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1. Introduction

The topic of fractional calculus operators attracts the attention of many investigators to present
different types of solutions such as numerical, approximation and analytic solutions for fractional
differential equations (see [2-4]). The classical fractional calculus’ operators, like the
Riemann-Liouville, appeared in pure and theoretical studies while some new or modified operators
can be useful for applications. The authors of [1] used the conventional differential operators in
combination with the operators from Anderson and Ulness [5]. Baleanu et al. established a relation
between their operator and the Mittag-Leffler function when they resolved some classes of differential
equations. The purpose for which they produced this mixed operator was generating a common
operator that permits demonstrating real information from a collection of procedures and systems.
Recently, Ibrahim and Jahangiri [6] presented a new fractional differential operator in a complex
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region. It is an extension of Anderson-Ulness operator into a complex domain as well as of the
differential operator of Salagean [7]. Recently, the Srivastava-Owa fractional differential and integral
operators are employed in different applications, such as in image processing for denoising [8] and
enhance images [9]. Also, the conformable operator is utilized to define a new model of of economic
order quantity [10].

In this work, we introduce a generalized fractional operator in a complex domain and study its
geometric properties. We employ this operator to define different classes of univalent functions (one-
one analytic normalized functions in the complex domain). In addition, we present the operator in
some structures of the subordination and superordination inequalities. Finally, as an application, we
extend a category of Briot-Bouquet differential equations in a complex region and determine its upper
bound solution by utilizing the generalized fractional operator.

2. Materials and method
In this section, we present the methodology to define the complex CFO.

2.1. Complex fractional calculus
Let S be the class of analytic functions in the open unit disk U := {¢ € C : |£| < 1} and S[¢, n] be

the subclass of S having the function

¢(§) = ¢ + ¢n§n + ¢n+l‘§:n+1 + ...,

where ¢, ¢,,, d,..1, n = 1,2, ..., are the coefficients constants of the analytic function ¢(£). Let A be the
subclass of S indicating the function ¢(¢) = & + ¢,&> + ... (see [11]). Here, we give the definitions
of the Riemann-Liouville fractional operators (integral and derivative) in the complex plane C as the
following:

Definition 2.1. The integral of arbitrary order g, where R{p} > 0 for a function (), is

I'(p)

Here, A is in a simply-connected region of (C) having (0, 0) and the multiplicity of (£—¢)?~! is vanished
by indicating log(¢ — ) when R(& - ) > 0.

1
I2h(E) = (—) ( f: h(é)(f—é)”“t%); R{p} > 0. @.1)

Definition 2.2. The Srivastava and Owa fractional derivative of order 0 < p < 1 (see [12]);
1 d > h()
DYh(e) = (—) 4 ( d ) ; 22)
MO\t &\ o

such that 4 is analytic in a simply-connected region of C involving (0, 0) and the multiplicity of (§-{)™¥
is isolated by using log(¢ — ) when R(£ - ) > 0.

In our discussion, we deal with the class of analytic functions in the open unit disk H = H(U). For
m a positive integer and a € C, let

Hla,m]={f e H,f(&) =a+a,&" +..}.
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Definition 2.3. Letk = 1,2, .... Then for k—1 < ¢ < k and analytic function ¢(¢); the Caputo derivative
of order g is given by the following construction

s I AOOE - of g, i k=1 <p <k
D) = (2.3)

Eh@, if o =k

Where £ and its k-derivatives are analytic in simply-connected region in C having the origin and the
multiplicity of (& — £)* ! is deleted by utilizing log(¢ — ¢) when R(& — ) > 0.

Remark 2.4. The properties of D?h(f) and CD?h(f) are as follows:

* orma . Dla+1) . orma . LTl@+1) t
DO = o o5 @ " RO = O

Moreover, when h/®(0) = 0 for all k = 1, 2, ..., then

DY) = DIh(©).

k

0 dc
DIhE) = Zgle "hE).

dk
DIhE) = I~ h (@),

13 dfk

2.2. Complex differential operator

Recently, Ibrahim and Jahangiri [6] introduced a definition of a conformable differential operator in
a complex domain, specifically for function ¢ € A as follows:

Definition 2.5. Let S be non-negative number and let [[5]] be the integer part of 8. For ¢ € A, the
complex conformable derivative 9 ¢ of order 3 in defined by

DFP (&) = DTN DIAN g())

ki(B = [[B1], &)

" B = BILE) + k(B — [IB1].6)
ko(B — [1B11,€)

T B BILE) + k(B — [IBIL.E)
where for ¢ = 8- [[B]] € [0, 1),

D°B(&) = ¢(&)
z),() — K (80’ é:) KO(BO’ f) ’
PO = oD+ 0 O o+ ¢ P 2.5)

D'¢E) = £ &), ..
z)[[w]]¢(§:) =D (Z)[[x@]]—l¢(é:)) ,

(D)) 2.4

EDPg())),
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where the functions «y, kg : [0, 1] X U — U are analytic in U and thus (9, &) # — ko(p, &),
limk (9, &) =1, limx(p,&) =0, «i(p,&) #0, V€U, p (0, 1),
9— 9—

and

lirr(l)KO(SOa é:) = 09 hn} K()(&O, é:) = 19 K0(807 é‘:) * 07 vg € USO € (Oa 1)
- -

Example 2.6. Let ¢ € A taking the expansion formula ¢(&) = € + 3, ¢, &" then

Dg(8)

_ Kl(go’ f) KO(SO’ é:) ’

S8+ 0.0 o e 0

_ ki(9. &) S Ko(9. &) N . (2.6)
A0+ Ko(9.D) (g P ] TCXGETCNS (5 I J

— §+ i(Kl(p’f) + nKo(S’J,f)

K1(9, &) + ko(, ) )‘M ‘

n=2

Thus, DY¢(€) € A, whenever, ¢ € A. We consider the following functions with fractional indices
Ko(9, &) = p&'79 and (9, &) = (1 — p)&¥ in the sequel.

2.3. Structure of the combined fractional operator

By using the next property of DY, we define the combined operator as follows:

1

C _ gl-p _
D@ = 19O = =

f¢'(§)(§ —{vde.

Now, by replacing the term ¢’(£) by the complex conformable differential operator in (2.5): DY¢(€),
we receive the following hybrid operator

1 ’ K (@, g) KO(pa {)
HD@ — f( 1 /
O ) k@000 0@ o+ 0@ CT) o

X (-

A special case of (2.7) can be recognized, when «; and «, are constants depending on the fractional
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value . We have the following construction of a linear hybrid operator:

k1 (9) + ko(®) k1(9) + ko(9)
X (é-)vd

_ ( Ki1(9) )Isl—gogb(é_.)

L B 1 f ki (9) Ko(9) ,
qub(f)—r(l_p) ) ( P+ ————({ P (D)

ki (9) + ko(®)

Ko(§) 1 f , _vd
+ (K1(50) " KO(SO)) =9 Jo (C P (ONE - vdL 2.8)

B K1 (9) 1-p ( Ko(§) ) 1
Y L
(mmﬂo(m) e YO o) v TU=9)

( f [(£B(Q)) = NI — ) PdL )

_ (Kl(@) - Ko(@)) ( Ko(§)
K1(9) + ko() K1(9) + Ko()

L70g() + ) D (£9(€)) .

It is clear that LD?gb(f) indicates a linear combination of the Srivastava and Owa integral operator for
the analytic normalized function ¢ and the complex Caputo differential operator for £¢. For example,
when k; = 1 — ¢ and «y = 9, we get

LDYp(E) = (1 = 29) IV $(&) + 9 D (£4(£)) .

Remark 2.7. e The operators ” D} and “Dy are non-local singular operators where they involve the
kernel term (¢ — {)™*. Therefore, every analytic univalent function ¢ admits integrable singularity
when & = £ of the integral, since ¢ € (0, 1).

e The endpoint limits when ¢ € [0, 1] satisfies

lim “D;¢(¢) = lim "D{p(¢) = f; $(dL;

lim “DJ¢(&) = lim “D}¢(€) = (EpE) ~ I $(&).
P : p—1 ; ’

Theorem 2.8. Let ¢ € A. Then the operator Q¥ ¢ € A, where

LD§¢(§>)

QP() =TG- p) [ =
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Proof. For ¢ € A and by using Remark 2.4 and Eq (2.8), we have

LD§¢(§)
£

-9 K1(9) Ko(®)

¢ (Kl (©) + ko(p) P+ k1 () + ko(®)

‘fl—go

I3 -9p) [

(¢« )))

=IG-9)

L " K@), & (2.9)
g [l T K9 f)]

é‘:l—go
I'Q) #l+1-p 0o F(+1) en+l—p
T &Y 4+ 2oL, Kn(9)n moaié ]

gl—go

=TG- )

- IrG-pX'(n+1)
= é‘: + KH(SO)¢I1 ( ) é‘:n’
; I'n+2-¢)

K1(9) + nko(p)
k1(9) + ko(p)

Remark 2.9. e Note that when ¢ — 1, we have

where K,(p) := ( ).Hence, QY € A. O

Qp(¢) = ("Deg(€)).

Consequently, we get the following expansion

Q&) =&+ ) npn &',

n=2

which is reduced to the well-known Salagean operator. Therefore, one can generalize the
Salagean classes of analytic functions [13—15] by utilizing the fractional operator *.
e The fractional operator Q¥ acts on the convex function ¢(&) = &£/(1 — &) as follows:

I'G-pI 1
G-+ >)§n_

Q) = £ + Z; K.(9) ( Tni3-v)

If K,(p) < (%) , Yn > 2, then QY¢(€) is also convex in U.

Next part of this paper indicates some classes of analytic univalent functions involving the operator
QF.

3. Results

In this section, we aim to investigate the geometric properties of the operator QY. For this purpose,
we need the following definitions from the geometric function theory:

AIMS Mathematics Volume 6, Issue 4, 4211-4226.
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A function ¢ € A is starlike through the origin if the linear slice linking the origin to all added point
of ¢ deceits completely in ¢(¢ : |£] < 1). A univalent function (injective function of a complex
variable) ¢ is convex in U if the linear slice linking every two points of ¢(¢ : || < 1) sets wholly in
#(& : 1€] < 1). We denote these classes by S* and C for starlike and convex correspondingly. Next, we
assume that the class P includes all mappings ¢ analytic in U with a positive real part in U realizing
Y(0) = 1, ¥'(0) > 0. Consistently, p € §* © ' (€)/ dp(é) ePand p € C & 1+ EP7(E)/P' (&) € P.
Consistently, R(£¢’(£)/p(€)) > 0 for the starlikeness and R(1 + £¢”(€)/¢'(€)) > 0 for the convexity.

Let f and g be analytic functions in U. The function f is said to be subordinate to g, written f < g
or f(&) < g(&), if there exists a function w analytic in U, with w(0) = 0 and |w(¢)| < 1, and such that
f(€) = g(w(é)). If g is univalent, then f < g if and only if f(0) = g(0) and f(U) C g(V) (see [16]).

Linking the definitions of starlike and convex function in the subordination concept, Ma and Minda
[17] formulated the next sub-classes

£9'(§)
) <V(E), veP
and .,
1+ fj}(g) < AE), AeP.

We request the following result [18]:

Lemma 3.1. Suppose that h,h € U, then the subordination h < h yields

27 21
fo hO)Pdo < fo R a8, 3.1)

where { = re®,r € (0,1) and p € R*.

Definition 3.2. Let ¢ € [0, 1]. A function ¢ € A is in the class &,(0) if and only if

§QYQ)
o)

where w is univalent function with a positive real part in U achieving

w(&), &eu,

w@0) =1, R('()) >0.

Theorem 3.3. Let ¢ € A and ¢ € [0,1]. If ¢ € C (the class of convex functions in the open unit disk)
then

QO < r(rF(1,2;3 = ;1)) (3.2)

where F is Gauss hypergeometric function. The equality occurs for the Koebe function of the first type

K@) =&/(1-6),&eU.

Proof. Let ¢ € C then the coefficients satisfy |¢,| < 1 for all n. Moreover, we have the following limit

(Kl (p)+n Ko(SO))
ki(g) + ko(9)

lim K,,(p) = lim
p—1

p—1

AIMS Mathematics Volume 6, Issue 4, 4211-4226.
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A calculation implies

G -p)l'(n+ 1)) n
T(n+2- )

rn+1) \
=1e- g’)Z(r<+2 pﬂ

:FG—QV§]n+D(—BﬁiQ—)W
n=0

|Q%@»=MiKumm(

I'n+3-p)
> (Tn+2)T(n+ D\ (n+ Dr"
=T(3 - p)r ( )
HZ:(; I'n+3-¢) n!
_FG—@V‘”(U»Q»)M+1y"
S TG-9) & \B-9n/ n!

S (D@ (D
‘FZ;&3—@) !
=r(rF(1,2;3 - ;1)

where (), = F(Fh(z)") is the Pochhammer symbol. Lastly, by assuming the Koebe function K(¢), with

¢, = 1 in the above conclusion, we have the sharp result. m]

Theorem 3.4. Let ¢ € A and o € [0, 1]. If ¢ is univalent in U then

QO < r(rF(2,2;3 = 1)), (3.3)

where F is Gauss hypergeometric function. The equality occurs for the Koebe function of the second

type K(€) = £/(1 - €)%, £ € L.

Proof. Let ¢ univalent in U then by De Branges’ Theorem, the coefficients satisfy |¢,| < n for all n.

AIMS Mathematics Volume 6, Issue 4, 4211-4226.
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Moreover, we have the following limit lim,,_,; K, (¢) = n. A calculation implies

TG - )(n+ 1)) i
T(n+2-g)

Q)| = | i Ku(9), (

Tm+1) \
<T3- gO)Z (r( P g)))

Ca [ T+2) \ ,
=T go)rnzz(;(n+1) (—F(n”_p))r

o (Tn+2)(n+ DL(n+ D)\ (n+ D"
:I“(B—go)rZ( I'n+3-¢) ) n!

G-y (H” + )L + 2)) (n+ D"
n=0

I'n+3-9p) n!
TR -9 < ((Z)n(Z)n) (n+ Dr"
- TG-p) NG =9 n!

_ O (242 (n+ D
‘r;(@—mn) n!
=r(rF2,2;3 - ¢;r)).

By replacing the Koebe function K(¢), with ¢, = n in the above conclusion, we can receive the
sharp outcome. m|

Theorem 3.5. Let ¢ € A and O(€) is univalent convex in U achieving the subordination inequality

EQ7P(&))
00 < 0(). 3.4
oaE  <0© (3.4)
Then
QW) — 1
Q&) < Eexp( jj %m), (3.5)

where V(€) is analytic in U, with 3(0) = 0, |}(&)| < 1 and it is the upper limit in the above integral.
Furthermore, for €| = 1, Q°¢(€) fulfills the formula

'OW(-) - 1 QP(£) o) - 1
exp(ﬁ LL dL) < ‘ £ ‘ < exp(f) %dL).

Proof. In view of the definition of the subordination, there occurs a Schwarz map with #(0) = 0 and
[#(€)| < 1 satisfying

EQ7P(&))

e 0(¢), &ev.

This implies that
Q¢@) 1 _00E) -1

Qope) & &

AIMS Mathematics Volume 6, Issue 4, 4211-4226.
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Integrate both sides, we have

log Q&) — log & = fo( —6(19(?) “la

A computation yields

log (%) _ f 8w -1, (3.6)
¢ 0 L

Then, for some Schwarz function, we get the inequality

Q&O(p(g) < é; exp(f @(ﬁ(t)) - 1dL)

L

Moreover, ® maps the disk 0 < |£] < ¢ < 1 onto a territory which is symmetric convex w.r.t X-axis,
which means

O(-uél) < R(OW())) < OWED, e (0,1,

therefore, we have the relations
O(—1) < O(=lé]), OlE]) < O@).

By using the above relations, we conclude that

1 1 1
f O -1 s?&( f 0@W) -1 dL) < f 0@ D) - 1 d.
0 0 0

L L L

which implies that

L

1 ¢ 1
[evcin-1, Slog'm?@)‘  [foum-,
0 0

and

L

1 1
exp ( f ®(19(—L1§|))— 1 ch) < 'Q”J?(f)' < exp ( f O () -1 dL).
0 0

We indicate that

exp( fol O((—) — 1 dt)s‘gzw?(f)‘&xp ( fol @(0(0)—1&)‘

L L

O

Theorem 3.6. Suppose that ¢ € N with non-negative connections and ¢ € [0,1]. If O is univalent
convex in U, then there is a solution satisfying

Q&) < £exp( f Mdt), (3.7)

L

where ¥(€) is analytic in U, with $(0) = 0 and |9(¢)| < 1.

AIMS Mathematics Volume 6, Issue 4, 4211-4226.
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Proof. We check the following formula for the real parts:

% (f(%(f))') o

Q)
£+ Ty nK,(9)g, (Freh) f”] o

£+ 5 Ko, (FoSl) en

L+ X5, nK,(p)p, (FEitl) f’“] o

L+ 30, K(9)g, (Fol) gnt

1+ 3, nK,(p) ((225D) g,

1+ 202, Ku(p) (F25%h) ¢,

- rG-pX'(n+1)
@(1+;nl(n(go)( Tnii-v) )¢n)>o.

s R

s R

s R

]>O, é&E—1

Moreover, we indicate that (Q2°¢(0) = 0, which yields

§QYE)
X&)

Hence, according to Theorem 3.4, we have (3.7).

P.

Example 3.7. In this example, we illustrate some special forms of ® when u € [0, 1].

(1) O =p+(1-wT1+E

(2) ©¢) = p+ (1 - pet,

(3) @) = p + (1 - p)(1 + sin(9)),
) OFE) =+ (1 - e

EQ7P(&))

Then in view of Theorem 3.5, the subordination =——=— < O(¢) implies
A
, OW1) -1
QYP(&) < Eexp ( f fdt).
0

For @) = u+ (1 —u) /1 + & u =0, we have

VD - (JE+T)
(VE+T1+1)

Moreover, for @(&) = u + (1 — w)(1 + sin(£)), u = 0, we obtain

Q7¢(&) <

QUPE) <E+E+E2+EH9 - /72 + O(E°).

Remark 3.8. If ¢ = 4 = 0 in Example 3.7, we have the sub-classes in [13—15] respectively.
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Theorem 3.9. Let ¢ € A be convex univalent in U and ¢ € [0, 1]. Then

21 21 6
f Q0B d6 < f g(iﬁ) |”d9, p>0 (3.8)
0 0 - ér
and
2 1
fo @ @) ['do < fo ( i f) (a0, p>o, (3.9)
where (ri) is the Janowski function of order 6 > 1.
Proof. Let
o(£,6) = g(i—fg)‘s, leus> 1. (3.10)

Then, a computation implies that

O, 1) = E+ 28 428 + 2685 + 28 + 265 + 0(€7)
0(£,2) = £+ 487 + 88 + 128 + 168 +20&° + ...
0(£,3) = £+ 687 + 188° + 38&* + ...
0(&,4) = £+ 88 + 168 +24&* + ..

Since ¢(£) is convex then its coeflicients satisfy the inequality |¢,| < 1 for all n and lim,,_,o K,,(9) = 1,

and
[C+pln+1)

o0 T+ 1+9)
Moreover, the coefficients of Q¥ achieve the inequality
IG-p)l(n+1) ‘ <1
n+2-¢) -
Which means that Q¢(£) is majorized by the function o (£,0) for all 6 > 1. By the properties of
majority [19], we obtain

(3.11)

QP(€) < 0(£,6), E€ . (3.12)

Thus, according to Lemma 3.1, we conclude that

27 2
f QBN do < f
0 0

Similarly for the ()" we have

fZﬂ
0

Remark 3.10. The condition on ¢ which is convex univalent in U, can be replaced by the following

condition
|¢|<‘ I'n+2-9) ‘
"I NK(@T@ -+ 1))

g(“f) "a6. p>o.

Q&)Y "’d@s f (1 +§) ‘ do, p>0.
0

O

or ¢ is univalent then |¢| < n and § > 2.
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3.1. Corresponding integral formula

In this part, we focus on the integral operator T¥¢(£), ¢ € A, corresponding to the operator QY¢(&).
The formula of T¥@(¢) is given by the expansion

VR I(n+2-9p) . _
‘r¢(§>—;¢n(Kn(g))r(g,_mr(nﬂ))f, ¢ =1. (3.13)

Definition 3.11. The Hadamard product of two functions p; and p, € A is defined by the formula:

(o)

PIE) * pr() = [f + > a, f”) . (6 + > by f"]
n=2

"2 (3.14)
= [§+ Zanbnf"),g €u.
n=2
Definition 3.12. The Mittag-Lefller function =, is an entire function defined by the series
= =N
Eaplé) = Z; for s 97O
where I'(0) 1s the gamma function.
We have the following propositions.
Proposition 3.13. Let ¢ € A and ¢ € [0, 1]. Then
(Q7 % T7) % ¢(&) = (17 = Q) % §(&) = §(£), £ €V.
Proof. By applying the Hadamard product definition, we have
(Q7 % 1) = §(&)
ES IG-pn+1)\ )| (< I'(n+2-p) 0
) (Zl Kol ( Tn+2-g) ) ¢ ] " [Zl (K (OG- o) (n + 1)) ¢ ] F e
HES T(n+2-9) i, - G-+ DY .|,
B (Z (Kn@)r(s — )+ 1)) ¢ ) (Z ol ( T(n+2-¢) ) ¢ ) e
= (17 % Q) x ¢(£)
- (Z f”] 23
n=1
= ¢(&).
m]

Proposition 3.14. Let ¢ € A and p € [0, 1]. Then
Q&) = Y1(é) * El(1+p) * H(E)
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and
TYH(E) = Yo (&) * Zp1 * ¢(E),

where E,,, indicates the Mittag-Leffler function and

16 = ) K9G = p)l(n + DE"

n=0
and
([ T(n+2-9p)
© = (—) "
0= 2 \gora-p) ¢
Proof. Let ¢ € A such that ¢g = 0 and ¢; = 1. Thus, we have

n=1

QY¢(&)
s IG-ln+ 1)
= ;anm ( T ti—o) )f
[ee] (o) fn (o)
= K,(I'B— o)l DHE | — = , E"
(Z(; (G — P+ )f] ;r(mz—m] [Zﬁ¢ é]
= Y1(8) * E149) * O(E).
Now, for the integral Y, we have
TYP(E)

:i¢ ( T(n+2-9) )g"
" \K(9)TG — 9)T(n+ 1)

(o ([ Th+2-9) ) ., . - &' . N n
(5 (R ) (S o) (S

=Y (&) * E 1 * P(E).

Theorem 3.15. Let ¢ € A and g € [0, 1]. If ¢ is univalent then
TP <rF(1,(3-9);2;7), r<l. (3.15)

Proof. Likely of Theorem 3.3 and for a univalent function ¢, we have

’ B s [n+2-9p) n
01 =] ) ( K (oG = P s 1)) ¢

1 — (nL(n+2—9)
Sr(3—go)nZ=;( nC(n+1) )'ﬂ

r i (r(n+l)r(n+3—g{))) ﬁ
n=0

I'G-e I'(n+2) n!
o (DB =)
- ZO ( @, ) n!

=rF(1,3-9);2;r), r<lIl.
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Note that, when ¢ € A is convex, then we obtain the same result in Theorem 3.15.
4. Conclusions

We considered two fractional operators (differential and integral) in the open unit disk. We showed
that these operators are preserving the normalized class (2(0) = #’'(0) — 1 = 0). We proved that the
fractional operators are bounded by the Gauss hypergeometric function and they are represented by
a convoluted formula with the Mittag-Lefller functions. We indicated that the differential operator
LDZ?gb(f) is a linear combination of the Srivastava-Owa differential operator for the analytic normalized
function ¢ and the complex Caputo differential operator for £¢. For future work, one can suggest the
mixed conformable operators in other classes of analytic functions like the multi-valent and harmonic
classes.
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