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Abstract
In this article, we employ the lower regularized incomplete gamma functions to
demonstrate the existence and uniqueness of solutions for fractional differential
equations involving nonlocal fractional derivatives (GPF derivatives) generated by
proportional derivatives of the form

Dρ = (1 – ρ) + ρD, ρ ∈ [0, 1], (1)

where D is the ordinary differential operator.
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1 Introduction
Over the last decades there has been an extensive use of fractional dynamic equations in
modeling and describing complex and chaotic systems [1–6]. This fact has motivated re-
searchers to discover new fractional operators. After Riemann–Liouville fractional deriva-
tives, Caputo fractional derivatives were defined to transform constant functions to zero
and hence have similar properties as ordinary derivatives. On the other hand, some re-
searchers have spent their efforts to define more general classes of fractional operators by
inserting more general or new kernels. Since the appearance of the concept of conformable
derivatives, which allow the derivation up to arbitrary order and resemble ordinary deriva-
tives, in [7] and their modifications in [8, 9], several researchers realized that conformable
type derivatives can be used to produce nonlocal more generalized fractional derivatives
[10, 11]. Indeed, in [10], the authors used the conformable derivatives presented in [8] to
present a class of generalized nonlocal fractional derivatives, called conformable fractional
derivatives, slightly different from the so-called Katugampola [12, 13]. In fact, the deriva-
tives in [10] and the Katugampola are characterized as fractional derivatives of a function
with respect to another function g(t), with g(t) = tρ

ρ
and g(t) = (t–a)ρ

ρ
, respectively [14].

Also, the authors in [11] used particular versions of the proportional derivatives presented
in [9], called modified conformable derivatives, to present the fractional counterpart pro-
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portional derivatives and integrals. Later, the authors in [15, 16] generalized proportional
derivatives and used them to generate more generalized classes of nonlocal fractional in-
tegrals and derivatives, and in [17] the authors discussed a new type of fractional operators
combining proportional and classical derivatives/integrals. Besides, there have been many
attempts to generate fractional operators with more complicated kernels with the hope to
describe complex systems more accurately. Some authors thought of replacing the singular
kernels with power law by nonsingular kernels with either exponential law [18] or Mittag-
Leffler law [19] via ML kernel and via generalized ML kernel. For the interest of readers,
we attract their attention to the recent work where the author studied the relationships
between the model of Prabhakar depending on fractional integrals with generalized ML
kernels and Atangana–Baleanu model in [19] and its extension in [20].

Fixed point techniques are always used to prove existence and uniqueness of ordinary
and fractional dynamic equations [21–27]. It turns out that the structure of the kernel
of fractional operator affects the applied analysis technique in proving the existence and
uniqueness of solution or its stability criteria due to the natural appearance of the expo-
nential function in the kernel of proportional fractional point technique in proving the
existence and uniqueness of solutions for fractional differential equations in the setting of
GPF derivatives. Indeed, we investigate the following Cauchy problem:

⎧
⎨

⎩

cDα,ρ
a u(t) = f (t, u(t)), a < t < b,α > 0,

u(k)(a) = bk , k = 0, 1, . . . , n – 1,
(2)

where ρ ∈ (0, 1], n = –[–α], –∞ < a < b < +∞, bk ∈ R, and cDα,ρ
a denotes the Caputo pro-

portional fractional derivative of order α, f : [a, b] × R −→ R is a given continuous non-
linear function.

Further, we will also obtain a result for the following fractional differential equation in-
volving proportional fractional order with initial conditions:

⎧
⎨

⎩

RDα,ρ
a u(t) = f (t, u(t)), a < t < b,α > 0,

RDα–k,ρ
a u(a) = bk , k = 1, . . . , n,

(3)

where n = –[–α], RDα,ρ
a denotes the generalized proportional integral of Riemann–

Liouville type of order α.
The paper is organized as follows: Sect. 2 presents some definitions and results needed in

the rest of the article. Sect. 3 discusses new lemmas needed for the proofs of the existence
and uniqueness of the Cauchy problems proposed in Sect. 4.

2 Preliminaries
Definition 2.1 ([5]) Let α ≥ 0. The left fractional integral of Riemann–Liouville type of
the function � is defined by (I0

a�)(t) = �(t) and

(
Iα

a �
)
(t) =

1
�(α)

∫ t

a
(t – τ )α–1�(τ ) dτ for α > 0, (4)

where t ∈ [a, b].
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Definition 2.2 ([5]) Let α ≥ 0. The left fractional derivative of Caputo type of the function
� ∈ C(n)[a, b] is defined by cD0

a�(t) = �(t) and

cDα
a�(t) = Jn–α

a � (n)(t)

=
1

�(n – α)

∫ t

a
(t – τ )n–α–1� (n)(τ ) dτ for α > 0, (5)

where n – 1 < α ≤ n, n ∈N.

Definition 2.3 ([11]) Let ρ ∈ (0, 1] and α ≥ 0. The left generalized proportional integral
of Riemann–Liouville type of the function � ∈ L1[a, b] is defined by (J0,ρ

a �)(t) = �(t) and

(
Jα,ρ
a �

)
(t) =

1
ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ )

�(τ ) dτ for α > 0, (6)

where t ∈ [a, b].

Definition 2.4 ([11]) Let ρ ∈ (0, 1] and α ≥ 0. The left generalized proportional derivative
of Caputo type of the function � ∈ C(n)[a, b] is defined by cD0,ρ

a �(t) = �(t) and

cDα,ρ
a �(t) = Jn–α,ρ

a
(
Dn,ρ�

)
(t)

=
1

ρα�(n – α)

∫ t

a
(t – τ )n–α–1e

ρ–1
ρ (t–τ )(Dn,ρ�

)
(τ ) dτ for α > 0, (7)

where n – 1 < α ≤ n, n ∈N, and (D1,ρ�)(t) = (Dρ�)(t) = (1 – ρ)�(t) + ρ� ′(t), and

(
Dn,ρ�

)
(t) =

⎧
⎪⎨

⎪⎩

�(t), for n = 0,

(Dn,ρ�)(t) = (DρDρ · · ·Dρ

︸ ︷︷ ︸
n times

�)(t) for n ≥ 1. (8)

Definition 2.5 ([11]) Let ρ ∈ (0, 1] and α ≥ 0. The left generalized proportional derivative
of Riemann–Liouville type of the function � is defined by RD0,ρ

a �(t) = �(t) and

RDα,ρ
a �(t) = Dn,ρJn–α,ρ

a �(t)

=
Dn,ρ

ρn–α�(n – α)

∫ t

a
(t – τ )n–α–1e

ρ–1
ρ (t–τ )

�(τ ) dτ for α > 0, (9)

where n – 1 < α ≤ n, n ∈N.

Remark 2.6 Note that, for ρ = 1, Definitions 2.3 and 2.4 reduce to the usual definitions of
Riemann–Liouville fractional integral and Caputo fractional derivative, respectively.

Lemma 2.7 Let n ∈N and � ∈ C(n)[a, b]. Then,

(
Dn,ρ�

)
(t) = ρn� (n)(t) +

n–1∑

k=0

Ck
nρ

k(1 – ρ)n–k� (k)(t) for ρ ∈ (0, 1], (10)

where Ck
n =

(n
k
)

= n!
k!(n–k)! .
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Proof The proof follows by writing Dρ = (1 – ρ) + ρD and applying the binomial theo-
rem. �

Remark 2.8 Let ρ ∈ (0, 1] and α > 0 with n – 1 < α ≤ n, n ∈N. By using Lemma 2.7, we can
write the definition of the left generalized proportional derivative of Caputo type of the
function � ∈ C(n)[a, b] as follows:

cDα,ρ
a �(t) = ρnJn–α,1

a � (n)(t) +
n–1∑

k=0

Ck
nρ

k(1 – ρ)n–kJn–α,ρ
a � (k)(t). (11)

Proposition 2.9 ([11]) Let ρ ∈ (0, 1], β > 0, and α > 0 with n – 1 < α ≤ n and � ∈ L1[a, b],
we have the following properties:

(
Jα,ρ
a (x – a)β–1e

ρ–1
ρ x)(t) =

�(β)
ρα�(α + β)

(t – a)α+β–1e
ρ–1
ρ t ; (12)

(RDα,ρ
a (x – a)β–1e

ρ–1
ρ x)(t) =

ρα�(β)
�(β – α)

(t – a)β–α–1e
ρ–1
ρ t ; (13)

(
Jα,ρ
a Jβ ,ρ

a �
)
(t) =

(
Jβ ,ρ
a Jα,ρ

a �
)
(t) =

(
Jα+β ,ρ
a �

)
(t); (14)

(cDα,ρ
a Jα,ρ

a �
)
(t) = �(t); (15)

(RDα,ρ
a Jα,ρ

a �
)
(t) = �(t); (16)

(
Jα,ρ
a

cDα,ρ
a �

)
(t) = �(t) –

n–1∑

k=0

ck(t – a)ke
ρ–1
ρ (t–a), � ∈ C(n)[a, b], (17)

where ck = (Dk,ρ�)(a)
ρk k! ;

(
Jα,ρ
a

RDα,ρ
a �

)
(t) = �(t) –

n∑

k=1

qk(t – a)α–ke
ρ–1
ρ (t–a), (18)

where qk = (Jk–α,ρ
a �)(a)

ρα–k�(α–k+1) .

Definition 2.10 ([28, 29]) Let α ∈C (�(α) > 0), we have the following definitions:
The upper incomplete gamma function is defined by

�(α, t) =
∫ +∞

t
yα–1e–y dy; (19)

The lower incomplete gamma function is defined by

γ (α, t) =
∫ t

0
yα–1e–y dy; (20)

The upper regularized incomplete gamma function is defined by

Q(α, t) =
�(α, t)
�(α)

; (21)
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The lower regularized incomplete gamma function is defined by

P(α, t) = 1 – Q(α, t) =
γ (α, t)
�(α)

. (22)

The functions P and Q are also called “Incomplete gamma function ratios”.

Lemma 2.11 ([28]) Let α ≥ 0. For all t ≥ 0, we have the following properties:

�(α + 1, t) = α�(α, t) + tαe–t , (23)

γ (α, t) = �(α) – �(α, t), (24)

γ (α + 1, t) = αγ (α, t) – tαe–t , (25)
∫ t2

t1

yα–1e–y dy = γ (α, t2) – γ (α, t1), t2 ≥ t1 > 0. (26)

Lemma 2.12 Let α,η ∈ R
+. It is clear that P(α,η(t – a)) is a nondecreasing function with

respect to t ∈ [a, b]. Moreover,

P
(
α,η(t – a)

) ∈ [0, 1] or all t ≥ a, (27)

max
t∈[a,b]

P
(
α,η(t – a)

)
= P

(
α,η(t – a)

)|t=b = P
(
α,η(b – a)

)
, (28)

min
t∈[a,b]

P
(
α,η(t – a)

)
= P

(
α,η(t – a)

)|t=a = 0. (29)

3 Incomplete gamma functions vs fractional proportional integrals
In this section, we present new essential lemmas, which allow us to proceed in proving our
main results about the existence and uniqueness of solutions for GPF differential equa-
tions.

Lemma 3.1 Let ρ ∈ (0, 1], α > 0, and f (t) = 1 for all t ∈ [a, b]. Then

(
Jα,ρ
a 1

)
(t) =

⎧
⎨

⎩

P(α, 1–ρ
ρ (t–a))

(1–ρ)α , for ρ ∈ (0, 1),

(Iα
a 1)(t) = (t–a)α

�(α+1) , for ρ = 1,
(30)

where the function P is defined by (22). Moreover,

lim
ρ→1

P(α, 1–ρ

ρ
(t – a))

(1 – ρ)α
=

(
Iα

a 1
)
(t) =

(t – a)α

�(α + 1)
(31)

and

max
t∈[a,b]

(

lim
ρ→1

P(α, 1–ρ

ρ
(t – a))

(1 – ρ)α

)

=
(b – a)α

�(α + 1)
. (32)

Proof For ρ ∈ (0, 1), from Definition 2.3, we have

(
Jα,ρ
a 1

)
(t) =

1
ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ ) dτ . (33)
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Let y = 1–ρ

ρ
(t – τ ), then dy = – 1–ρ

ρ
dτ , or dτ = – ρ

1–ρ
dy. Hence, we have

(
Jα,ρ
a 1

)
(t) =

–1
ρα�(α)

∫ 0

1–ρ
ρ (t–a)

(
ρ

1 – ρ
y
)α–1

e–y ρ

1 – ρ
dy

=
1

(1 – ρ)α�(α)

∫ 1–ρ
ρ (t–a)

0
yα–1e–y dy

=
γ (α, 1–ρ

ρ
(t – a))

(1 – ρ)α�(α)

=
P(α, 1–ρ

ρ
(t – a))

(1 – ρ)α
.

Concerning the limit formula (31), we have

lim
ρ→1

(P(α, 1–ρ

ρ
(t – a))

(1 – ρ)α

)

= lim
ρ→1

1
ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ ) dτ

=
1

�(α)

∫ t

a
(t – τ )α–1 dτ

=
(t – a)α

�(α + 1)
.

Finally, formula (32) is immediate, and hence the proof is completed. �

Lemma 3.2 Let X = C([a, b],R) be the Banach space of all continuous functions from [a, b]
to R endowed with the norm ‖u‖ = supt∈[a,b] |u(t)|, and let ρ ∈ (0, 1], α > 0, and f ∈ X. Then

∣
∣
(
Jα,ρ
a f

)
(t)

∣
∣ ≤

⎧
⎨

⎩

P(α, 1–ρ
ρ (t–a))‖f ‖
(1–ρ)α , for ρ ∈ (0, 1),

(t–a)α‖f ‖
�(α+1) , for ρ = 1,

(34)

for all t ∈ [a, b].

Proof The proof follows just by following the same steps as in Lemma 3.1. �

Lemma 3.3 Let ρ ∈ (0, 1), t1, t2 ∈ [a, b] (t1 ≤ t2), and α > 0. Then

∫ t2

t1

(b–τ )α–1e
ρ–1
ρ (b–τ ) dτ =

ρα�(α)
(1 – ρ)α

[

P
(

α,
1 – ρ

ρ
(b– t1)

)

–P
(

α,
1 – ρ

ρ
(b– t2)

)]

, (35)

where the function P is defined by (22).

Proof Set y = 1–ρ

ρ
(b – τ ). Then dy = – 1–ρ

ρ
dτ , or dτ = – ρ

1–ρ
dy, from which it follows that

∫ t2

t1

(b – τ )α–1e
ρ–1
ρ (b–τ ) dτ = –

∫ 1–ρ
ρ (b–t2)

1–ρ
ρ (b–t1)

(
ρ

1 – ρ
y
)α–1

e–y ρ

1 – ρ
dy

=
ρα

(1 – ρ)α

∫ 1–ρ
ρ (b–t1)

1–ρ
ρ (b–t2)

yα–1e–y dy.
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Using property (26) in Lemma 2.11, we get

∫ t2

t1

(b – τ )α–1e
ρ–1
ρ (b–τ ) dτ =

ρα

(1 – ρ)α

[

γ

(

α,
1 – ρ

ρ
(b – t1)

)

– γ

(

α,
1 – ρ

ρ
(b – t2)

)]

=
ρα�(α)
(1 – ρ)α

[

P
(

α,
1 – ρ

ρ
(b – t1)

)

– P
(

α,
1 – ρ

ρ
(b – t2)

)]

.

The proof is completed. �

Lemma 3.4 Let ρ ∈ (0, 1], α > 0, and a ≤ τ ≤ t1 < t2 ≤ b. If either 0 < α ≤ 1 or α > 1, then

lim
t2→t1

∫ t1

a

∣
∣(t2 – τ )α–1e

ρ–1
ρ (t2–τ ) – (t1 – τ )α–1e

ρ–1
ρ (t1–τ )∣∣dτ = 0. (36)

Proof To calculate the above limit, the sign to the term inside the absolute value must be
studied.

For ρ = 1, we look at the three cases α = 1, α < 1, and α > 1 as follows:

∫ t1

a

∣
∣(t2 – τ )α–1e

ρ–1
ρ (t2–τ ) – (t1 – τ )α–1e

ρ–1
ρ (t1–τ )∣∣

ρ=1 dτ

=
∫ t1

a

∣
∣(t2 – τ )α–1 – (t1 – τ )α–1∣∣dτ

=

⎧
⎪⎪⎨

⎪⎪⎩

0, for α = 1,
1
α

((t2 – t1)α – (t2 – a)α + (t1 – a)α), for α < 1,
1
α

(–(t2 – t1)α + (t2 – a)α – (t1 – a)α), for α > 1,

hence the integral has the value zero as t2 → t1.
Next, for ρ ∈ (0, 1) and 0 < α ≤ 1.
Because α – 1 ≤ 0, ρ–1

ρ
(t2 – τ ) ≤ 0, and ρ–1

ρ
(t1 – τ ) ≤ 0, so we conclude that

(t2 – τ )α–1e
ρ–1
ρ (t2–τ ) – (t1 – τ )α–1e

ρ–1
ρ (t1–τ ) ≤ 0.

Then we get

∫ t1

a

∣
∣(t2 – τ )α–1e

ρ–1
ρ (t2–τ ) – (t1 – τ )α–1e

ρ–1
ρ (t1–τ )∣∣dτ

=
∫ t1

a
–(t2 – τ )α–1e

ρ–1
ρ (t2–τ ) dτ +

∫ t1

a
(t1 – τ )α–1e

ρ–1
ρ (t1–τ ) dτ .

From Lemma 3.3, we obtain

∫ t1

a

∣
∣(t2 – τ )α–1e

ρ–1
ρ (t2–τ ) – (t1 – τ )α–1e

ρ–1
ρ (t1–τ )∣∣dτ

=
ρα�(α)
(1 – ρ)α

{

–P
(

α,
1 – ρ

ρ
(t2 – a)

)

+ P
(

α,
1 – ρ

ρ
(t2 – t1)

)
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+ P
(

α,
1 – ρ

ρ
(t1 – a)

)

– 0
}

→ 0 as t2 → t1.

Now, for ρ ∈ (0, 1) and α > 1. �

Note that (t –τ )α–1e
ρ–1
ρ (t–τ ) is a continuous function on [a, b]× [a, b], then it is uniformly

continuous. So, for any ε > 0, there exists a constant δ = δ(ε) > 0 such that

∣
∣(t2 – τ2)α–1e

ρ–1
ρ (t2–τ2) – (t1 – τ1)α–1e

ρ–1
ρ (t1–τ1)∣∣ < ε

for all t1, t2, τ1, τ2 ∈ [a, b] and |t2 – t1| < δ, |τ2 – τ1| < δ.
Then

∫ t1

a

∣
∣(t2 – τ )α–1e

ρ–1
ρ (t2–τ ) – (t1 – τ )α–1e

ρ–1
ρ (t1–τ )∣∣dτ ≤ ε

∫ t1

a
dτ

= (t1 – a)ε

≤ (b – a)ε.

Hence, we conclude that

∫ t1

a

∣
∣(t2 – τ )α–1e

ρ–1
ρ (t2–τ ) – (t1 – τ )α–1e

ρ–1
ρ (t1–τ )∣∣dτ → 0 uniformly as t2 → t1.

Lemma 3.5 Let ρ ∈ (0, 1], β ≥ 0, and hβ (t) = e
ρ–1
ρ (t–a)(t – a)β , t ∈ [a, b]. Then

max
t∈[a,b]

hβ (t) = hβ =

⎧
⎨

⎩

( ρβ

(1–ρ)e )β , if a + ρβ

1–ρ
∈ [a, b],

e
ρ–1
ρ (b–a)(b – a)β , if a + ρβ

1–ρ
/∈ [a, b] or ρ = 1.

(37)

Proof It is clear that hβ (t) is a continuous and nonnegative function for all t ∈ [a, b], and
hβ (a) = 0 and hβ (b) = e

ρ–1
ρ (b–a)(b – a)β . Now, differentiating the function hβ , we get

h′
β (t) =

(

β(t – a)β–1 –
1 – ρ

ρ
(t – a)β

)

e
ρ–1
ρ (t–a).

So, the equation h′
β (t) = 0 has a unique solution at the point

t∗ = a +
ρβ

1 – ρ
, ρ �= 1,

where hβ (t∗) = ( ρβ

(1–ρ)e )β , we obtain the given result in the above lemma. The proof is com-
pleted. �

4 Some Cauchy problems in the frame of fractional proportional derivatives
This section is devoted to applying the above proven essential lemmas to study the initial
value problem (2), and then we deduce the results of problem (3). The proof of the next
result follows by Theorem 5.3 in [11] or (17) in Proposition 2.9 and Lemma 2.7.
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Lemma 4.1 For � ∈ C([a, b],R), the solution of the following linear problem

⎧
⎨

⎩

cDα,ρ
a u(t) = �(t), a < t < b,α > 0,

u(k)(a) = bk , k = 0, 1, . . . , n – 1,
(38)

is given by the integral equation

u(t) =
n–1∑

k=0

ϕk

ρkk!
(t – a)ke

ρ–1
ρ (t–a) +

1
ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ )

�(τ ) dτ , (39)

where ϕk =
∑k

j=0
(k

j
)
ρ j(1 – ρ)k–jbk for ρ ∈ (0, 1) and ϕk = bk for ρ = 1.

Let X = C([a, b],R) be a Banach space of all continuous functions from [a, b] to R en-
dowed with the norm ‖u‖ = supt∈[a,b] |u(t)|.

Associated with problem (2), we define a fixed point operator T : X → X by

Tu(t) =
n–1∑

k=0

ϕk

ρkk!
(t – a)ke

ρ–1
ρ (t–a) +

1
ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ )f

(
τ , u(τ )

)
dτ . (40)

Consider the following hypothesis:
(H1) f : [a, b] ×R→R is a continuous function and there exists k > 0 such that |f (t, A) –

f (t, B)| ≤ L|A – B| for all t ∈ [a, b], A, B ∈ R, and |f (t, 0)| ≤ 
(t), with 
 being a
continuous and nonnegative function where 
 = supt∈[a,b] 
(t).

Theorem 4.2 Let ρ ∈ (0, 1), and assume that (H1) holds. If either 0 < α ≤ 1 or α > 1, then
problem (2) has a unique solution on [a, b] if

LP(α, 1–ρ

ρ
(b – a))

(1 – ρ)α
< 1, (41)

where P is defined by means of (22).

Proof Let us choose R > 0 satisfying

R ≥
∑n–1

k=0
|ϕk |hk
ρk k! + 


(1–ρ)α P(α, 1–ρ

ρ
(b – a))

1 – L
(1–ρ)α P(α, 1–ρ

ρ
(b – a))

, (42)

where hk is defined in Lemma 3.5 with k ∈ {0, 1, . . . , n – 1}, and consider MR = {u ∈ X :
‖u‖ ≤ R}. We first show that TMR ⊂ MR.

For u ∈ MR and t ∈ [a, b], we have

∣
∣Tu(t)

∣
∣ ≤

n–1∑

k=0

|ϕk|
ρkk!

(t – a)ke
ρ–1
ρ (t–a) +

1
ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ )

× ∣
∣f

(
τ , u(τ )

)
– f (τ , 0) + f (τ , 0)

∣
∣dτ

≤
n–1∑

k=0

|ϕk|
ρkk!

(t – a)ke
ρ–1
ρ (t–a) +

LR + 


ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ ) dτ .
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Using Lemma 3.5 and Lemma 3.2, we obtain

∣
∣Tu(t)

∣
∣ ≤

n–1∑

k=0

|ϕk|hk

ρkk!
+

LR + 


ρα�(α)
P
(

α,
1 – ρ

ρ
(b – a)

)

≤ R,

which implies that ‖Tu‖ ≤ R for any u ∈ MR. We get TMR ⊆ MR.
Next we prove that the operator T is a contraction mapping. For u, v ∈ X, for all t ∈ [a, b],

we have

∣
∣Tu(t) – Tv(t)

∣
∣ ≤ 1

ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ )∣∣f

(
τ , u(τ )

)
– f

(
τ , v(τ )

)∣
∣dτ

≤ L‖u – v‖
ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ ) dτ

≤ LP(α, 1–ρ

ρ
(b – a))

(1 – ρ)α
‖u – v‖.

Taking the supremum over all t ∈ [a, b] yields

‖Tu – Tv‖ ≤ LP(α, 1–ρ

ρ
(b – a))

(1 – ρ)α
‖u – v‖.

By condition (41) the operator T is a contraction. Hence, by the Banach fixed point theo-
rem, problem (2) has a unique solution on [a, b]. The proof is completed. �

Now, based on Leray–Schauder alternative fixed point theorem [30], we present the fol-
lowing result about the existence of solutions for the investigated problem (2).

Consider the following hypothesis:
(H2) f : [a, b] ×R → R is a continuous functions, and there exist real positive constants

ς0, ς1 such that

∣
∣f (t, u)

∣
∣ ≤ ς0 + ς1|u|

for all (t, u) ∈ [a, b] ×R.

Theorem 4.3 Let ρ ∈ (0, 1), and assume that (H2) holds. If

ς1P(α, 1–ρ

ρ
(b – a))

(1 – ρ)α
< 1, (43)

then the initial value problem (2) has at least one solution on [a, b].

Proof We first show that the operator T is completely continuous.
The continuity of f implies the continuity of the operator T . Let ϒ be any nonempty

bounded subset of X. Then there exists ξ > 0 such that, for any u ∈ ϒ , ‖u‖ ≤ ξ . Notice
that from condition (H2), for all u ∈ ϒ , we have

∣
∣f

(
t, u(t)

)∣
∣ ≤ ς0 + ς1ξ . (44)
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Next we prove that T(ϒ) is uniformly bounded. Let u ∈ ϒ . Then, for any t ∈ [a, b], we have

∣
∣Tu(t)

∣
∣

≤
n–1∑

k=0

|ϕk|
ρkk!

(t – a)ke
ρ–1
ρ (t–a) +

1
ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ )∣∣f

(
τ , u(τ )

)∣
∣dτ

≤
n–1∑

k=0

|ϕk|
ρkk!

(t – a)ke
ρ–1
ρ (t–a) +

ς0 + ς1ξ

ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ ) dτ

≤
n–1∑

k=0

|ϕk|hk

ρkk!
+

ς0 + ς1ξ

(1 – ρ)α
P
(

α,
1 – ρ

ρ
(b – a)

)

< +∞.

Consequently, ‖u‖ < +∞ for any u ∈ ϒ . Therefore, T(ϒ) is uniformly bounded.
Now we show that T is equicontinuous on ϒ . Let u ∈ ϒ . For any t1, t2 ∈ [a, b], where

t2 > t1, we have

∣
∣Tu(t2) – Tu(t1)

∣
∣

=

∣
∣
∣
∣
∣

n–1∑

k=0

ϕk

ρkk!
(
(t2 – a)ke

ρ–1
ρ (t2–a) – (t1 – a)ke

ρ–1
ρ (t1–a))

+
1

ρα�(α)

∫ t2

a
(t2 – τ )α–1e

ρ–1
ρ (t2–τ )∣∣f

(
τ , u(τ )

)∣
∣dτ

–
1

ρα�(α)

∫ t1

a
(t1 – τ )α–1e

ρ–1
ρ (t1–τ )∣∣f

(
τ , u(τ )

)∣
∣dτ

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

n–1∑

k=0

ϕk

ρkk!
(
(t2 – a)ke

ρ–1
ρ (t2–a) – (t1 – a)ke

ρ–1
ρ (t1–a))

+
1

ρα�(α)

∫ t1

a

(
(t2 – τ )α–1e

ρ–1
ρ (t2–τ ) – (t1 – τ )α–1e

ρ–1
ρ (t1–τ ))∣∣f

(
τ , u(τ )

)∣
∣dτ

+
1

ρα�(α)

∫ t1

t2

(
(t2 – τ )α–1e

ρ–1
ρ (t2–τ ))∣∣f

(
τ , u(τ )

)∣
∣dτ

∣
∣
∣
∣
∣
.

From Lemma 3.3, we have

∣
∣Tu(t2) – Tu(t1)

∣
∣

≤
n–1∑

k=0

|ϕk|
ρkk!

∣
∣(t2 – a)ke

ρ–1
ρ (t2–a) – (t1 – a)ke

ρ–1
ρ (t1–a)∣∣

+
ς0 + ς1ξ

ρα�(α)

∫ t1

a

∣
∣(t2 – τ )α–1e

ρ–1
ρ (t2–τ ) – (t1 – τ )α–1e

ρ–1
ρ (t1–τ )∣∣dτ

+
ς0 + ς1ξ

(1 – ρ)α

[

0 – P
(

α,
1 – ρ

ρ
(t2 – t1)

)]

.
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Because hk(t) = (t – a)ke
ρ–1
ρ (t–a), k = 0, . . . , n – 1, are continuous functions, then |hk(t2) –

hk(t1)| → 0 as t2 → t1.
Then, by using Lemma 3.4, we obtain

lim
t2→t1

∣
∣Tu(t2) – Tu(t1)

∣
∣ = 0.

Thus, the operator T is equicontinuous. Hence, by Arzela–Ascoli theorem, we deduce
that the operator T is completely continuous.

Finally, we will verify that the set M(T) = {u ∈ X : u = mTu for some 0 < m < 1} is
bounded.

For all u ∈ M(T), and for any t ∈ [a, b], we have

∣
∣u(t)

∣
∣ = m

∣
∣Tu(t)

∣
∣

≤
n–1∑

k=0

|ϕk|
ρkk!

(t – a)ke
ρ–1
ρ (t–a) +

1
ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ )∣∣f

(
τ , u(τ )

)∣
∣dτ

≤
n–1∑

k=0

|ϕk|
ρkk!

(t – a)ke
ρ–1
ρ (t–a) +

ς0 + ς1‖u‖
ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ ) dτ

≤
n–1∑

k=0

|ϕk|hk

ρkk!
+

ς0

(1 – ρ)α
P
(

α,
1 – ρ

ρ
(b – a)

)

+
ς1‖u‖

(1 – ρ)α
P
(

α,
1 – ρ

ρ
(b – a)

)

,

which yields

‖u‖ ≤
∑n–1

k=0
|ϕ̂k |hk
ρk k! + ς0

(1–ρ)α P(α, 1–ρ

ρ
(b – a))

1 – ς1
(1–ρ)α P(α, 1–ρ

ρ
(b – a))

,

which proves that M is bounded. Thus, by Leray–Schauder alternative theorem, the op-
erator T has at least one fixed point. Hence, the initial value problem (2) has at least one
solution on [a, b]. The proof is completed. �

Remark 4.4 From Lemma (3.1), in the case ρ = 1, we can replace the formula
P(α, 1–ρ

ρ (b–a))
(1–ρ)α

by the formula (b–a)α
�(α+1) So, then we can conclude the usual results for the existence and

uniqueness of the solution of the Cauchy problem with usual Caputo fractional derivative.

Because P(α, x) ∈ [0, 1] for all α, x ∈R
+, we obtain the following results.

Corollary 4.5 Let ρ ∈ (0, 1), and assume that (H1) holds. Then problem (2) has a unique
solution on [a, b] if

L
(1 – ρ)α

< 1. (45)

Corollary 4.6 Let ρ ∈ (0, 1), and assume that (H2) holds. If

ς1

(1 – ρ)α
< 1, (46)

then the initial value problem (2) has at least one solution on [a, b].
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Now, concerning the study of the initial value problem of Riemann–Liouville type (3),
we present the following results.

Lemma 4.7 For � ∈ C([a, b],R), the solution of the following linear problem

⎧
⎨

⎩

RDα,ρ
a u(t) = �(t), a < t < b,α > 0,

RDα–k
a u(a) = bk , k = 1, . . . , n,

(47)

is given by

u(t) =
n∑

k=1

bk

ρα–k�(α – k + 1)
(t – a)α–ke

ρ–1
ρ (t–a)

+
1

ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ )

�(τ ) dτ . (48)

Proof Applying the operator Jα,ρ
a+ on equation (47), with using (18), we get

u(t) =
n∑

k=1

qk(t – a)α–ke
ρ–1
ρ (t–a) + Jα,ρ

a �(t), (49)

where qk ∈ R, k ∈ {1, 2, . . . , n}.
Now, applying the operator RDα–k,ρ

a on (49), we get

RDα–k,ρ
a u(t) =

n∑

i=1

qj
RDα–k,ρ

a
(
(t – a)α–ie

ρ–1
ρ (t–a)) + RDα–k,ρ

a Jα,ρ
a �(t)

=
n∑

i=1

qie
1–ρ
ρ aRDα–k,ρ

a
(
(t – a)α–ie

ρ–1
ρ t) + Jk,ρ

a �(t)

=
n∑

i=1

qi
ρα–k�(α – i + 1)

�(k – i + 1)
(t – a)k–ie

ρ–1
ρ (t–a) + Jk,ρ

a �(t)

=
n∑

i=1
i�=k

qi
ρα–k�(α – i + 1)

�(k – i + 1)
(t – a)k–ie

ρ–1
ρ (t–a)

+ qkρ
α–k�(α – k + 1)e

ρ–1
ρ (t–a) + Jk,ρ

a �(t).

So, for t = a, we obtain

RDα–k,ρ
a u(a) = qkρ

α–k�(α – k + 1). (50)

For any k ∈ {1, 2, . . . , n}, using the initial condition (RDα–k,ρ
a u)(a) = bk , we get qk =

bk
ρα–k�(α–k+1) .

Substituting the values qk (k ∈ {1, 2, . . . , n}) in (49), we obtain the integral equation (47).
The proof is completed. �
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Associated with problem (3), we define a fixed point operator T̃ : X → X by

T̃u(t) =
n∑

k=1

bk(t – a)α–k

ρα–k�(α – k + 1)
e

ρ–1
ρ (t–a)

+
1

ρα�(α)

∫ t

a
(t – τ )α–1e

ρ–1
ρ (t–τ )f

(
τ , u(τ )

)
dτ . (51)

Remark 4.8 It is noticeable that the two operators T and T̃ are similar in form. So, in the
same way as the above study of the proportional fractional problem of Caputo type (3),
the reader can easily check that the above results we came up with (Theorem 4.2, Theo-
rem 4.3, Corollary 4.5, and Corollary 4.6) can be also applied with the same conditions on
the Riemann–Liouville proportional fractional problem (3).

Example 4.9 Consider the following initial values problem with GPF of Caputo type:

⎧
⎨

⎩

cD3/2,1/2
0 u(t) = (t – 1)2 + 1

2 sin u(t), 0 < t ≤ 1,

u(0) = A1, u′(0) = A2, A1, A2 ∈ R.
(52)

Here, α = 3
2 , ρ = 1

2 , a = 0, b = 1 and f (t, u) = (t – 1)2 + sin u. For all (t, u) ∈ [0, 1] × R, we
have

∣
∣∂uf (t, u)

∣
∣ =

1
2
| cos u|

≤ 1
2

:= L.

Using Matlab program with the given values, we obtain

LP(α, 1–ρ

ρ
(b – a))

(1 – ρ)α
= 0.604708 < 1.

Then inequality (41) is satisfied. Hence, by Theorem 4.2, we conclude that the GPF prob-
lem (52) has a unique solution on the interval [0, 1].

Example 4.10 Consider the following initial values problem with GPF of Riemann–
Liouville type:

⎧
⎨

⎩

RD3/2,1/2
0 u(t) = 1 – t + 3

4 ln(1 + |u(t)|), 0 < t ≤ 1,

u(0) = A1, u′(0) = A2, A1, A2 ∈ R.
(53)

Here, α = 3
2 , ρ = 1

2 , a = 0, b = 1 and f (t, u) = 1 – t + 3
4 ln(1 + |u|).

For all (t, u) ∈ [0, 1] ×R, we have

∣
∣f (t, u)

∣
∣ ≤ 7

4
+

3
4
|u|,

choose ς1 = 3/4.
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Using Matlab program with the given values, we obtain

ς1P(α, 1–ρ

ρ
(b – a))

(1 – ρ)α
= 0.907062 < 1.

Then inequality (43) is satisfied. Hence, by Remark 4.8 and Theorem 4.3, we conclude that
the GPF problem (53) has at least one solution on [0, 1].
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