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The existence of solutions for a coupled system of time-fractional differential equations including continuous functions and the
Caputo-Fabrizio fractional derivative is examined. After that we investigated a coupled system of time-fractional differential
inclusions including compact- and convex-valued 𝐿1-Caratheodory multifunctions and the Caputo-Fabrizio fractional derivative.

1. Introduction

The fractional calculus is nowadays an excellent mathemat-
ical tool which opens the gates for finding hidden aspects
of the dynamics of the complex processes which appear
naturally in many branches of science and engineering [1–
6]. The methods and techniques of this type of calculus are
continuously generalized and improved especially during the
last few decades. We recall that the existence and multiplicity
of positive solutions corresponding to singular fractional
boundary value problems were discussed in [7]. Also, the
existence results for several nonlinear fractional differential
equations were reported in [8]. Besides, the existence of
positive solutions corresponding to a coupled system of
multiterm singular fractional integrodifferential boundary
value problems was shown in [9]. Inventing new derivatives
and applying them to study the dynamics of complex systems
are an important priority for researchers. As a result, very
recently, a new fractional derivative without singular kernel
has been provided [10, 11]. By using themain results presented
in these two new works, we present the next definition.

Definition 1 (see [10]). The 𝛼 order Caputo-Fabrizio time-
fractional differential derivative of the function 𝑢 is written
as

(
CF
𝐷
𝛼

𝑡
𝑢) (𝑥, 𝑡)

=
(2 − 𝛼)𝑀 (𝛼)

2 (1 − 𝛼)
∫

𝑡

0

exp [−𝛼 (𝑡 − 𝑠)
1 − 𝛼

]
𝜕𝑢

𝜕𝑡
𝑑𝑠,

(𝑡 ≥ 0) ,

(1)

where𝑀(𝛼) represents a normalization function, 0 < 𝛼 < 1,
and 𝑢 ∈ 𝐻1[(0, 1) × (0, 1)].

Note that (CF𝐷𝛼
𝑡
𝑢)(𝑥, 𝑡) = 0 whenever 𝑢 is a constant

function and the kernel has no singularity at 𝑡 = 𝑠 [10,
11]. Also, Losada and Nieto defined the new time-fractional
integral based on the new definition of Caputo-Fabrizio
fractional derivative [11]. By using this idea, we provide the
notion of Caputo-Fabrizio time-fractional integral.
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Definition 2. The 𝛼 order time-fractional integral of a func-
tion 𝑢 has the form [11]

(
CF
𝐼
𝛼

𝑡
𝑢) (𝑥, 𝑡) =

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑢 (𝑥, 𝑡)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

𝑢 (𝑥, 𝑠) 𝑑𝑠,

(𝑡 ≥ 0) ,

(2)

where𝑀(𝛼) represents a normalization function and 0 < 𝛼 <
1.

Losada and Nieto showed that𝑀(𝛼) = 2/(2 − 𝛼) for all
0 ≤ 𝛼 ≤ 1 [11]. By substituting 𝑀(𝛼) in (1), we obtain the
definition of the time-fractional Caputo-Fabrizio derivative
of order 𝛼 for a function 𝑢 as follows:

(
CF
𝐷
𝛼

𝑡
𝑢) (𝑥, 𝑡) =

1

1 − 𝛼
∫

𝑡

0

exp [−𝛼 (𝑡 − 𝑠)
1 − 𝛼

]
𝜕𝑢

𝜕𝑠
𝑑𝑠;

((𝑥, 𝑡) ∈ [0, 1] × [0, 1]) .

(3)

They proved that solution of (CF𝐷𝛼
𝑡
V)(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) is given

by

V (𝑥, 𝑡) =
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑔 (𝑥, 𝑡)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

𝑔 (𝑥, 𝑠) 𝑑𝑠 + V (0, 0) ,
(4)

where 0 < 𝛼 < 1 and (𝑥, 𝑡) ∈ [0, 1] × [0, 1] [11].
The next step is to consider (𝑋, 𝑑) being a metric space.

Let us denote by P(𝑋) and 2𝑋 the class of all subsets and
the class of all nonempty subsets of 𝑋, respectively. Hence
Pcl(𝑋),Pbd(𝑋),Pcv(𝑋),Pcp(𝑋), andPcp,cv(𝑋) are the class
of all closed subsets, the class of all bounded subsets, the class
of all convex subsets, the class of all compact subsets, and the
class of all compact and convex subsets of 𝑋, respectively.
We claim that 𝑢 ∈ 𝑋 is a fixed point of the multifunction
𝐹 : 𝑋 → 2

𝑋 whenever 𝑢 ∈ 𝐹𝑢 [12]. A multifunction 𝐹 :

[0, 1] × [0, 1] → Pcl(R) is called measurable whenever the
function (𝑥, 𝑡) 󳨃→ 𝑑(𝑤, 𝐹(𝑥, 𝑡)) = inf {‖𝑤 − V‖ : V ∈ 𝐹(𝑥, 𝑡)} is
measurable for all𝑤 ∈ R [12].ThePompeiu-Hausdorffmetric
𝐻
𝑑
: 2
𝑋
× 2
𝑋
→ [0,∞) is defined by

𝐻
𝑑
(𝐴, 𝐵) = max{sup

𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝐴, 𝑏)} , (5)

such that 𝑑(𝐴, 𝑏) = inf
𝑎∈𝐴

𝑑(𝑎, 𝑏) [13]. (CB(𝑋),𝐻
𝑑
) is a

metric space and (CB(𝑋),𝐻
𝑑
) depicts a generalized metric

space. Here CB(𝑋) denotes the set of closed and bounded
subsets of𝑋 and𝐶(𝑋) represents the set of closed subsets of𝑋
[12, 13].We recall that𝐹 is said to be convex-valued (compact-
valued) whenever 𝐹𝑢 is convex (compact) set for each 𝑢 ∈ 𝑋
[12]. We mention that a multifunction 𝐹 : 𝑋 → 𝐶(𝑋) is a
contraction whenever there exists a constant 𝛾 ∈ (0, 1) such
that 𝐻

𝑑
(𝐹𝑢, 𝐹V) ≤ 𝛾𝑑(𝑢, V) for all 𝑢, V ∈ 𝑋 [12]. In 1970,

Covitz andNadler proved that each closed-valued contractive

multifunction on a complete metric space has a fixed point
[14].

Below we examine the existence of solutions for two cou-
pled systems of nonlinear time-fractional differential equa-
tions and inclusions within Caputo-Fabrizio time-fractional
derivative. First, we discuss the coupled system, namely,

(
CF
𝐷
𝛼

𝑡
𝑢) (𝑥, 𝑡) = 𝑓

1
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡)) ,

(
CF
𝐷
𝛽

𝑡
V) (𝑥, 𝑡) = 𝑓

2
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡))

(6)

such that

𝑢 (0, 0) = 0,

V (0, 0) = 0,
(7)

where 0 < 𝛼 < 1, 0 < 𝛽 < 1, (𝑥, 𝑡) ∈ [0, 1] × [0, 1], and
the mappings 𝑓

1
, 𝑓
2
: [0, 1] × [0, 1] × R × R → R are

continuous functions. In addition, we discuss the existence of
solutions for the coupled system of nonlinear time-fractional
differential inclusions

(
CF
𝐷
𝛼

𝑡
𝑢) (𝑥, 𝑡) ∈ 𝐹

1
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡)) ,

(
CF
𝐷
𝛽

𝑡
V) (𝑥, 𝑡) ∈ 𝐹

2
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡))

(8)

such that

𝑢 (0, 0) = 0,

V (0, 0) = 0,
(9)

where 𝐹
1
, 𝐹
2
: [0, 1] × [0, 1] × R × R → P(R) are some

multivalued maps.
We say that 𝐹 : [0, 1] × [0, 1] × R × R → 2

R is a
Caratheodory multifunction whenever (𝑥, 𝑡) 󳨃→ 𝐹(𝑥, 𝑡, 𝑢

1
,

𝑢
2
) is measurable for all 𝑢

𝑖
∈ R and (𝑢

1
, 𝑢
2
) 󳨃→ 𝐹(𝑥, 𝑡, 𝑢

1
, 𝑢
2
)

is upper semicontinuous (u.s.c) for almost all (𝑥, 𝑡) ∈ [0, 1] ×
[0, 1] and 𝑢

1
, 𝑢
2
∈ 𝑋 [12]. A Caratheodory multifunction

𝐹 : [0, 1] × [0, 1] × R × R → 2
R is said to be an 𝐿1-

Caratheodory whenever for each 𝜌 > 0 there exists 𝜙
𝜌
∈

𝐿
1
([0, 1] × [0, 1],R+) such that
󵄩󵄩󵄩󵄩𝐹 (𝑥, 𝑡, 𝑢1, 𝑢2)

󵄩󵄩󵄩󵄩

= sup
(𝑥,𝑡)∈[0,1]×[0,1]

{|𝑠| : 𝑠 ∈ 𝐹 (𝑥, 𝑡, 𝑢1, 𝑢2)} ≤ 𝜙𝜌 (𝑥, 𝑡)
(10)

for all |𝑢
𝑖
| ≤ 𝜌 and for almost all (𝑥, 𝑡) ∈ [0, 1] × [0, 1] [12].

The set of selections of 𝐹
𝑖
at 𝑢
𝑖
is defined by

𝑆
𝐹𝑖(𝑢𝑖)

= {𝑤
𝑖
∈ 𝐿
1
([0, 1] × [0, 1] ,R) : 𝑤𝑖 (𝑥, 𝑡)

∈ 𝐹 (𝑥, 𝑡, 𝑢
𝑖
(𝑥, 𝑡) , 𝑢

󸀠

𝑖
(𝑥, 𝑡)) for almost all (𝑥, 𝑡)

∈ [0, 1] × [0, 1]} ,

(11)

for all 𝑢
𝑖
, 𝑢
󸀠

𝑖
∈ 𝐶R([0, 1]× [0, 1]) for 𝑖 = 1, 2.The sets 𝑆

𝐹𝑖(𝑢𝑖)
are

nonempty for all𝑢
𝑖
∈ 𝐶
𝐾
([0, 1]×[0, 1])whenever dim𝐾 < ∞

[12, 15].The graph of themultifunction𝐹 : 𝑋 → 𝑌 is defined
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by the set Gr(𝐹) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑦 ∈ 𝐹(𝑥)} (see [12, 13]).
We say that the graph Gr(𝐹) of 𝐹 : 𝑋 → Pcl(𝑌) is a closed
subset of 𝑋 × 𝑌 whenever for all sequences {𝑢

𝑛
}
𝑛∈N in 𝑋 and

{𝑦
𝑛
}
𝑛∈N in 𝑌 with 𝑢

𝑛
→ 𝑢
0
, 𝑦
𝑛
→ 𝑦
0
, and 𝑦

𝑛
∈ 𝐹(𝑢

𝑛
) for all

𝑛 we have 𝑦
0
∈ 𝐹(𝑢

0
) [12]. Below we introduce the following

results which will be required in our proofs.

Theorem 3 (see [12]). Suppose that 𝑋 is a Banach space, 𝑇 :

𝑋 → 𝑋 is a completely continuous operator, and the set 𝐾 =

{𝑢 ∈ 𝑋 : 𝑢 = 𝜆𝑇𝑢, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜆 ∈ [0, 1]} is bounded. Then, 𝑇
has a fixed point.

Lemma 4 (see [12, Proposition 1.2]). If 𝐹 : 𝑋 → P
𝑐𝑙
(𝑌) is

upper semicontinuous, then𝐺𝑟(𝐹) is a closed subset of𝑋×𝑌. If
𝐹 is completely continuous with a closed graph, then it is upper
semicontinuous.

Lemma 5 (see [12]). Let 𝑋 be a separable Banach space and
𝐹 : [0, 1] × [0, 1] × 𝑋 × 𝑋 → P

𝑐𝑝,𝑐V(𝑋) an 𝐿1-Caratheodory
function. Then the operator Θ ⋅ 𝑆

𝐹
: 𝐶
𝑋
([0, 1] × [0, 1]) →

P
𝑐𝑝,𝑐V(𝐶𝑋([0, 1]×[0, 1])) defined by 𝑢 󳨃→ (Θ⋅𝑆

𝐹
)(𝑢) = Θ(𝑆

𝐹,𝑢
)

is a closed graph operator, where Θ is a linear continuous
mapping from 𝐿

1
([0, 1] × [0, 1], 𝑋) into 𝐶

𝑋
([0, 1] × [0, 1]).

Theorem 6 (see [12]). Let 𝐸 be a Banach space, 𝐶 a closed
convex subset of 𝐸, 𝑈 an open subset of 𝐶, and 0 ∈ 𝑈.
Let us suppose that 𝐹 : 𝑈 → P

𝑐𝑝,𝑐V(𝐶) depicts an upper
semicontinuous compact map, such thatP

𝑐𝑝,𝑐V(𝐶) denotes the
family of nonempty, compact convex subsets of 𝐶. Then either
𝐹 admits a fixed point in𝑈 or there exist 𝑢 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1)
such that 𝑢 ∈ 𝜆𝐹(𝑢).

2. Main Results

First, we investigate the coupled system

(
CF
𝐷
𝛼

𝑡
𝑢) (𝑥, 𝑡) = 𝑓

1
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡)) ,

(
CF
𝐷
𝛽

𝑡
V) (𝑥, 𝑡) = 𝑓

2
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡))

(12)

equipped with the boundary value conditions 𝑢(0, 0) = 0

and V(0, 0) = 0, where 𝑓
1
, 𝑓
2
: [0, 1] × [0, 1] × 𝑋

2
→

𝑋 are continuous mappings, 𝛼, 𝛽 ∈ (0, 1), 𝑥, 𝑡 ∈ [0, 1],
and CF

𝐷
𝛼

𝑡
and CF

𝐷
𝛽

𝑡
are the Caputo-Fabrizio time-fractional

derivatives. Now, consider the Banach space 𝑋 = {𝑢 :

𝑢 ∈ 𝐶R([0, 1] × [0, 1])} endowed with the sup-norm ‖𝑢‖
𝑋
=

sup
(𝑥,𝑡)∈[0,1]×[0,1]

|𝑢(𝑥, 𝑡)|. Thus, the product space (𝑋 ×

𝑋, ‖ ⋅ ‖
𝑋×𝑋

) is also a Banach space via the product norm
‖(𝑢, V)‖

𝑋×𝑋
= ‖𝑢‖
𝑋
+‖V‖
𝑋
. First, we prove the next key lemma.

Lemma 7. Suppose that𝑓 ∈ 𝐿1
𝑋
([0, 1]×[0, 1]) and 0 < 𝛼 < 1.

The function 𝑢
0
∈ 𝐶
𝑋
([0, 1] × [0, 1]) is a solution for the time-

fractional integral equation

𝑢 (𝑥, 𝑡) =
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
(𝑓 (𝑥, 𝑡) − 𝑓 (0, 0))

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

𝑓 (𝑥, 𝑠) 𝑑𝑠

(13)

if and only if𝑢
0
is a unique solution of the time-fractional differ-

ential equation

(
𝐶𝐹
𝐷
𝛼

𝑡
𝑢) (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ [0, 1] × [0, 1] ,

𝑢 (0, 0) = 0.

(14)

Proof. A solution of initial value problem (14) is denoted by
𝑢
0
. As a result (CF𝐷𝛼

𝑡
𝑢
0
)(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) and 𝑢

0
(0, 0) = 0. By

integrating both sides we get

𝑢
0
(𝑥, 𝑡) − 𝑢

0
(0, 0)

=
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
(𝑓 (𝑥, 𝑡) − 𝑓 (0, 0))

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

𝑓 (𝑥, 𝑠) 𝑑𝑠

(15)

and so 𝑢
0
(𝑥, 𝑡) = (2(1 − 𝛼)/(2 − 𝛼)𝑀(𝛼))(𝑓(𝑥, 𝑡) − 𝑓(0, 0)) +

(2𝛼/(2 − 𝛼)𝑀(𝛼)) ∫
𝑡

0
𝑓(𝑥, 𝑠)𝑑𝑠. This shows that 𝑢

0
represents

the solution of time-fractional integral equation (13). If𝑢
1
and

𝑢
2
are two distinct solutions for initial value problem (14),

then CF
𝐷
𝛼

𝑡
𝑢
1
(𝑥, 𝑡) −

CF
𝐷
𝛼

𝑡
𝑢
2
(𝑥, 𝑡) = [

CF
𝐷
𝛼

𝑡
𝑢
1
− 𝑢
2
](𝑥, 𝑡) = 0

and (𝑢
1
− 𝑢
2
)(0, 0) = 0. By the property of the Caputo-

Fabrizio time-fractional derivative in [11], we get 𝑢
1
= 𝑢
2
.

Hence, 𝑢
0
is a unique solution of initial value problem (14).

Now, suppose that 𝑢
0
is a solution of time-fractional integral

equation (13).Then, we conclude that 𝑢
0
(𝑥, 𝑡) = (2(1−𝛼)/(2−

𝛼)𝑀(𝛼))(𝑓(𝑥, 𝑡)−𝑓(0, 0))+(2𝛼/(2−𝛼)𝑀(𝛼)) ∫
𝑡

0
𝑓(𝑥, 𝑠)𝑑𝑠. By

using (4), one can see that this function represents a solution
for initial value problem (14). Note that 𝑢

0
(0, 0) = 0.

Now, we consider (1)-(2). For each (𝑥, 𝑡) ∈ [0, 1] × [0, 1],
define the operators 𝑇

1
, 𝑇
2
: 𝑋 → 𝑋 by

(𝑇
1
V) (𝑥, 𝑡)

=
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑓
1
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡))

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑓
1
(0, 0, 𝑢 (0, 0) , V (0, 0))

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

𝑓
1
(𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠)) 𝑑𝑠,

(𝑇
2
𝑢) (𝑥, 𝑡)

=
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
𝑓
2
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡))

−
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
𝑓
2
(0, 0, 𝑢 (0, 0) , V (0, 0))

+
2𝛽

(2 − 𝛽)𝑀(𝛽)
∫

𝑡

0

𝑓
2
(𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠)) 𝑑𝑠

(16)
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and put

𝑁
1
=

4 − 2𝛼

(2 − 𝛼)𝑀 (𝛼)
,

𝑁
2
=

4 − 2𝛽

(2 − 𝛽)𝑀 (𝛽)
.

(17)

Theorem 8. Suppose that 𝑓
1
, 𝑓
2
: [0, 1]× [0, 1]×𝑋×𝑋 → 𝑋

are the continuous mappings in system (6)-(7) and there exist
positive constants 𝐿

1
and 𝐿

2
fulfilling |𝑓

1
(𝑥, 𝑡, 𝑢

1
, 𝑢
2
)| ≤ 𝐿

1

and |𝑓
2
(𝑥, 𝑡, 𝑢

1
, 𝑢
2
)| ≤ 𝐿

2
for all (𝑥, 𝑡) ∈ [0, 1] × [0, 1] and

𝑢
1
, 𝑢
2
∈ 𝑋. Then, system (6)-(7) possesses at least one solution.

Proof. Let the operators 𝑇
1
, 𝑇
2
: 𝑋 → 𝑋 defined by

(16). We define the operator 𝑇 : 𝑋 × 𝑋 → 𝑋 × 𝑋 by
𝑇(𝑢, V)(𝑥, 𝑡)fl ((𝑇

1
V)(𝑥, 𝑡), (𝑇

2
𝑢)(𝑥, 𝑡)) for all (𝑥, 𝑡) ∈ [0, 1] ×

[0, 1]. Note that 𝑇 is continuous because the mappings 𝑓
1

and 𝑓
2
are continuous. We prove that the operator 𝑇 maps

bounded sets into the bounded subsets of 𝑋 × 𝑋. Let Ω be a
bounded subset of𝑋×𝑋, (𝑢, V) ∈ Ω, and (𝑥, 𝑡) ∈ [0, 1]×[0, 1].
Then, we have

󵄨󵄨󵄨󵄨(𝑇1V) (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑓
1
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡))

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑓
1
(0, 0, 𝑢 (0, 0) , V (0, 0))

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

𝑓
1
(𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

󵄨󵄨󵄨󵄨𝑓1 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡))
󵄨󵄨󵄨󵄨

+
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

󵄨󵄨󵄨󵄨𝑓1 (0, 0, 0, 0)
󵄨󵄨󵄨󵄨 +

2𝛼

(2 − 𝛼)𝑀 (𝛼)

⋅ ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑓1 (𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝐿
1
{

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
+

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
𝑡} ≤ 𝐿

1
{

4 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
} ≤ 𝐿

1
{

4 − 2𝛼

(2 − 𝛼)𝑀 (𝛼)
} = 𝐿

1
𝑁
1

(18)

and so ‖(𝑇
1
V)(𝑥, 𝑡)‖

𝑋
≤ 𝐿
1
𝑁
1
. Also, we have

󵄨󵄨󵄨󵄨(𝑇2𝑢) (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
𝑓
2
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡))

−
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
𝑓
2
(0, 0, 𝑢 (0, 0) , V (0, 0))

+
2𝛽

(2 − 𝛽)𝑀(𝛽)
∫

𝑡

0

𝑓
2
(𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)

󵄨󵄨󵄨󵄨𝑓2 (𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡))
󵄨󵄨󵄨󵄨

+
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)

󵄨󵄨󵄨󵄨𝑓2 (0, 0, 0, 0)
󵄨󵄨󵄨󵄨 +

2𝛽

(2 − 𝛽)𝑀(𝛽)

⋅ ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑓2 (𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, s))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝐿
2
{

2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
+

2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)

+
2𝛽

(2 − 𝛽)𝑀(𝛽)
𝑡} ≤ 𝐿

2
{

4 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)

+
2𝛽

(2 − 𝛽)𝑀(𝛽)
} ≤ 𝐿

2
{

4 − 2𝛽

(2 − 𝛽)𝑀 (𝛽)
}

= 𝐿
2
𝑁
2

(19)

and so ‖(𝑇
2
𝑢)(𝑥, 𝑡)‖

𝑋
≤ 𝐿
2
𝑁
2
. Thus, ‖𝑇(𝑢, V)(𝑥, 𝑡)‖

𝑋×𝑋
≤

𝐿
1
𝑁
1
+ 𝐿
2
𝑁
2
. This shows that the operator 𝑇maps bounded

sets into the bounded sets of 𝑋 × 𝑋. Now, we show that the
operator𝑇 is equicontinuous. Let (𝑥, 𝑡

1
), (𝑥, 𝑡

2
) ∈ [0, 1]×[0, 1]

with 𝑡
1
< 𝑡
2
. Then, we have

󵄨󵄨󵄨󵄨(𝑇1V) (𝑥, 𝑡2) − (𝑇1V) (𝑥, 𝑡1)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑓
1
(𝑥, 𝑡
2
, 𝑢 (𝑥, 𝑡

2
) , V (𝑥, 𝑡

2
))

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑓
1
(0, 0, 𝑢 (0, 0) , V (0, 0))

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡2

0

𝑓
1
(𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠)) 𝑑𝑠

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑓
1
(𝑥, 𝑡
1
, 𝑢 (𝑥, 𝑡

1
) , V (𝑥, 𝑡

1
))

+
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑓
1
(0, 0, 𝑢 (0, 0) , V (0, 0))

−
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡1

0

𝑓
1
(𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

󵄨󵄨󵄨󵄨𝑓1 (𝑥, 𝑡2, 𝑢 (𝑥, 𝑡2) , V (𝑥, 𝑡2))

− 𝑓
1
(𝑥, 𝑡
1
, 𝑢 (𝑥, 𝑡

1
) , V (𝑥, 𝑡

1
))
󵄨󵄨󵄨󵄨 +

2𝛼

(2 − 𝛼)𝑀 (𝛼)

⋅ ∫

𝑡2

𝑡1

󵄨󵄨󵄨󵄨𝑓1 (𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

󵄨󵄨󵄨󵄨𝑓1 (𝑥, 𝑡2, 𝑢 (𝑥, 𝑡2) , V (𝑥, 𝑡2))

− 𝑓
1
(𝑥, 𝑡
1
, 𝑢 (𝑥, 𝑡

1
) , V (𝑥, 𝑡

1
))
󵄨󵄨󵄨󵄨 +

2𝛼𝐿
1

(2 − 𝛼)𝑀 (𝛼)
(𝑡
2

− 𝑡
1
) .

(20)
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This implies that |(𝑇
1
V)(𝑥, 𝑡

2
) − (𝑇

1
V)(𝑥, 𝑡

1
)| → 0 whenever

(𝑥, 𝑡
2
) → (𝑥, 𝑡

1
). By utilizing the Arzela-Ascoli theorem, 𝑇

1

is completely continuous. Similarly, we have
󵄨󵄨󵄨󵄨(𝑇2𝑢) (𝑥, 𝑡2) − (𝑇2𝑢) (𝑥, 𝑡1)

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
𝑓
2
(𝑥, 𝑡
2
, 𝑢 (𝑥, 𝑡

2
) , V (𝑥, 𝑡

2
))

−
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
𝑓
2
(0, 0, 𝑢 (0, 0) , V (0, 0))

+
2𝛽

(2 − 𝛽)𝑀 (𝛽)
∫

𝑡2

0

𝑓
2
(𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠)) 𝑑𝑠

−
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
𝑓
2
(𝑥, 𝑡
1
, 𝑢 (𝑥, 𝑡

1
) , V (𝑥, 𝑡

1
))

+
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
𝑓
2
(0, 0, 𝑢 (0, 0) , V (0, 0))

−
2𝛽

(2 − 𝛽)𝑀 (𝛽)
∫

𝑡1

0

𝑓
2
(𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)

󵄨󵄨󵄨󵄨𝑓2 (𝑥, 𝑡2, 𝑢 (𝑥, 𝑡2) , V (𝑥, 𝑡2))

− 𝑓
2
(𝑥, 𝑡
1
, 𝑢 (𝑥, 𝑡

1
) , V (𝑥, 𝑡

1
))
󵄨󵄨󵄨󵄨 +

2𝛽

(2 − 𝛽)𝑀(𝛽)

⋅ ∫

𝑡2

𝑡1

󵄨󵄨󵄨󵄨𝑓2 (𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)

󵄨󵄨󵄨󵄨𝑓2 (𝑥, 𝑡2, 𝑢 (𝑥, 𝑡2) , V (𝑥, 𝑡2))

− 𝑓
2
(𝑥, 𝑡
1
, 𝑢 (𝑥, 𝑡

1
) , V (𝑥, 𝑡

1
))
󵄨󵄨󵄨󵄨 +

2𝛽𝐿
2

(2 − 𝛽)𝑀 (𝛽)
(𝑡
2

− 𝑡
1
) .

(21)

Again, by utilizing the Arzela-Ascoli theorem we ob-
serve that 𝑇

2
is completely continuous. Therefore, we get

‖𝑇(𝑢, V)(𝑥, 𝑡
2
) − 𝑇(𝑢, V)(𝑥, 𝑡

2
)‖
𝑋×𝑋

→ 0 whenever (𝑥, 𝑡
2
)

tends to (𝑥, 𝑡
1
). Thus, 𝑇 is completely continuous. In the next

step we prove that

Ω = {(𝑢, V) ∈ 𝑋 × 𝑋 : (𝑢, V) = 𝜆𝑇 (𝑢, V) for some 𝜆

∈ [0, 1]}

(22)

is bounded. Let (𝑢, V) be an arbitrary element of Ω. Choose
𝜆 ∈ [0, 1] fulfilling (𝑢, V) = 𝜆𝑇(𝑢, V). Hence, V(𝑥, 𝑡) =

𝜆(𝑇
1
V)(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) = 𝜆(𝑇

2
𝑢)(𝑥, 𝑡) for all (𝑥, 𝑡) ∈ [0, 1] ×

[0, 1]. Since

1

𝜆
|V (𝑥, 𝑡)| = 󵄨󵄨󵄨󵄨(𝑇1V) (𝑥, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐿1𝑁1,
(23)

we get |V(𝑥, 𝑡)| ≤ 𝜆𝐿
1
𝑁
1
and so ‖V(𝑥, 𝑡)‖

𝑋
≤ 𝜆𝐿
1
𝑁
1
. Simi-

larly, we prove that ‖𝑢(𝑥, 𝑡)‖
𝑋
≤ 𝜆𝐿
2
𝑁
2
. Thus, ‖(𝑢, V)‖

𝑋×𝑋
≤

𝜆[𝐿
1
𝑁
1
+ 𝐿
2
𝑁
2
] and so Ω is a bounded set. Now, by using

Theorem 3, we get that 𝑇 has a fixed point which is a solution
for the coupled system of the time-fractional differential
equations.

Next we study the existence of solution for the coupled
system of time-fractional differential inclusions

(
CF
𝐷
𝛼

𝑡
𝑢) (𝑥, 𝑡) ∈ 𝐹

1
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡)) ,

(
CF
𝐷
𝛽

𝑡
V) (𝑥, 𝑡) ∈ 𝐹

2
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡))

(24)

with the initial value conditions 𝑢(0, 0) = 0 and V(0, 0) = 0,
where 𝐹

1
, 𝐹
2
: [0, 1] × [0, 1] × R × R → P(R) are some

multivalued maps.

Definition 9. One says that (𝑢
1
, 𝑢
2
) ∈ 𝐶([0, 1] × [0, 1], 𝑋) ×

𝐶([0, 1] × [0, 1], 𝑋) is a solution for the system of the
time-fractional differential inclusions whenever it satisfies
the initial value conditions and there exists (𝑤

1
, 𝑤
2
) ∈

𝐿
1
([0, 1] × [0, 1]) × 𝐿

1
([0, 1] × [0, 1]) such that 𝑤

𝑖
(𝑥, 𝑡) ∈

𝐹
𝑖
(𝑥, 𝑡, 𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) for almost all (𝑥, 𝑡) ∈ [0, 1] × [0, 1] and

𝑖 = 1, 2 and also

𝑢
𝑖
(𝑥, 𝑡)

=
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑤
𝑖
(𝑥, 𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡))

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
𝑤
𝑖
(0, 0, 𝑢 (0, 0) , V (0, 0))

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

𝑤
𝑖
(𝑥, 𝑠, 𝑢 (𝑥, 𝑠) , V (𝑥, 𝑠)) 𝑑𝑠,

(25)

for all (𝑥, 𝑡) ∈ [0, 1] × [0, 1] and 𝑖 = 1, 2.

Theorem 10. Let 𝐹
1
, 𝐹
2
: [0, 1] × [0, 1] ×R ×R → P

𝑐𝑝,𝑐V(R)

be 𝐿1-Caratheodory multifunctions. Suppose that there exist a
nondecreasing bounded continuousmap𝜓 : [0,∞) → (0,∞)

and a continuous function 𝑝 : [0, 1] × [0, 1] → (0,∞) such
that ‖𝐹

𝑖
(𝑥, 𝑡, 𝑢

𝑖
(𝑥, 𝑡), 𝑢

󸀠

𝑖
(𝑥, 𝑡))‖ ≤ 𝑝(𝑥, 𝑡)𝜓(‖𝑢

𝑖
‖) for all (𝑥, 𝑡) ∈

[0, 1] × [0, 1], 𝑢
𝑖
, 𝑢
󸀠

𝑖
∈ 𝑋 for 𝑖 = 1, 2. Then, coupled system

of time-fractional differential inclusions (8)-(9) has at least one
solution.

Proof. Define the operator𝑁 : 𝑋×𝑋 → 2
𝑋×𝑋 by𝑁(𝑢

1
, 𝑢
2
) =

(
𝑁1(𝑢1 ,𝑢2)

𝑁2(𝑢1 ,𝑢2)
), where

𝑁
1
(𝑢
1
, 𝑢
2
) = {ℎ

1
∈ 𝑋 × 𝑋 : there exists V

1

∈ 𝑆
𝐹1 ,𝑢1

such that ℎ
1
(𝑥, 𝑡) = V

1
(𝑥, 𝑡) ∀ (𝑥, 𝑡)

∈ [0, 1] × [0, 1]} ,

𝑁
2
(𝑢
1
, 𝑢
2
) = {ℎ

2
∈ 𝑋 × 𝑋 : there exists V

2

∈ 𝑆
𝐹2 ,𝑢2

such that ℎ
2
(𝑥, 𝑡) = V

2
(𝑥, 𝑡) ∀ (𝑥, 𝑡)

∈ [0, 1] × [0, 1]} ,
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ℎ
1
(𝑥, 𝑡) =

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
1
(𝑥, 𝑡) −

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

⋅ V
1
(0, 0) +

2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

V
1
(𝑥, 𝑠) 𝑑𝑠,

ℎ
2
(𝑥, 𝑡) =

2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
V
2
(𝑥, 𝑡) −

2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)

⋅ V
2
(0, 0) +

2𝛽

(2 − 𝛽)𝑀(𝛽)
∫

𝑡

0

V
2
(𝑥, 𝑠) 𝑑𝑠.

(26)

By Lemma 7, it is clear that each fixed point of the operator
𝑁 is a solution for system of time-fractional differential
inclusions (8). First, we prove that the multifunction 𝑁 is
convex-valued. Let (𝑢

1
, 𝑢
2
) ∈ 𝑋 × 𝑋, (ℎ

1
, ℎ
2
), (ℎ
󸀠

1
, ℎ
󸀠

2
) ∈

𝑁(𝑢
1
, 𝑢
2
). Choose V

𝑖
, V󸀠
𝑖
∈ 𝑆
𝐹𝑖(𝑢1 ,𝑢2)

such that

ℎ
𝑖
(𝑥, 𝑡) =

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
𝑖
(𝑥, 𝑡)

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
𝑖
(0, 0)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

V
𝑖
(𝑥, 𝑠) 𝑑𝑠,

ℎ
󸀠

𝑖
(𝑥, 𝑡) =

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V󸀠
𝑖
(𝑥, 𝑡)

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V󸀠
𝑖
(0, 0)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

V󸀠
𝑖
(𝑥, 𝑠) 𝑑𝑠

(27)

for almost all (𝑥, 𝑡) ∈ [0, 1] × [0, 1] and 𝑖 = 1, 2. Let 0 ≤ 𝜆 ≤ 1
be given. Then, we have

[𝜆ℎ
𝑖
+ (1 − 𝜆) ℎ

󸀠

𝑖
] (𝑥, 𝑡)

=
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
[𝜆V
𝑖
(𝑥, 𝑡) + (1 − 𝜆) V󸀠

𝑖
(𝑥, 𝑡)]

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
[𝜆V
𝑖
(0, 0) + (1 − 𝜆) V󸀠

𝑖
(0, 0)]

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)

⋅ ∫

𝑡

0

[𝜆V
𝑖
(𝑥, 𝑠) + (1 − 𝜆) V󸀠

𝑖
(𝑥, 𝑠)] 𝑑𝑠

(28)

for 𝑖 = 1, 2. Since the operator 𝐹
𝑖
has convex values, 𝑆

𝐹𝑖(𝑢𝑖)
is a

convex set and [𝜆ℎ
𝑖
+ (1 − 𝜆)ℎ

󸀠

𝑖
] ∈ 𝑁
𝑖
(𝑢
1
, 𝑢
2
) for 𝑖 = 1, 2. This

implies that the operator𝑁 has convex values. Now, we prove
that𝑁maps bounded sets of𝑋 into bounded sets. Let 𝑟 > 0,
𝐵
𝑟
= {(𝑢
1
, 𝑢
2
) ∈ 𝑋 × 𝑋 : ‖(𝑢

1
, 𝑢
2
)‖ ≤ 𝑟} be a bounded subset

of 𝑋 × 𝑋, (ℎ
1
, ℎ
2
) ∈ 𝑁(𝑢

1
, 𝑢
2
), and (𝑢

1
, 𝑢
2
) ∈ 𝐵
𝑟
. Then, there

exists (V
1
, V
2
) ∈ 𝑆
𝐹1(𝑢1)

× 𝑆
𝐹2(𝑢2)

such that

ℎ
1
(𝑥, 𝑡) =

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
1
(𝑥, 𝑡)

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
1
(0, 0)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

V
1
(𝑥, 𝑠) 𝑑𝑠

(29)

and ℎ
2
(𝑥, 𝑡) = (2(1 −𝛽)/(2 −𝛽)𝑀(𝛽))V

2
(𝑥, 𝑡) − (2(1 −𝛽)/(2 −

𝛽)𝑀(𝛽))V
2
(0, 0) + (2𝛽/(2 − 𝛽)𝑀(𝛽)) ∫

𝑡

0
V
2
(𝑥, 𝑠)𝑑𝑠 for almost

all (𝑥, 𝑡) ∈ [0, 1] × [0, 1]. If ‖𝑝‖
∞
= sup

(𝑥,𝑡)∈[0,1]×[0,1]
|𝑝(𝑥, 𝑡)|,

then we obtain

󵄨󵄨󵄨󵄨(ℎ1) (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
1
(𝑥, 𝑡)

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
1
(0, 0)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

V
1
(𝑥, 𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

󵄨󵄨󵄨󵄨V1 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨

+
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

󵄨󵄨󵄨󵄨V1 (0, 0)
󵄨󵄨󵄨󵄨 +

2𝛼

(2 − 𝛼)𝑀 (𝛼)

⋅ ∫

𝑡

0

󵄨󵄨󵄨󵄨V1 (𝑥, 𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠 ≤ 𝑝 (𝑥, 𝑡) 𝜓 (

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩)

⋅ {
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

+
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
+

2𝛼

(2 − 𝛼)𝑀 (𝛼)
𝑡} ≤

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩∞

⋅ 𝜓 (
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩) {
4 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
+

2𝛼

(2 − 𝛼)𝑀 (𝛼)
}

≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩∞

𝜓 (
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩) {
4 − 2𝛼

(2 − 𝛼)𝑀 (𝛼)
} =

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩∞

⋅ 𝜓 (
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩)𝑁1,

(30)

where the constant 𝑁
1
is defined by (17). This implies

that ‖ℎ
1
‖ ≤ ‖𝑝‖

∞
𝜓(‖𝑢
1
‖)𝑁
1
. Similarly, we get ‖ℎ

2
‖ ≤

‖𝑝‖
∞
𝜓(‖𝑢
2
‖)𝑁
2
, where the constant 𝑁

2
is defined by (17).

Thus, ‖(ℎ
1
, ℎ
2
)‖ ≤ ‖𝑝‖

∞
𝜓(‖(𝑢

1
, 𝑢
2
)‖)(𝑁
1
+ 𝑁
2
). Now, we

prove that𝑁maps bounded sets into equicontinuous subsets
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of 𝑋 × 𝑋. Let (𝑢
1
, 𝑢
2
) ∈ 𝐵
𝑟
and (𝑥, 𝑡

1
), (𝑥, 𝑡

2
) ∈ [0, 1] × [0, 1]

with 𝑡
1
< 𝑡
2
. Then, we have

󵄨󵄨󵄨󵄨(ℎ1) (𝑥, 𝑡2) − (ℎ1) (𝑥, 𝑡1)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
1
(𝑥, 𝑡
2
)

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
1
(0, 0) +

2𝛼

(2 − 𝛼)𝑀 (𝛼)

⋅ ∫

𝑡2

0

V
1
(𝑥, 𝑠) 𝑑𝑠 −

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
1
(𝑥, 𝑡
1
)

+
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
1
(0, 0)

−
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡1

0

V
1
(𝑥, 𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

󵄨󵄨󵄨󵄨V1 (𝑥, 𝑡2) − V
1
(𝑥, 𝑡
1
)
󵄨󵄨󵄨󵄨

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡2

𝑡1

󵄨󵄨󵄨󵄨V1 (𝑥, 𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)

󵄨󵄨󵄨󵄨V1 (𝑥, 𝑡2) − V
1
(𝑥, 𝑡
1
)
󵄨󵄨󵄨󵄨

+
2𝛼
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩∞

𝜓 (
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩)

(2 − 𝛼)𝑀 (𝛼)
(𝑡
2
− 𝑡
1
) .

(31)

By using a similar method, we obtain
󵄨󵄨󵄨󵄨(ℎ2) (𝑥, 𝑡2) − (ℎ2) (𝑥, 𝑡1)

󵄨󵄨󵄨󵄨

≤
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)

󵄨󵄨󵄨󵄨V2 (𝑥, 𝑡2) − V
2
(𝑥, 𝑡
1
)
󵄨󵄨󵄨󵄨

+
2𝛽
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩∞

𝜓 (
󵄩󵄩󵄩󵄩𝑢2

󵄩󵄩󵄩󵄩)

(2 − 𝛽)𝑀 (𝛽)
(𝑡
2
− 𝑡
1
) .

(32)

Hence, |ℎ
𝑖
(𝑥, 𝑡
2
) − ℎ
𝑖
(𝑥, 𝑡
1
)| → 0 as (𝑥, 𝑡

2
) → (𝑥, 𝑡

1
). By

using the Arzela-Ascoli theorem we get that𝑁 is completely
continuous. Here, we prove that𝑁 is upper semicontinuous.
By using Lemma 4, 𝑁 is upper semicontinuous whenever it
has a closed graph. Since𝑁 is completely continuous,wemust
show that𝑁 has a closed graph.

Let {(𝑢𝑛
1
, 𝑢
𝑛

2
)} be a sequence in 𝑋 × 𝑋 with (𝑢𝑛

1
, 𝑢
𝑛

2
) →

(𝑢
0

1
, 𝑢
0

2
) and (ℎ𝑛

1
, ℎ
𝑛

2
) ∈ 𝑁(𝑢

𝑛

1
, 𝑢
𝑛

2
)with (ℎ𝑛

1
, ℎ
𝑛

2
) → (ℎ

0

1
, ℎ
0

2
).We

show that (ℎ0
1
, ℎ
0

2
) ∈ 𝑁(𝑢

0

1
, 𝑢
0

2
). For each (ℎ𝑛

1
, ℎ
𝑛

2
) ∈ 𝑁(𝑢

𝑛

1
, 𝑢
𝑛

2
),

we can choose (V𝑛
1
, V𝑛
2
) ∈ 𝑆
𝐹1(𝑢
𝑛

1
)
× 𝑆
𝐹2(𝑢
𝑛

2
)
such that

ℎ
𝑛

1
(𝑥, 𝑡) =

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V𝑛
1
(𝑥, 𝑡)

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V𝑛
1
(0, 0)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

V𝑛
1
(𝑥, 𝑠) 𝑑𝑠

(33)

and ℎ
𝑛

2
(𝑥, 𝑡) = (2(1 − 𝛽)/(2 − 𝛽)𝑀(𝛽))V𝑛

2
(𝑥, 𝑡) − (2(1 −

𝛽)/(2 − 𝛽)𝑀(𝛽))V𝑛
2
(0, 0) + (2𝛽/(2 − 𝛽)𝑀(𝛽)) ∫

𝑡

0
V𝑛
2
(𝑥, 𝑠)𝑑𝑠 for

all (𝑥, 𝑡) ∈ [0, 1]×[0, 1]. It is sufficient to show that there exists
(V0
1
, V0
2
) ∈ 𝑆
𝐹1(𝑢
0

1
)
× 𝑆
𝐹2(𝑢
0

2
)
such that

ℎ
0

1
(𝑥, 𝑡) =

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V0
1
(𝑥, 𝑡)

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V0
1
(0, 0)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

V0
1
(𝑥, 𝑠) 𝑑𝑠,

(34)

and ℎ
0

2
(𝑥, 𝑡) = (2(1 − 𝛽)/(2 − 𝛽)𝑀(𝛽))V0

2
(𝑥, 𝑡) − (2(1 −

𝛽)/(2 − 𝛽)𝑀(𝛽))V0
2
(0, 0) + (2𝛽/(2 − 𝛽)𝑀(𝛽)) ∫

𝑡

0
V0
2
(𝑥, 𝑠)𝑑𝑠 for

all (𝑥, 𝑡) ∈ [0, 1] × [0, 1]. Now, consider the linear operators
Θ
1
, Θ
2
: 𝐿
1
([0, 1] × [0, 1], 𝑋) → 𝐶([0, 1] × [0, 1], 𝑋) defined

by

Θ
1
(V) (𝑥, 𝑡) =

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V (𝑥, 𝑡)

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V (0, 0)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

V (𝑥, 𝑠) 𝑑𝑠

(35)

andΘ
2
(V)(𝑥, 𝑡) = (2(1−𝛽)/(2−𝛽)𝑀(𝛽))V(𝑥, 𝑡)−(2(1−𝛽)/(2−

𝛽)𝑀(𝛽))V(0, 0) + (2𝛽/(2 − 𝛽)𝑀(𝛽)) ∫
𝑡

0
V(𝑥, 𝑠)𝑑𝑠. Note that

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑛

1
(𝑥, 𝑡) − ℎ

0

1
(𝑥, 𝑡)

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
[V𝑛
1
(𝑥, 𝑡) − V0

1
(𝑥, 𝑡)]

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
[V𝑛
1
(0, 0) − V0

1
(0, 0)]

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

[V𝑛
1
(𝑥, 𝑠) − V0

1
(𝑥, 𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󳨀→ 0,

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑛

2
(𝑥, 𝑡) − ℎ

0

2
(𝑥, 𝑡)

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
[V𝑛
2
(𝑥, 𝑡) − V0

2
(𝑥, 𝑡)]

−
2 (1 − 𝛽)

(2 − 𝛽)𝑀 (𝛽)
[V𝑛
2
(0, 0) − V0

2
(0, 0)]

+
2𝛽

(2 − 𝛽)𝑀(𝛽)
∫

𝑡

0

[V𝑛
2
(𝑥, 𝑠) − V0

2
(𝑥, 𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󳨀→ 0.

(36)
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By using Lemma 5, we get that Θ
𝑖
⋅ 𝑆
𝐹𝑖

is a closed graph
operator for 𝑖 = 1, 2. Also, we get ℎ𝑛

𝑖
(𝑥, 𝑡) ∈ Θ

𝑖
(𝑆
𝐹𝑖(𝑢
𝑛

𝑖
)
) for

all 𝑛. Since 𝑢𝑛
𝑖
→ 𝑢
0

𝑖
, we get

ℎ
0

1
(𝑥, 𝑡) =

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V0
1
(𝑥, 𝑡)

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V0
1
(0, 0)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

V0
1
(𝑥, 𝑠) 𝑑𝑠

(37)

and ℎ0
2
(𝑥, 𝑡) = (2(1−𝛽)/(2−𝛽)𝑀(𝛽))V0

2
(𝑥, 𝑡) − (2(1−𝛽)/(2−

𝛽)𝑀(𝛽))V0
2
(0, 0) + (2𝛽/(2 − 𝛽)𝑀(𝛽)) ∫

𝑡

0
V0
2
(𝑥, 𝑠)𝑑𝑠 for some

V0
𝑖
∈ 𝑆
𝐹𝑖(𝑢
0

𝑖
)
(𝑖 = 1, 2). Thus,𝑁 has a closed graph.

Now, we prove that there is an open set 𝑈 ⊆ 𝑋 with
(𝑢
1
, 𝑢
2
) ∉ 𝑁(𝑢

1
, 𝑢
2
) for all 𝜆 ∈ (0, 1) and (𝑢

1
, 𝑢
2
) ∈ 𝜕𝑈.

Let 𝜆 ∈ (0, 1) and (𝑢
1
, 𝑢
2
) ∈ 𝜆𝑁(𝑢

1
, 𝑢
2
). Then, there exists

V
𝑖
∈ 𝐿
1
([0, 1] × [0, 1],R) with V

𝑖
∈ 𝑆
𝐹𝑖(𝑢𝑖)

(𝑖 = 1, 2) such that

𝑢
1
(𝑥, 𝑡) =

2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
1
(𝑥, 𝑡)

−
2 (1 − 𝛼)

(2 − 𝛼)𝑀 (𝛼)
V
1
(0, 0)

+
2𝛼

(2 − 𝛼)𝑀 (𝛼)
∫

𝑡

0

V
1
(𝑥, 𝑠) 𝑑𝑠

(38)

and 𝑢
2
(𝑥, 𝑡) = (2(1 − 𝛽)/(2 − 𝛽)𝑀(𝛽))V

2
(𝑥, 𝑡) − (2(1 −

𝛽)/(2 − 𝛽)𝑀(𝛽))V
2
(0, 0) + (2𝛽/(2 − 𝛽)𝑀(𝛽)) ∫

𝑡

0
V
2
(𝑥, 𝑠)𝑑𝑠 for

all (𝑥, 𝑡) ∈ [0, 1] × [0, 1]. By using the above computed
values, we obtain ‖𝑢

𝑖
‖ ≤ ‖𝑝‖

∞
𝜓(‖𝑢
𝑖
‖)∑
𝑛

𝑖=1
𝑁
𝑖
for 𝑖 = 1, 2.

This follows that ‖𝑢
𝑖
‖/‖𝑝‖
∞
𝜓(‖𝑢
𝑖
‖)∑
𝑛

𝑖=1
𝑁
𝑖
≤ 1 for 𝑖 =

1, 2. Choose 𝑀
𝑖
> 0 with ‖𝑢

𝑖
‖ ̸= 𝑀

𝑖
in such a way that

𝑀
𝑖
/‖𝑝‖
∞
𝜓(‖𝑢
𝑖
‖)∑
𝑛

𝑖=1
𝑁
𝑖
> 1 for 𝑖 = 1, 2. Put 𝑈 = {(𝑢

1
, 𝑢
2
) ∈

𝑋 × 𝑋 : ‖(𝑢
1
, 𝑢
2
)‖ < min {𝑀

1
,𝑀
2
}}. We note that the

operator 𝑁 : 𝑈 → P(𝑋) is upper semicontinuous and
completely continuous. Also, we showed that there is no
(𝑢
1
, 𝑢
2
) ∈ 𝜕𝑈 such that (𝑢

1
, 𝑢
2
) ∈ 𝜆𝑁(𝑢

1
, 𝑢
2
) for some

𝜆 ∈ (0, 1). Hence, with the help of Theorem 6, we get that
𝑁 has a fixed point (𝑢

1
, 𝑢
2
) ∈ 𝑈 which is a solution for time-

fractional differential inclusion (8)-(9).
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