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Abstract
We discuss some existence criteria for a new category of the Caputo conformable
differential inclusion furnished with four-point mixed Riemann–Liouville conformable
integro-derivative boundary conditions. In this way, we employ some analytical
techniques on α-ψ -contractive mappings and operators having the approximate
endpoint property to reach desired theoretical results. Finally, we provide an example
to illustrate our last main result.
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1 Introduction
From a long time ago, human beings have been thinking about finding the secrets and
phenomena of the world around in order to be able to answer some questions. For this
reason, by increasing its knowledge, the mankind invoked new logical and computational
tools. The mathematical operators are one of these useful tools for modeling natural pro-
cesses in the world. Over the years, mathematicians have introduced various operators
for different models, but since fractional order modelings are more accurate than inte-
ger order ones, new fractional operators have been defined for this purpose today. In the
meantime, the Caputo and the Riemann–Liouville fractional operators have been used
more than other operators for complicated fractional modelings (see, for example, [1–5]).
Lately, the Hadamard and Caputo–Hadamard fractional operators have been introduced
by some researchers and then different modelings have been studied using these opera-
tors (see, for instance, [6–9]). In 2015, Caputo and Fabrizio [10] presented a new fractional
derivative without singular kernel entitled fractional Caputo–Fabrizio operator, and in the
same year, Losada and Nieto [11] investigated some properties of this new fractional op-
erator. Some flexible properties of this nonsingular operator led to numerous papers on
the various fractional modelings in this regard (see, for example, [12–14]).

Following this path, Abdeljawad [15] developed the concepts introduced in [16] and in-
vestigated some properties of the well-behaved conformable fractional derivatives. In a
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paper published in 2017, Jarad et al. [17] wanted to answer the question if one can extend
the standard Riemann–Liouville integral of fractional order so that we obtain a unification
to other fractional operators including Riemann–Liouville, Caputo, Hadamard, Caputo–
Hadamard, and other derivatives [18]. To reach this goal, the authors introduced novel
integration and differentiation operators of fractional order based on conformable opera-
tors. Indeed, they defined new functional spaces and established some basic properties of
these new combined operators. After that manuscript, a limited number of papers, which
rely on these novel operators, have been published so far. For instance, in the following pa-
per for the first time the authors applied new Caputo and Riemann–Liouville conformable
operators in their BVP. In fact, Aphithana et al. [19] sketched a new problem as the con-
formable differential equation of Caputo type with four-point integral conditions

⎧
⎨

⎩

CCDυ,�
a w(s) = ğ(s, w(s)) (a < s < T),

w(a) = μ1w(ξ ) + μ2, w(T) = λRCIυ,β
a w(σ ),

where CCDυ,�
a is the conformable derivative of Caputo type of order � ∈ (1, 2] with υ ∈

(0, 1]. Also, RCIυ,β
a is a conformable integral of Riemann–Liouville type of order β > 0.

They employed some functional analysis techniques to obtain their desired results. Fur-
ther, different kinds of Ulam stability of the solutions are investigated by them [19].
Also, one can find different applied type works, where researchers use fractional models
[20–32].

By utilizing these new operators introduced in [17] and motivated by the above-
mentioned work, we designed the following Caputo fractional conformable differential
inclusion:

CCDυ,�
a w(s) ∈ R̆

(
s, w(s)

) (
s ∈ [a, T], a ≥ 0

)
(1)

subject to four-point conditions in the frame of the newly defined mixed Riemann–
Liouville conformable integro-derivative

w(a) = RCDυ,p∗
a w(ξ ) + μ1, w(T) = RCIυ,q∗

a w(σ ) + μ2, (2)

so that CCDυ,�
a is the Caputo conformable derivative of fractional order � ∈ (1, 2] with

υ ∈ (0, 1], RCDυ,p∗
a is the Riemann–Liouville conformable derivative of fractional order

p∗ ∈ (0, 1], and RCIυ,q∗
a is the Riemann–Liouville conformable integral of fractional order

q∗ > 0. Also ξ ,σ ∈ (a, T), μ1,μ2 ∈ R and R̆ : [a, T] × R → P(R) is a set-valued map en-
dowed with some properties which are stated in the sequel. Our main goal in the present
manuscript is to obtain some existence criteria for the mentioned Caputo conformable
differential inclusion. In this way, we employ some analytical techniques on the α-ψ-
contractive mappings and operators having the approximate endpoint property to reach
the desired theoretical results. Note that unlike other published papers in the field of the
existence theory, this inclusion problem supplemented with newly defined Caputo and
Riemann–Liouville conformable operators is unique, and this type of mixed inclusion
problems has not been investigated in any literature. We arrange the contents of the pa-
per as follows. Some auxiliary definitions and notions are assembled in Sect. 2. Then in
Sect. 3, we utilize two concepts of fixed point and endpoint to obtain the existence criteria
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corresponding to the given BVP by (1)–(2). In the last section, we propose an illustrative
example to support our findings from a numerical point of view.

2 Preliminaries
In the current section, we state some fundamental and auxiliary concepts. As we know,
the notion of the Riemann–Liouville integral of order � > 0 of a function w : [0, +∞) →
R is given by RI�

0 w(s) =
∫ s

0
(s–r)�–1

Γ (�) w(r) dr provided that the value of the integral is finite
[33, 34]. In this position, let us assume that � ∈ (n – 1, n) so that n = [�] + 1. For a function
w ∈AC(n)

R
([0, +∞)), the fractional derivative of Caputo type is given by

CD�

0 w(s) =
∫ s

0

(s – r)n–�–1

Γ (n – �)
w(n)(r) dr,

provided that the integral is finite-valued [33, 34]. The left conformable derivative at the
initial point s0 = a for a function w : [a,∞) →R with υ ∈ (0, 1] is defined as follows:

Dυ
a w(s) = lim

λ→0

w(s + λ(s – a)1–υ) – w(s)
λ

,

so that the limit exists [16]. It is notable that Dυ
a w(a) = lims→a+ Dυ

a w(s) whenever Dυ
a w(s)

exists on the interval (a, b). Moreover, it is obvious that Dυ
a w(s) = (s – a)1–υw′(s) if the

function w is differentiable. Besides, the definition of the left conformable integral of w
with υ ∈ (0, 1] is of the form Iυ

a w(s) =
∫ s

a w(r) dr
(r–a)1–υ if the integral has finite values [16].

In [17], Jarad et al. extended the conformable operators to arbitrary orders in the Caputo
and Riemann–Liouville setting. Assume that � ∈ C with Re(�) ≥ 0. Then the Riemann–
Liouville fractional conformable integral of a function w of order � with υ ∈ (0, 1] is de-
fined by

RCIυ,�
a w(s) =

1
Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

w(r)
dr

(r – a)1–�

if the value of integral exists [17]. One can easily see that if a = 0 and υ = 1, then RCIυ,�
a w(s)

is reduced to the usual Riemann–Liouville integral RI�

0 w(s). On the other hand, the
Riemann–Liouville conformable derivative of a function w of order � with υ ∈ (0, 1] is
given by

RCDυ,�
a w(s) = Dυ,n

a
(RCIυ,n–�

a w
)
(s)

=
Dυ,n

a
Γ (n – �)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)n–�–1

w(r)
dr

(r – a)1–�
,

so that n = [Re(�)] + 1 and Dυ,n
a =

n times
︷ ︸︸ ︷
Dυ

aDυ
a · · ·Dυ

a , where Dυ
a denotes the left conformable

derivative with υ ∈ (0, 1] [17]. Similarly, it is evident that if a = 0 and υ = 1, then RCDυ,�
a w(s)

is reduced to the usual Riemann–Liouville derivative RD�

0 w(s). Now, to define a similar
notion in the Caputo setting, construct Lυ(a) := {ϕ : [a, b] → R : Iυ

a ϕ(s) exists for any s ∈
[a, b]} for υ ∈ (0, 1] and set

Iυ

(
[a, b]

)
:=

{
w : [a, b] →R : w(s) = Iυ

a ϕ(s) + w(a) for some ϕ ∈Lυ(a)
}

,
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where the notation Iυ
a ϕ(s) =

∫ s
a ϕ(r) dυ(r, a) =

∫ s
a ϕ(r) dr

(r–a)1–υ stands for the left con-
formable integral of ϕ by putting dυ(r, a) = dr

(r–a)1–υ [15]. Also, if a = 0, then we write dυ(r) =
dr

r1–υ . For n = 1, 2, 3, . . . , we define Cn
a,υ ([a, b]) := {w : [a, b] →R : Dυ,n–1

a w ∈ Iυ ([a, b])}. Then
the Caputo conformable derivative of a function w ∈ Cn

a,υ ([a, b]) of order � with υ ∈ (0, 1]
is given by

CCDυ,�
a w(s) = RCIυ,n–�

a
(
Dυ,n

a w
)
(s)

=
1

Γ (n – �)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)n–�–1

Dυ,n
a w(r)

dr
(r – a)1–�

,

so that n = [Re(�)] + 1 [17]. Obviously, CCDυ,�
a w(s) = CD�

0 w(s) if a = 0 and υ = 1. Some
important properties of the Caputo and Riemann–Liouville fractional conformable oper-
ators can be found in the following lemmas.

Lemma 1 ([17]) Assume that Re(�) > 0, Re(� ) > 0, and Re(β) > 0. Then, for υ ∈ (0, 1] and
for all s > a, the following statements hold:

(i1) RCIυ,�
a (RCIυ,�

a w)(s) = (RCIυ,�+�
a w)(s),

(i2) RCIυ,�
a (s – a)υ(β–1)(z) = 1

υ�
Γ (β)

Γ (β+�) (z – a)υ(β+�–1),
(i3) RCDυ,�

a (s – a)υ(β–1)(z) = υ� Γ (β)
Γ (β–�) (z – a)υ(β–�–1),

(i4) RCDυ,�
a (RCIυ,�

a w)(s) = (RCIυ,�–�
a w)(s), (Re(�) < Re(� )).

Lemma 2 ([19]) Let n – 1 < Re(�) ≤ n and w ∈ Cn
a,υ([a, b]). Then, for υ ∈ (0, 1], we have

RCIυ,�
a

(CCDυ,�
a w

)
(s) = w(s) –

n–1∑

j=0

Dυ,j
a w(a)
υ jj!

(s – a)jυ .

In view of the above lemma, it is verified that the general solution of the homogeneous
equation (CCDυ,�

a w)(s) = 0 is given by

w(s) =
n–1∑

j=0

bj(s – a)jυ = b0 + b1(s – a)υ + b2(s – a)2υ + · · · + bn–1(s – a)(n–1)υ ,

where n – 1 < Re(�) ≤ n and b0, b1, . . . , bn–1 ∈R.
In the following, we review some notions about the set-valued maps theory. For this

purpose, consider the normed space (W ,‖ · ‖W ). Also, for convenience, we use the nota-
tions P(W), Pcls(W), Pbnd(W), Pcmp(W), and Pcvx(W) for the representation of the col-
lection of all subsets, all closed subsets, all bounded subsets, all compact subsets, and all
convex subsets of W , respectively. The element w∗ ∈ W is a fixed point for the given set-
valued map R̆ : W → P(W) whenever w∗ ∈ R̆(w∗) [35]. We represent the family of all
fixed points of R̆ by notation FIX (R̆) [35]. In the following, the Pompeiu–Hausdorff
metric PHdW : P(W) ×P(W) →R

∗ = R∪ {∞} is formulated by

PHdW (A1, A2) = max
{

sup
a1∈A1

dW (a1, A2), sup
a2∈A2

dW (A1, a2)
}

,

where dW (A1, a2) = infa1∈A1 dW (a1, a2) and dW (a1, A2) = infa2∈A2 dW (a1, a2) [35]. A set-
valued map R̆ : W → Pcls(W) is Lipschitzian with positive constant λ̂ if the inequality
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PHdW (R̆(w), R̆(w′)) ≤ λ̂dW (w, w′) holds for all w, w′ ∈W . A Lipschitz map R̆ is supposed
to be defined contraction if λ̂ ∈ (0, 1) [35]. In the sequel, R̆ is said to be completely con-
tinuous if R̆(K) is relatively compact for each K ∈ Pbnd(W), whereas R̆ : [0, 1] → Pcls(R)
is called measurable if s �−→ dW (υ, R̆(s)) is measurable for any υ ∈ R [35, 36]. Also, R̆
is upper semi-continuous whenever for every w∗ ∈ W the set R̆(w∗) belongs to Pcls(W)
and for each open set U containing R̆(w∗) there is a neighborhood O∗

0 of w∗ provided
that R̆(O∗

0) ⊆ U [35]. We construct a graph of the set-valued map R̆ : W → Pcls(Z) by
Graph(R̆) = {(w, z) ∈ W × Z : z ∈ R̆(w)}. The Graph(R̆) is closed whenever, for two ar-
bitrary convergent sequences {wn}n≥1 in W and {zn}n≥1 in Z with wn → w0, zn → z0

and zn ∈ R̆(wn), we have the inclusion z0 ∈ R̆(w0) [35, 36]. In view of [35], it is deduced
that if the set-valued map R̆ : W → Pcls(Z) has an upper semi-continuity property, then
Graph(R̆) is a closed subset of W ×Z . On the contrary, if R̆ has the complete continuity
and closed graph property, then R̆ is upper semi-continuous [35]. In addition, R̆ has con-
vex values if R̆(k) ∈Pcvx(W) for each w ∈W . Furthermore, a collection of selections of R̆
at point w ∈ CR([0, 1]) is represented by

(SEL)
R̆,w :=

{
ϑ̂ ∈L1

R

(
[0, 1]

)
: ϑ̂(s) ∈ R̆

(
s, w(s)

)}

for (a.e.) all s ∈ [0, 1] [35, 36]. Note that if we assume that R̆ is an arbitrary set-valued map,
then for each w ∈ CW ([0, 1]) we have (SEL)

R̆,w 
= ∅ whenever dim(W) < ∞ [35]. We say
that R̆ : [0, 1] × R → P(R) is called Caratheodory if s �→ R̆(s, w) is measurable for every
w ∈ R and w �→ R̆(s, w) is upper semi-continuous for (a.e.) all w ∈ [0, 1] [35, 36]. Besides, a
Caratheodory set-valued map R̆ : [0, 1] ×R→P(R) is called L1-Caratheodory when, for
each μ > 0, there is ϕμ ∈ L1

R+ ([0, 1]) so that ‖R̆(s, w)‖ = sups∈[0,1]{|q| : q ∈ R̆(s, w)} ≤ ϕμ(s)
for all |w| ≤ μ and for almost any s ∈ [0, 1] [35, 36].

Samet et al. [37] introduced a new collection of nondecreasing and nonnegative func-
tions ψ : [0,∞) → [0,∞) with

∑∞
n=1 ψn(s) < ∞ which is represented by Ψ . By considering

the properties of these functions, it is obvious that ψ(s) < s for all s > 0 [37]. Later, Moham-
madi et al. constructed a new structure for set-valued maps with the following definition
[38]. A set-valued map R̆ : W →Pcls,bnd(W) is said to be α-ψ-contraction if

α
(
w, w′)PHdW

(
R̆w, R̆w′) ≤ ψ

(
dW

(
w, w′))

for each w, w′ ∈ W [38]. In addition, we say that W has the property (Cα) if for every
convergent sequence {wn} in W with wn → w and α(wn, wn+1) ≥ 1 for any n ∈ N there
is a subsequence {wnj} of {wn} such that α(wnj , w) ≥ 1 for each j ∈ N. Also R̆ is called
α-admissible if for each w ∈ W and w′ ∈ R̆(w) with α(w, w′) ≥ 1 we have α(w′, w′′) ≥ 1
for all w′′ ∈ R̆(w′) [38]. Finally, w ∈ W is called the endpoint of R̆ : W → P(W) if
R̆(w) = {w} [39]. Besides, we say that S has an approximate endpoint property if we have
infw∈W supz∈R̆w dW (w, z) = 0 [39]. The following theorems are our required tool for estab-
lishing the desired results in this research.

Theorem 3 ([40]) LetW be a separable Banach space, R̆ : [0, 1]×W →Pcmp,cvx(W) be an
L1-Carathéodory set-valued map, and Ξ : L1

W ([0, 1]) → CW ([0, 1]) be a linear continuous
map. Then the composition Ξ ◦ (SEL)

R̆
: CW ([0, 1]) →Pcmp,cvx(CW ([0, 1])) is a new oper-

ator in CW ([0, 1]) × CW ([0, 1]) with action w �→ (Ξ ◦ (SEL)
R̆

)(w) = Ξ ((SEL)
R̆,w) having

the closed graph property.
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Theorem 4 ([38]) Let (W , dW ) be a complete metric space. Assume that α is a nonnegative
map on W × W , ψ ∈ Ψ is a strictly increasing map, and R̆ : W → Pcls,bnd(W) is an α-
admissible and α-ψ-contractive set-valued map so that α(w, w′) ≥ 1 for some w ∈ W and
w′ ∈ R̆(w). Then R̆ has a fixed point whenever the space W has the property (Cα).

Theorem 5 ([39]) Let (W , dW ) be a complete metric space and ψ : [0,∞) → [0,∞) be up-
per semi-continuous provided that ψ(s) < s and lim infs→∞(s –ψ(s)) > 0 for each s > 0. Also,
suppose that R̆ : W → Pcls,bnd(W) is such that PHdW (R̆w, R̆w′) ≤ ψ(dW (w, w′)) for each
w, w′ ∈W . Then R̆ has a unique endpoint iff R̆ has the approximate endpoint property.

3 Main results
Consider the sup norm ‖w‖W = sups∈[a,T] |w(s)| on the spaceW = {w(s) : w(s) ∈ CR([a, T])}.
Then (W ,‖ · ‖W ) is a Banach space. Further, consider the following constants for conve-
nience:

k0 := 1 –
υp∗ (ξ – a)–υp∗

Γ (1 – p∗)
, k1 :=

υp∗ (ξ – a)υ(1–p∗)

Γ (2 – p∗)
,

k2 :=
(σ – a)υq∗

υq∗
Γ (1 + q∗)

– 1, k3 :=
(σ – a)υ(1+q∗)

υq∗
Γ (2 + q∗)

– (T – a)υ .

(3)

In the following lemma, we introduce an equivalent integral structure for the solution
of the four-point Caputo conformable inclusion BVP (1)–(2).

Lemma 6 Let ĥ ∈W . Then w0 is a solution function for the Caputo conformable differen-
tial equation

CCDυ,�
a w(s) = ĥ(s)

(
s ∈ [a, T], a ≥ 0

)
, (4)

with four-point mixed Riemann–Liouville conformable integro-derivative boundary con-
ditions

w(a) = RCDυ,p∗
a w(ξ ) + μ1, w(T) = RCIυ,q∗

a w(σ ) + μ2, (5)

if and only if w0 satisfies the integral equation

w(s) =
1

Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

ĥ(r)
dr

(r – a)1–υ

+ Ω̃1(s)
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ĥ(r)
dr

(r – a)1–υ

+ Ω̃2(s)
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ĥ(r)
dr

(r – a)1–υ

+ Ω̃3(s)
1

Γ (� + q∗)

∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ĥ(r)
dr

(r – a)1–υ
+ Ω̃4(s), (6)
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where Ω̃1(s), Ω̃2(s), Ω̃3(s), and Ω̃4(s) are four functions with respect to s which are defined
in the following form:

Ω̃1(s) :=
1
k
(
k1 + k0(s – a)υ

)
, Ω̃2(s) :=

1
k
(
k3 – k2(s – a)υ

)
,

Ω̃3(s) :=
1
k
(
k1 + k0(s – a)υ

)
,

Ω̃4(s) :=
1
k
(
μ1

(
k3 – k2(s – a)υ

)
– μ2

(
k1 + k0(s – a)υ

))
,

(7)

so that k = k0k3 + k1k2 
= 0.

Proof In the beginning, w0 is supposed to satisfy the Caputo conformable equation (4).
Clearly, we have CCDυ,�

a w0(s) = ĥ(s). Now, by taking �th order Riemann–Liouville con-
formable integral on the last equality, we obtain the following equation:

w0(s) =
1

Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

ĥ(r)
dr

(r – a)1–υ
+ b0 + b1(s – a)υ , (8)

where we wish to seek two constants b0, b1 ∈ R. On the other hand, by taking the
Riemann–Liouville conformable derivative and integral with respect to s on both sides
of equation (8), we get

RCDυ,p∗
a w0(s) =

1
Γ (� – p∗)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–p∗–1

ĥ(r)
dr

(r – a)1–υ

+ b0
υp∗ (s – a)–υp∗

Γ (1 – p∗)
+ b1

υp∗ (s – a)υ(1–p∗)

Γ (2 – p∗)

and

RCIυ,q∗
a w0(s) =

1
Γ (� + q∗)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�+q∗–1

ĥ(r)
dr

(r – a)1–υ

+ b0
(s – a)υq∗

υq∗
Γ (1 + q∗)

+ b1
(s – a)υ(1+q∗)

υq∗
Γ (2 + q∗)

.

By applying the four-point mixed boundary conditions, we get

k0b0 – k1b1

=
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ĥ(r)
dr

(r – a)1–υ
+ μ1 (9)

and

k2b0 + k3b1 =
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ĥ(r)
dr

(r – a)1–υ

–
1

Γ (� + q∗)

∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ĥ(r)
dr

(r – a)1–υ
+ μ2, (10)
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where k0, k1, k2, k3 are given in (3). By some direct computations on equations (9) and (10),
we obtain

b0 =
1
k

×
[

k3

(
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ĥ(r)
dr

(r – a)1–υ
+ μ1

)

+ k1

(
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ĥ(r)
dr

(r – a)1–υ

–
1

Γ (� + q∗)

∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ĥ(r)
dr

(r – a)1–υ
– μ2

)]

and

b1 =
1
k

×
[

–k2

(
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ĥ(r)
dr

(r – a)1–υ
+ μ1

)

+ k0

(
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ĥ(r)
dr

(r – a)1–υ

–
1

Γ (� + q∗)

∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ĥ(r)
dr

(r – a)1–υ
– μ2

)]

.

If we insert the values b0 and b1 into equation (8), then we have

w0(s) =
1

Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

ĥ(r)
dr

(r – a)1–υ

+ Ω̃1(s)
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ĥ(r)
dr

(r – a)1–υ

+ Ω̃2(s)
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ĥ(r)
dr

(r – a)1–υ

+ Ω̃3(s)
1

Γ (� + q∗)

∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ĥ(r)
dr

(r – a)1–υ
+ Ω̃4(s)

which shows that the function w0 satisfies the integral equation (6). In the opposite direc-
tion, one can easily check that w0 is a solution for the four-point Caputo conformable BVP
(4)–(5) whenever w0 satisfies the integral equation (6). �

For the sake of convenience in writing, we set

∣
∣Ω̃1(s)

∣
∣ ≤ Ω∗

1 :=
1
|k|

(|k1| + |k0|(T – a)υ
)
,

∣
∣Ω̃2(s)

∣
∣ ≤ Ω∗

2 :=
1
|k|

(|k3| + |k2|(T – a)υ
)
,

∣
∣Ω̃3(s)

∣
∣ ≤ Ω∗

3 :=
1
|k|

(|k1| + |k0|(T – a)υ
)
, (11)
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∣
∣Ω̃4(s)

∣
∣ ≤ Ω∗

4 :=
1
|k|

(|μ1|
(|k3| + |k2|(T – a)υ

)
+ |μ2|

(|k1| + |k0|(T – a)υ
))

,

M =
(T – a)υ�

υ�Γ (� + 1)
+ Ω∗

1
(T – a)υ�

υ�Γ (� + 1)

+ Ω∗
2

(ξ – a)υ(�–p∗)

υ�–p∗
Γ (� – p∗ + 1)

+ Ω∗
3

(σ – a)υ(�+q∗)

υ�+q∗
Γ (� + q∗ + 1)

.

Definition 7 The function w ∈ ACR([a, T]) is considered as a solution for the four-point
Caputo conformable inclusion BVP (1)–(2) if there is an integrable function ϑ̂ ∈L1

R
([a, T])

with ϑ̂ ∈ R̆(s, w(s)) for almost all s ∈ [a, T] satisfying the four-point mixed Riemann–
Liouville conformable integro-derivative conditions

w(a) = RCDυ,p∗
a w(ξ ) + μ1, w(T) = RCIυ,q∗

a w(σ ) + μ2

and

w(s) =
1

Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

ϑ̂(r)
dr

(r – a)1–υ

+ Ω̃1(s)
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ϑ̂(r)
dr

(r – a)1–υ

+ Ω̃2(s)
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ϑ̂(r)
dr

(r – a)1–υ

+ Ω̃3(s)
1

Γ (� + q∗)

∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ϑ̂(r)
dr

(r – a)1–υ
+ Ω̃4(s)

for any s ∈ [a, T].

In this position, for each w ∈W , we represent the family of selections of R̆ as follows:

(SEL)
R̆,w =

{
ϑ̂ ∈ L1([a, T]

)
: ϑ̂(s) ∈ R̆

(
s, w(s)

)}

for almost all s ∈ [a, T]. Next, we formulate the set-valued operator K : W →P(W) by

K(w) =
{

z ∈W : there is ϑ̂ ∈ (SEL)
R̆,w so that z(s) = h(s) for any s ∈ [a, T]

}
, (12)

provided that

h(s) =
1

Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

ϑ̂(r)
dr

(r – a)1–υ

+ Ω̃1(s)
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ϑ̂(r)
dr

(r – a)1–υ

+ Ω̃2(s)
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ϑ̂(r)
dr

(r – a)1–υ

+ Ω̃3(s)
1

Γ (� + q∗)

∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ϑ̂(r)
dr

(r – a)1–υ
+ Ω̃4(s).
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Theorem 8 Let us suppose that R̆ : [a, T] ×W →Pcmp(W) is a compact set-valued map.
Furthermore, assume that all six assumptions are valid:

(Hp1) R̆ is a bounded and integrable operator, and also the set
R̆(·, w) : [a, T] →Pcmp(W) is measurable for each w ∈W ;

(Hp2) There are ψ ∈ Ψ and ă ∈ CR≥0 ([a, T]) such that

PHdW
(
R̆(s, w), R̆

(
s, w′)) ≤ ă(s)ψ

(∣
∣w – w′∣∣) 1

M‖ă‖ (13)

for all s ∈ [a, T] and w, w′ ∈W , where sups∈[a,T] |ă(s)| = ‖ă‖ and the constant M is
given by (11);

(Hp3) There is a function ζ̃ : R×R →R provided that ζ̃ (w, w′) ≥ 0 for each w, w′ ∈W ;
(Hp4) If the sequence {wn}n≥1 ⊆W converges to w and ζ̃ (wn(s), wn+1(s)) ≥ 0 for all

s ∈ [a, T] and n ≥ 1, then there is a subsequence {wnl }l≥1 of {wn} such that
ζ̃ (wnl (s), w(s)) ≥ 0 for each s ∈ [a, T] and l ≥ 1;

(Hp5) There are two elements w0 ∈W and z ∈K(w0) such that ζ̃ (w0(s), z(s)) ≥ 0 for all
s ∈ [a, T], where K : W →P(W) is the same operator defined by (12);

(Hp6) For each w ∈W and z ∈K(w) with ζ̃ (w(s), z(s)) ≥ 0, there is h ∈K(w) so that
ζ̃ (z(s), h(s)) ≥ 0 for all s ∈ [a, T].

Then the four-point Caputo conformable inclusion BVP (1)–(2) has a solution on [a, T].

Proof It is a well-known fact that the solution for the four-point Caputo conformable in-
clusion BVP (1)–(2) is as a fixed point of the operator K : W → P(W) given by (12).
From assumption (Hp1), the measurability of the set-valued map s �→ R̆(s, w(s)) is evi-
dent, and thus it is closed-valued for each w ∈ W . Hence, R̆ has measurable selection
and (SEL)

R̆,w 
= ∅. Here, it is suitable to prove that K(w) is a closed subset of W for each
w ∈ W . To do this, we consider a sequence {wn}n≥1 of K(w) having the property wn → w.
For each n, choose ϑ̂n ∈ (SEL)

R̆,w provided that

wn(s) =
1

Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

ϑ̂n(r)
dr

(r – a)1–υ

+ Ω̃1(s)
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ϑ̂n(r)
dr

(r – a)1–υ

+ Ω̃2(s)
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ϑ̂n(r)
dr

(r – a)1–υ

+ Ω̃3(s)
1

Γ (� + q∗)

×
∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ϑ̂n(r)
dr

(r – a)1–υ
+ Ω̃4(s)

for almost all s ∈ [a, T]. For the sake of compactness of the set-valued map R̆, we may
pass into a subsequence (if necessary) to obtain a convergent subsequence {ϑ̂n}n≥1 which
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converges to some ϑ̂ ∈L1([a, T]). Therefore, we have ϑ̂ ∈ (SEL)
R̆,w, and so

lim
n→∞ wn(s) =

1
Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

ϑ̂(r)
dr

(r – a)1–υ

+ Ω̃1(s)
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ϑ̂(r)
dr

(r – a)1–υ

+ Ω̃2(s)
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ϑ̂(r)
dr

(r – a)1–υ

+ Ω̃3(s)
1

Γ (� + q∗)

∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ϑ̂(r)
dr

(r – a)1–υ
+ Ω̃4(s)

= w(s)

for each s ∈ [a, T]. From the above argument, we realize that w ∈ K(w) and thus K has
closed values. By assumption of theorem, we know that R̆ is a compact set-valued map,
thus one can easily confirm that K(w) is a bounded set for each w ∈ W . In this position,
we are going to prove that the operator K is α-ψ-contractive. To observe that, formulate
the nonnegative function α : W × W → [0,∞) as α(w, w′) = 1 if ζ̃ (w(s), w′(s)) ≥ 0 and
α(w, w′) = 0 otherwise. We also assume that w, w′ ∈W and z1 ∈K(w′) are arbitrary. Select
ϑ̂1 ∈ (SEL)

R̆,w′ so that

z1(s) =
1

Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

ϑ̂1(r)
dr

(r – a)1–υ

+ Ω̃1(s)
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ϑ̂1(r)
dr

(r – a)1–υ

+ Ω̃2(s)
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ϑ̂1(r)
dr

(r – a)1–υ

+ Ω̃3(s)
1

Γ (� + q∗)

×
∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ϑ̂1(r)
dr

(r – a)1–υ
+ Ω̃4(s)

for any s ∈ [a, T]. Condition (13) verifies that

PHdW
(
R̆

(
s, w(s)

)
, R̆

(
s, w′(s)

)) ≤ ă(s)ψ
(∣
∣w(s) – w′(s)

∣
∣
) 1

M‖ă‖

for all w, w′ ∈ W having the property ζ̃ (w(s), w′(s)) ≥ 0 for any s ∈ [a, T]. Hence, there
exists h ∈ R̆(s, w(s)) such that

∣
∣ϑ̂1(s) – h

∣
∣ ≤ ă(s)ψ

(∣
∣w(s) – w′(s)

∣
∣
) 1

M‖ă‖ .

In what follows, we build a new set-valued map B∗ : [a, T] →P(W) as follows:

B∗(s) =
{

h ∈W :
∣
∣ϑ̂1(s) – h

∣
∣ ≤ ă(s)ψ

(∣
∣w(s) – w′(s)

∣
∣
) 1

M‖ă‖
}
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for each s ∈ [a, T]. Because ϑ̂1 and � = ăψ(|w – w′|) 1
M‖ă‖ are measurable, so the intersec-

tion of two set-valued maps B∗(·)∩ R̆(·, w(·)) is measurable. For continuing the deduction,
we choose ϑ̂2 belonging to R̆(s, w(s)) provided that

∣
∣ϑ̂1(s) – ϑ̂2(s)

∣
∣ ≤ ă(s)ψ

(∣
∣w(s) – w′(s)

∣
∣
) 1

M‖ă‖
for all s ∈ [a, T]. Define the element z2 ∈K(w) by

z2(s) =
1

Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

ϑ̂2(r)
dr

(r – a)1–υ

+ Ω̃1(s)
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ϑ̂2(r)
dr

(r – a)1–υ

+ Ω̃2(s)
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ϑ̂2(r)
dr

(r – a)1–υ

+ Ω̃3(s)
1

Γ (� + q∗)

×
∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ϑ̂2(r)
dr

(r – a)1–υ
+ Ω̃4(s)

for any s ∈ [a, T]. Then, one can compute the following estimate:

∣
∣z1(s) – z2(s)

∣
∣

≤ 1
Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1∣
∣ϑ̂1(r) – ϑ̂2(r)

∣
∣ dr
(r – a)1–υ

+
∣
∣Ω̃1(s)

∣
∣ 1
Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1∣
∣ϑ̂1(r) – ϑ̂2(r)

∣
∣ dr
(r – a)1–υ

+
∣
∣Ω̃2(s)

∣
∣ 1
Γ (� – p∗)

×
∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1∣
∣ϑ̂1(r) – ϑ̂2(r)

∣
∣ dr
(r – a)1–υ

+
∣
∣Ω̃3(s)

∣
∣ 1
Γ (� + q∗)

×
∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1∣
∣ϑ̂1(r) – ϑ̂2(r)

∣
∣ dr
(r – a)1–υ

≤
[

(T – a)υ�

υ�Γ (� + 1)
+ Ω∗

1
(T – a)υ�

υ�Γ (� + 1)

+ Ω∗
2

(ξ – a)υ(�–p∗)

υ�–p∗
Γ (� – p∗ + 1)

+ Ω∗
3

(σ – a)υ(�+q∗)

υ�+q∗
Γ (� + q∗ + 1)

]

× ‖ă‖ψ(∥
∥w – w′∥∥) 1

M‖ă‖ = M‖ă‖ψ(∥
∥w – w′∥∥) 1

M‖ă‖ = ψ
(∥
∥w – w′∥∥)

for all s ∈ [a, T]. Hence, we find that

‖z1 – z2‖ = sup
s∈[a,T]

∣
∣z1(s) – z2(s)

∣
∣ ≤ ψ

(∥
∥w – w′∥∥)

,
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and so we get α(w, w′)PHdW (K(w),K(w′)) ≤ ψ(‖w – w′‖) for each w, w′ ∈ W showing
that the set-valued map K is α-ψ-contractive. Now, consider two elements w ∈ W and
w′ ∈ K(w) with α(w, w′) ≥ 1. In the light of the definition of ζ̃ , we have an inequality
ζ̃ (w(s), w′(s)) ≥ 0, and so there is a function h ∈ K(w′) such that ζ̃ (w′(s), h(s)) ≥ 0. Hence,
α(w′, h) ≥ 1 and this states that K is α-admissible.

To finish the rest of the proof, we suppose that w0 ∈ W and w′ ∈ K(w0) are such that
ζ̃ (w0(s), w′(s)) ≥ 0 for each s. Thus, we get α(w0, w′) ≥ 1. On the other hand, consider
the sequence {wn}n≥1 of W with wn → w and α(wn, wn+1) ≥ 1 for each n. Then we have
ζ̃ (wn(s), wn+1(s)) ≥ 0. Now, with the help of (Hp4), we find that there is a subsequence
{wnl }l≥1 of {wn} such that ζ̃ (wnl (s), w(s)) ≥ 0 for each s ∈ [a, T]. Consequently, α(wnl , w) ≥ 1
for all l ≥ 1, and so it is verified that W has the property (Cα). Ultimately, in the light of
Theorem 4, we realize that the set-valued map K has a fixed point which is as a solution
for the four-point Caputo conformable inclusion BVP (1)–(2). �

By continuing the current process, we obtain another existence criterion for the four-
point Caputo conformable inclusion BVP (1)–(2) under new analytical conditions. In
other words, we shall prove our desired existence result under a new concept due to
Amini-Harandi [39]. In this way, we use the approximate endpoint property for K which
is defined by (12).

Theorem 9 Let R̆ : [a, T] × W → Pcmp(W) be a compact set-valued map. In addition,
suppose that the following statements are valid:

(Hp7) The nondecreasing nonnegative function ψ : [0,∞) → [0,∞) has the upper
semi-continuity property so that lim infs→∞(s – ψ(s)) > 0 and ψ(s) < s for each
s > 0;

(Hp8) The compact bounded operator R̆ : [a, T] ×W →Pcmp(W) is integrable
provided that R̆(·, w) : [a, T] →Pcp(W) is measurable for each w ∈W ;

(Hp9) There is a nonnegative function δ ∈ CR≥0 ([a, T]) such that

PHdW
(
R̆(s, w) – R̆

(
s, w′)) ≤ δ(s)ψ

(∣
∣w – w′∣∣) 1

M‖δ‖ (14)

for all s ∈ [a, T] and w, w′ ∈W , where sups∈[a,T] |δ(s)| = ‖δ‖ and M is defined by
(11);

(Hp10) The operator K defined by (12) has the approximate endpoint property.
Then the four-point Caputo conformable inclusion BVP (1)–(2) has a solution on [a, T].

Proof As a general goal, we shall show the existence of an endpoint for the set-valued map
K : W → P(W). In this direction, we need to prove that the set K(w) is closed for each
w ∈W . If we pay attention to hypothesis (Hp8), then for the sake of the measurability of the
map s �→ R̆(s, w(s)) and closeness of it for all w ∈ W , we realize that R̆ has a measurable
selection, and so (SEL)

R̆,w 
= ∅ for each w ∈ W . Therefore, similar to the proof of last
Theorem, it is easy to check that K(w) is a closed subset of W , and hence we omit it.
Moreover, we know that the set K(w) is bounded for each w ∈W with due attention to the
compactness of R̆. We conclude the proof by proving the inequality PHdW (K(w),K(w′)) ≤
ψ(‖w – w′‖) for every two arbitrary members of W . To see this, assume that w, w′ ∈ W
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and z1 ∈K(w′). Choose ϑ̂1 ∈ (SEL)
R̆,w′ so that

z1(s) =
1

Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

ϑ̂1(r)
dr

(r – a)1–υ

+ Ω̃1(s)
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ϑ̂1(r)
dr

(r – a)1–υ

+ Ω̃2(s)
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ϑ̂1(r)
dr

(r – a)1–υ

+ Ω̃3(s)
1

Γ (� + q∗)

×
∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ϑ̂1(r)
dr

(r – a)1–υ
+ Ω̃4(s)

for almost all s ∈ [a, T]. Since, by considering inequality (14) presented in hypothesis
(Hp9), we have

PHdW
(
R̆

(
s, w(s)

)
, R̆

(
s, w′(s)

)) ≤ δ(s)ψ
(∣
∣w(s) – w′(s)

∣
∣
) 1

M‖δ‖

for any s ∈ [a, T], thus there is h∗ ∈ R̆(s, w(s)), for which we get

∣
∣ϑ̂1(s) – h∗∣∣ ≤ δ(s)ψ

(∣
∣w(s) – w′(s)

∣
∣
) 1

M‖δ‖

for all s ∈ [a, T]. Now, we build a new set-valued map Q : [a, T] → P(W) which is intro-
duced by

Q(s) =
{

h∗ ∈W :
∣
∣ϑ̂1(s) – h∗∣∣ ≤ δ(s)ψ

(∣
∣w(s) – w′(s)

∣
∣
) 1

M‖δ‖
}

.

We know that ϑ̂1 and � = δψ(|w – w′|) 1
M‖δ‖ are measurable, so we can easily deduce that

the intersection set-valued map Q(·) ∩ R̆(·, w(·)) is measurable. Now, we choose the func-
tion ϑ̂2(s) ∈ R̆(s, w(s)) so that

∣
∣ϑ̂1(s) – ϑ̂2(s)

∣
∣ ≤ δ(s)ψ

(∣
∣w(s) – w′(s)

∣
∣
) 1

M‖δ‖

for any s ∈ [a, T]. We also select z2 ∈K(w) provided that

z2(s) =
1

Γ (�)

∫ s

a

(
(s – a)υ – (r – a)υ

υ

)�–1

ϑ̂2(r)
dr

(r – a)1–υ

+ Ω̃1(s)
1

Γ (�)

∫ T

a

(
(T – a)υ – (r – a)υ

υ

)�–1

ϑ̂2(r)
dr

(r – a)1–υ

+ Ω̃2(s)
1

Γ (� – p∗)

∫ ξ

a

(
(ξ – a)υ – (r – a)υ

υ

)�–p∗–1

ϑ̂2(r)
dr

(r – a)1–υ
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+ Ω̃3(s)
1

Γ (� + q∗)

×
∫ σ

a

(
(σ – a)υ – (r – a)υ

υ

)�+q∗–1

ϑ̂2(r)
dr

(r – a)1–υ
+ Ω̃4(s)

for all s ∈ [a, T]. Therefore, by repeating a similar process in the proof of Theorem 8, we
obtain the following relations:

‖z1 – z2‖ = sup
s∈[a,T]

∣
∣z1(s) – z2(s)

∣
∣ ≤ M‖δ‖ψ(∥

∥w – w′∥∥) 1
M‖δ‖ = ψ

(∥
∥w – w′∥∥)

.

This yields the inequality PHdW (K(w),K(w′)) ≤ ψ(‖w – w′‖) for each w, w′ ∈W . Further-
more, hypothesis (Hp10) confirms that K has the approximate endpoint property, so with
due attention to Theorem 5, we arrive at the desired conclusion which involves this prop-
erty that the operator K has a unique endpoint, i.e., there is w∗ ∈W so that K(w∗) = {w∗}.
Thus, w∗ is a solution for the four-point Caputo conformable inclusion problem (1)–(2). �

Now, we provide an example to illustrate Theorem 9.

Example 1 By considering the values � = 1.5, υ = 1, p∗ = 0.04, q∗ = 0.2, ξ = σ = 0.03,
μ1 = 0.34, μ2 = 0.41, a = 0, T = 1 and also according to problem (1)–(2), we formulate
the Caputo fractional conformable differential inclusion

CCD1,1.5
0 w(s) ∈

[

0,
0.75s2| arcsin w(s)|
| arcsin w(s)| + 1

]
(
s ∈ [0, 1]

)
, (15)

furnished with four-point mixed Riemann–Liouville conformable integro-derivative
boundary conditions

w(0) = RCD1,0.04
0 w(0.03) + 0.34, w(1) = RCI1,0.2

0 w(0.03) + 0.41, (16)

so that CCD1,1.5
0 is the Caputo conformable derivative of order � = 1.5, RCD1,0.04

0 is
the Riemann–Liouville conformable derivative of order p∗ = 0.04, and RCI1,0.2

0 is the
Riemann–Liouville conformable integral of order q∗ = 0.2. Due to the values mentioned
above, we obtain k0 � –0.1227, k1 � 0.03508, k2 � –0.45986, k3 � –0.98656, and so
k = k0k3 + k1k2 � 0.10492 
= 0. Prior to investigating the properties of desired set-valued
map, we first define the Banach space W = {w(s) : w(s) ∈ CR([0, 1])} furnished with the
supremum norm ‖w‖W = sups∈[0,1] |w(s)|. Now, it is suitable to consider the set-valued
map R̆ : [0, 1] ×W →P(W) by

R̆
(
s, w(s)

)
=

[

0,
0.75s2| arcsin w(s)|
| arcsin w(s)| + 1

]

for any s ∈ [0, 1]. According to the procedure mentioned in the proof of Theorem 9, we
introduce the operator K : W →P(W) given by

K(w) =
{

z ∈W : there is ϑ̂ ∈ (SEL)
R̆,w such that z(s) = h(s) for any s ∈ [0, 1]

}
,
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so that

h(s) =
1

Γ (1.5)

∫ s

0

(
s1 – r1

1

)1.5–1

ϑ̂(r)
dr

r1–1

+ Ω̃1(s)
1

Γ (1.5)

∫ 1

0

(
11 – r1

1

)1.5–1

ϑ̂(r)
dr

r1–1

+ Ω̃2(s)
1

Γ (1.5 – 0.04)

∫ 0.03

0

(
0.031 – r1

1

)1.5–0.04–1

ϑ̂(r)
dr

r1–1

+ Ω̃3(s)
1

Γ (1.5 + 0.2)

∫ 0.03

0

(
0.031 – r1

1

)1.5+0.2–1

ϑ̂(r)
dr

r1–1 + Ω̃4(s)

=
1

Γ (1.5)

∫ s

0
(s – r)1.5–1ϑ̂(r) dr + Ω̃1(s)

1
Γ (1.5)

∫ 1

0
(1 – r)1.5–1ϑ̂(r) dr

+ Ω̃2(s)
1

Γ (1.5 – 0.04)

∫ 0.03

0
(0.03 – r)1.5–0.04–1ϑ̂(r) dr

+ Ω̃3(s)
1

Γ (1.5 + 0.2)

∫ 0.03

0
(0.03 – r)1.5+0.2–1ϑ̂(r) dr + Ω̃4(s),

where we have the following estimates:

∣
∣Ω̃1(s)

∣
∣ = |0.3343 – 1.1694s| ≤ |0.3343| + |1.1694s| ≤ Ω∗

1 := 1.5037,
∣
∣Ω̃2(s)

∣
∣ = | – 9.4029 + 4.3829s| ≤ | – 9.4029| + |4.3829s| ≤ Ω∗

2 := 13.7858,
∣
∣Ω̃3(s)

∣
∣ = |0.3343 – 1.1694s| ≤ |0.3343| + |1.1694s| ≤ Ω∗

3 := 1.5037,
∣
∣Ω̃4(s)

∣
∣ = | – 3.3330 + 1.9691s| ≤ | – 3.3330| + |1.9691s| ≤ Ω∗

4 := 5.3021

for each s ∈ [0, 1]. Clearly, we have M � 1.952. Moreover, the nondecreasing nonnegative
function ψ : [0,∞) → [0,∞) with the upper semi-continuity property is considered as
ψ(s) = s

2 for any s > 0. Evidently, we have lim infs→∞(s – ψ(s)) > 0 and ψ(s) < s for each
s > 0. In addition, for every w, w′ ∈W , we obtain the following inequality:

PHdW
(
R̆

(
s, w(s)

)
, R̆

(
s, w′(s)

)) ≤ 0.75s2

2
(∣
∣w – w′∣∣)

= 0.75s2ψ
(∣
∣w – w′∣∣) ≤ δ(s)ψ

(∣
∣w – w′∣∣) 1

M‖δ‖ .

Letting δ ∈ CR≥0 ([0, 1]) defined by δ(s) = 0.75s2 for each s, we have ‖δ‖ = 0.75, where we
get 1

M‖δ‖ � 0.68306. Consequently, with the help of Theorem 9 on this numerical example,
it is realized that the Caputo fractional conformable inclusion (15) with four-point mixed
Riemann–Liouville conformable integro-derivative boundary conditions (16) has a solu-
tion, and thus the numerical findings of this example are consistent with the theoretical
results presented in Theorem 9.

4 Conclusion
Our main goal in the present manuscript is to obtain some existence criteria for a new cat-
egory of the Caputo conformable differential inclusion furnished with four-point mixed
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Riemann–Liouville conformable integro-derivative boundary conditions. Note that un-
like other published papers in the field of existence theory, this inclusion problem sup-
plemented with newly defined Caputo and Riemann–Liouville conformable operators is
unique and this type of mixed inclusion problems has not been investigated in any litera-
ture. In this way, we utilize two concepts of fixed point and endpoint to obtain the existence
criteria corresponding to the given BVP by (1)–(2). Indeed, some analytical techniques on
the α-ψ-contractive mappings and operators having the approximate endpoint property
are employed to reach the desired theoretical results. Also, we provide an example to il-
lustrate our last main result.
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