

= ‖g(x)‖2 + δτq(xr)〈aD
α
2
x g(x), xD

α
2

b g(x)〉+
(δτ)2

4
q(xr)

2‖aDαx g(x)‖2

= ‖g(x)‖2 + δτq(xr)cos(
α

2
π)‖aD

α
2
x g(x)‖2 +

(δτ)2

4
q(xr)

2‖aDαx g(x)‖2,

So, there is a small enough δτ such that the following inequality holds

δτq(xr)cos(
α

2
π)‖aD

α
2
x g(x)‖2 +

(δτ)2

4
q(xr)

2‖aDαx g(x)‖2 < 0,

that completes the desired proof.

Lemma 4.3. Let U j ∈ H1(Ω), j = 1, 2, . . . ,M and U0 be the solution of Eq. (13)
and the initial condition, respectively. Then the following inequality holds

‖U j‖ ≤ ‖U0‖+ max
0≤r≤N

δτ

2
(‖pjr‖+ ‖pj−1

r ‖), (17)

where U j = u(x, tj).

Proof. For the proof, the mathematical induction on j is implemented in what
follows. For j = 1 in Eq. (13), we have

U1 − δτ

2
q(xr) aDαxU1 = U0 +

δτ

2
q(xr) aDαxU0 +

δτ

2
(p1 + p0), (18)

multiplying Eq. (18) by U1 and integrating on Ω, we conclude

‖U1‖2 − δτ

2
q(xr)〈aDαxU1, U1〉 = 〈U0, U1〉+

δτ

2
q(xr)〈aDαxU0, U1〉

+
δτ

2
(〈p1, U1〉+ 〈p0, U1〉).

(19)

We know that cos(α2 π) < 0 for 1 < α < 2. So based on Lemmas 4.1, we have

〈aDαxU1, U1〉 = 〈aD
α
2
x U

1, xD
α
2

b U
1〉 = cos(

α

2
π)‖aD

α
2
x U

1‖2 < 0.

Therefore for the left-hand side of Eq. (19), one can obtain

‖U1‖2 ≤ ‖U1‖2 − δτ

2
q(xr)〈aDαxU1, U1〉. (20)
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Furthermore according to Lemma 4.2 and using Cauchy-Schwarz inequality for the
right-hand side of Eq. (19), we can get

‖〈U0, U1〉+
δτ

2
q(xr)〈 aDαxU0, U1〉‖

≤ ‖U0 +
δτ

2
q(xr)aDαxU0‖‖U1‖ ≤ ‖U0‖‖U1‖.

(21)

So by utilizing Eqs. (19), (20), and (21), we can conclude

‖U1‖ ≤ ‖U0‖+ max
0≤r≤N

δτ

2
(‖pjr‖+ ‖pj−1

r ‖).

Suppose that Eq. (17) is true for all k = 1, 2, . . . , j − 1 as

‖Uk‖ ≤ ‖U0‖+ max
0≤r≤N

δτ

2
(‖pkr‖+ ‖pk−1

r ‖). (22)

Now by multiplying Eq. (13) by U j and integrating on Ω, one can get

‖U j‖2 − δτ

2
q(xr)〈aDαxU j , U j〉 = 〈U j−1, U j〉+

δτ

2
q(xr)〈aDαxU j−1, U j〉

+
δτ

2
(〈pj , U j〉+ 〈pj−1, U j〉).

Similar to the above procedure, we arrive at Using the Cauchy–Schwarz inequality,
Lemma 4.2, Eq. (22) and following again above process, it leads that

‖U j‖ ≤ ‖U j−1‖+ max
0≤r≤N

δτ

2
(‖pjr‖+ ‖pj−1

r ‖).

which clearly leads to the proof of the Lemma.

Theorem 4.4. The numerical method introduced by Eq. (13) is unconditionally
stable.

Proof. Suppose that U jr , j = 1, 2, . . . ,M be the approximate solution of the method
obtained by Eq. (13) with the initial condition U0

r = u(xr, 0), then the error
εj = u(xr, tj)− U jr satisfies

εj − δτ

2
q(xr)

∂αεj

∂xα
− δτ

2
q(xr)

∂αεj−1

∂xα
= εj−1. (23)

According to Lemma 4.3, we have

‖εj‖ ≤ ‖ε0‖, j = 1, 2, . . . ,M,

which completes the proof of the unconditional stability of the scheme.

Theorem 4.5. If εj = u(x, tj) − U j , j = 1, 2, . . . ,M be the errors for Eq. (13).
Then we have

‖εj‖ ≤ C
′
(δτ)2,

where C
′

is a positive constant.

Proof. It is used the mathematical induction on j for the proof of the theorem. We
can write the following error equation by using Eq. (13) as

εj − δτ

2
q(xr)Dαεj = εj−1 +

δτ

2
q(xr)Dαεj−1 +Rj(x)(δτ)

3
.

With multiplying above equation by εj and integrating, we get the following relation

〈εj , εj〉 − δτ

2
q(xr)〈Dαεj , εj〉 = 〈εj−1, εj〉+

δτ

2
q(xr)〈Dαεj−1, εj〉+ (δτ)

3〈Rj(x), εj〉.
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Using the Cauchy-Schwarz inequality, Lemmas 4.1 and 4.2, we can write the follow-
ing inequality

‖εj‖2 ≤ ‖εj−1‖‖εj‖+ (δτ)
3‖Rj(x)‖‖εj‖.

So, one can get

‖εj‖ − ‖εj−1‖ ≤ (δτ)
3‖Rj(x)‖, =⇒ ‖εj‖ − ‖εj−1‖ ≤ C(δτ)

3
. (24)

Summing relation (24) for j from 1 to M arrives at

M∑
j=1

(
‖εj‖ − ‖εj−1‖

)
≤

M∑
j=1

C(δτ)
3
.

Thus, we can obtain

‖εM‖ − ‖ε0‖ ≤ CM(δτ)
3
,

since ‖ε0‖ = 0 and δτ = T
M , we have

‖εM‖ ≤ C
′
δτ2,

where C
′

= CT is a positive constant that depends on x. It concludes the proof of
theorem 4.5.

5. Numerical results. What we present in this section is to illustrate the ef-
ficiency of the method by some experiments. We give two examples of SFODE
and indicate the accuracy of our scheme comparing to other schemes found in the
literature. Moreover, the accuracy and stability of the proposed approach for var-
ious values of N and M is checked. In this paper, for comparing the accuracy of
the methods the error norms L∞ and L2. Furthermore, we give the numerically
computational orders and denote by Cδτ with the following formula

Cδτ =
log(E1

E2
)

log( δτ1

δτ2
)
,

where E1 and E2 are errors correspond to grids with mesh size δτ1 and δτ2, respec-
tively.

Example 5.1. For the first example, we consider the following SFODE

∂u(x, t)

∂t
= Γ(1.2)x1.8 ∂

1.8u(x, t)

∂x1.8
+ 3x2(2x− 1)e−t, 0 < x < 1, t > 0,

u(x, 0) = x2(1− x), u(0, t) = u(1, t) = 0, t > 0,

which has the exact solution u(x, t) = x2(1− x)e−t.

We report the results in Tables 1-5 at given various parameter. Tables 1 and 2
depict the comparison of the results obtained by our method with those achieved
applying shifted CPs of the first kind in [15], shifted Legendre polynomials in [27]
and shifted CPs of the second kind in [30] at T = 1 and T = 2, respectively.
The results indicate our method gives much better results than other methods. In
addition, Table 3 reports the absolute error calculated with N = 3, 5, 7 at T = 10
which displays the absolute error decreases when N increases. Tables 4 and 5 show
the results obtained by the error norms L∞, L2, and the convergence order of the
time derivative (Cδτ ) at T = 1 and T = 10, respectively. In these tables, the time
convergence order denoted by TCO. The results confirm the convergence order of
the time derivative in Theorem 4.5.
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Table 1. The absolute error of Example 5.1 at T = 1.

x with N = 7 in with N = 7 in with N = 3 in our method with N = 3
[15] [27] [30]

0 2.81× 10−5 0 0 4.77× 10−17

0.1 4.26× 10−5 4.66× 10−5 5.46× 10−6 3.17× 10−9

0.2 5.39× 10−5 7.74× 10−5 8.51× 10−6 5.85× 10−9

0.3 6.12× 10−5 5.00× 10−5 9.60× 10−6 7.97× 10−9

0.4 6.48× 10−5 2.30× 10−5 9.18× 10−6 9.44× 10−9

0.5 6.45× 10−5 2.74× 10−5 7.69× 10−6 1.02× 10−8

0.6 5.98× 10−5 4.38× 10−5 5.60× 10−6 1.01× 10−8

0.7 5.23× 10−5 3.87× 10−5 3.33× 10−6 9.12× 10−9

0.8 4.48× 10−5 1.01× 10−5 1.34× 10−6 7.17× 10−9

0.9 3.91× 10−5 3.35× 10−5 8.39× 10−8 4.16× 10−9

1.0 2.81× 10−5 0 0 7.55× 10−17

Table 2. The absolute error of Example 5.1 at T = 2.

x with N = 5 in with N = 5 in with N = 3 in our method with N = 3
[15] [27] [30]

0 2.74× 10−5 0 0 1.86× 10−17

0.1 4.20× 10−5 4.47× 10−6 3.33× 10−6 1.28× 10−8

0.2 3.76× 10−5 2.78× 10−7 5.65× 10−6 2.05× 10−8

0.3 8.44× 10−5 5.81× 10−6 7.05× 10−6 2.40× 10−8

0.4 3.27× 10−5 1.02× 10−5 7.64× 10−6 2.40× 10−8

0.5 3.61× 10−5 1.17× 10−5 7.52× 10−6 2.15× 10−8

0.6 1.94× 10−5 1.08× 10−5 6.80× 10−6 1.72× 10−8

0.7 2.95× 10−5 8.54× 10−6 5.59× 10−6 1.21× 10−8

0.8 4.92× 10−5 6.06× 10−6 3.98× 10−6 6.93× 10−9

0.9 2.83× 10−5 3.67× 10−6 2.08× 10−6 2.62× 10−9

1.0 7.73× 10−5 0 0 8.24× 10−18

Table 3. The absolute error of Example 5.1 at T = 10.

x N = 3 N = 5 N = 7
0 5.82× 10−21 5.93× 10−22 4.43× 10−21

0.2 1.01× 10−9 4.74× 10−9 2.28× 10−9

0.4 8.21× 10−9 8.11× 10−9 4.21× 10−9

0.6 1.28× 10−9 1.17× 10−9 1.15× 10−9

0.8 3.76× 10−9 7.93× 10−10 2.71× 10−10

1.0 4.34× 10−21 3.78× 10−21 1.14× 10−22

Figure 1 displays graphs of the absolute error and approximate solution using the
CFD method with the Chebyshev collocation approach of the fourth kind with vari-
ous parametersM = 400 andN = 5 at T = 1. In addition, Figure 2 depicts the error
norm L2 and L∞ for Example 5.1 at T = 1, N = 5 and M = 200, 400, 600, . . . , 3000.
The error histories have been shown in Figure 3 at T = 1 for different values N = 5
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Table 4. The convergence order, the errors L2 and L∞ for Ex-
ample 5.1 with T = 1 and N = 3.

δτ L∞ Cδτ L2 Cδτ
1

100 1.62773× 10−7 3.76647× 10−7

1
200 4.06928× 10−8 2.00002 9.41607× 10−8 2.00002
1

400 1.01732× 10−8 2.00000 2.35401× 10−8 2.00000
1

800 2.54329× 10−9 2.00000 5.88503× 10−9 2.00000
1

1600 6.35828× 10−10 1.99999 1.47127× 10−9 1.99999

TCO 2 2

Table 5. The convergence order, the errors L2 and L∞ for Ex-
ample 5.1 with T = 10 and N = 3.

δτ L∞ Cδτ L2 Cδτ
1

100 1.63402× 10−7 3.10926× 10−7

1
200 4.08673× 10−8 1.99941 7.77632× 10−8 1.99941
1

400 1.02179× 10−8 1.99985 1.94428× 10−8 1.99985
1

800 2.55453× 10−9 1.99996 4.86082× 10−9 1.99996
1

1600 6.38636× 10−10 1.99999 1.21521× 10−9 1.99999

TCO 2 2

and M = 100, 200, 400, 800, 1600. Also, Figure 4 compares the absolute error at
T = 1, M = 400 and N = 3, 5, 7, 9.

Figure 1. Plots of the approximate solution (left side) and ab-
solute error (right side) of Example 5.1 at T = 1, M = 400 and
N = 5.
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Figure 3. Error histories of Example 5.1 at T = 1, N = 5 and
M = 100, 200, 400, 800, 1600.

Figure 2. The maximum absolute error and error norm L2 of
Example 5.1 at T = 1, N = 5 and M = 200, 400, 600, . . . , 3000.

Example 5.2. We consider the following SFODE as

∂u(x, t)

∂t
=

Γ(2.2)

6
x2.8 ∂

1.8u(x, t)

∂x1.8
− x3e−t(x+ 1), 0 < x < 1, t > 0,

u(x, 0) = x3, u(0, t) = 0, u(1, t) = exp(−t), t > 0,

(25)

which exact solution given by u(x, t) = x3e−t.
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Figure 4. Error histories of Example 5.1 at T = 1, M = 400 and
N = 3, 5, 7, 9.

Table 6. The convergence order, the errors L2 and L∞ for Ex-
ample 5.2 with N = 7 at T = 1.

δτ L∞ Cδτ L2 Cδτ
1

100 1.71816× 10−6 3.73349× 10−6

1
200 4.29538× 10−7 2.00000 9.33372× 10−7 2.00000
1

400 1.07384× 10−7 2.00000 2.33343× 10−7 2.00000
1

800 2.68460× 10−8 2.00000 5.83360× 10−8 2.00000
1

1600 6.71143× 10−9 2.00002 1.45842× 10−8 1.99998

TCO 2 2

Table 6 represents the results of Example 5.2 with N = 7, T = 1, and various
parameter δτ . Furthermore based on the obtained results, the convergence order of
the time derivative in Theorem 4.5, that is, O(δτ2) is supported. Table 7 compares
the maximum error of our method with those found in [32] for Example 5.2 at T = 1
with N = 7. It is clearly observed that our approach presents more accurate results
than those calculated by Crank–Nicolson scheme in [32]. Figure 5 indicates graphs of
the numerical results at T = 1 for values N = 5, 7 and M = 100, 200, 400, 800, 1600.

6. Conclusion. This paper presented the Chebyshev polynomials of the fourth
kind to approximate the SFODE. Firstly, the CFD is utilized to discrete temporal
direction with order O(δτ2). Then, the space fractional derivative is approximated
using Chebyshev collocation of the fourth kind. The unconditional stability of
the proposed scheme has been analyzed in an appropriate Sobolev space. Finally,
the numerical results are illustrated to confirm the efficiency and accuracy of the
proposed method. As can be seen in the numerical results tables and figures, our
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Table 7. The comparison of maximum error of our proposed
method and [32] for Example 5.2, at T = 1.

Max error-CN [32] Max error-ext CN [32] the present method with N=3

6.84895× 10−4 2.82750× 10−5 9.95930× 10−8

Figure 5. Error histories of Example 5.2 at T = 1, with M =
100, 200, 400, 800, 1600, N = 5 (left side) and N = 7 (right side).

method performs much better than other methods and yields far better results. So,
the approach applied in this paper can be extended to other fractional models.

Acknowledgments. The authors would like to thank the two anonymous review-
ers for their helpful comments.
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