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Abstract
A human being standing upright with his feet as the pivot is the most popular
example of the stabilized inverted pendulum. Achieving stability of the inverted
pendulum has become common challenge for engineers. In this paper, we consider
an initial value discrete fractional Duffing equation with forcing term. We establish the
existence, Hyers–Ulam stability, and Hyers–Ulam Mittag-Leffler stability of solutions
for the equation. We consider the inverted pendulummodeled by Duffing equation
as an example. The values are tabulated and simulated to show the consistency with
theoretical findings.
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1 Introduction
The understanding of the real-world problems by replicating into mathematical models
proves to be an effective tool. Analyzing the developed model thus provides a wide insight
into the considered phenomena. In [1], Rayleigh introduced a nonlinear damping function
in a second-order oscillator equation. Extensive study of this equation using vacuum-tube
circuits for analogue simulation was carried out by Van der Pol [2]. Besides, a model of
heart beat was constructed using an electrical circuit with coupled relaxation oscillators
and simulations of normal heart beat and of certain disorders were convincingly obtained
by Van der Pol and Van der Mark [3]. Certain damped and driven oscillators are mod-
eled by the Duffing equation, a second-order differential equation with cubic nonlinearity
named after Georg Duffing [4]. The motion of a damped oscillator described by the equa-
tion has more complex potential than simple harmonic motion. This equation is used to
illustrate the motion of a mass attached to a nonlinear spring and a linear damper. The
Duffing equation is given by

ẍ + θ ẋ + δx + ηx3 = γ sin(ωt), (1.1)
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Figure 1 Duffing oscillator circuit

where damping is controlled by θ (undamped if θ = 0), δx +ηx3 denotes the restoring force
of the spring, and the amplitude and angular frequency of the driving force are given by γ

and ω. The equivalent circuit of the Duffing oscillator with variation of current and voltage
across the circuit plotted against time is displayed in Fig. 1. The Duffing equation is used
in modeling hard spring oscillators (iron core inductor), soft spring oscillators (nonlinear
LRC circuit), negative stiffener, and nonharmonic oscillator [5]. The inverted pendulum
equation, which is framed from the Duffing equation, is used in rocket propeller, segway,
and robotics.

Fractional calculus, which is regarded as 21st century calculus, has its origin during
the same period as that of the ordinary calculus. Continuous fractional-order equations
prove to be significant in modeling nuclear reactor dynamics, chaotic dynamical systems,
chemical kinetics, population dynamics, and circuit theory[6]. Qualitative analysis of the
solutions of fractional-order equations representing real-life phenomena plays a predom-
inant role in understanding the nature and behavior of the models [7, 8]. Intensive interest
shown by researchers during this decade toward discrete fractional calculus demands the
need for the development of the methods equivalent to the fractional differential equa-
tions. This opinion is very much strengthened by the increase in number of researchers
involved in the development of the methodology for discrete fractional calculus [9–12].

The works by Anastassiou [13], Atici and Eloe [14–17], Goodrich [18], and Miller and
Ross [19] have laid the foundations for the field of discrete fractional calculus. Time-scale
calculus unifies the theory of difference equations with that of differential equations, and
qualitative properties such as oscillation and nonoscillation of the dynamic equations on
discrete time scales were studied in [20–22]. Chen [23, 24] was the first author who studied
the stability results of the nonlinear fractional difference equations. The response given
by Hyers to the question put forth by Ulam during his talk [25, 26] was marked as the
origin for the study on stability of functional equations. The Ulam stability of integer-
and arbitrary-order differential equations were established in [27–30]. Recently, boundary
value impulsive integrodifferential equations and coupled systems of Hilfer–Hadamard-
type fractional equations are considered for discussion of stability in the Hyers–Ulam
sense [31, 32]. Ulam stability analysis of nabla fractional equations was carried out in [33–
35], and in [36], the Ulam–Hyers stability of discrete fractional boundary value problems
was studied. Here we consider the discrete-time forced fractional-order Duffing equation
without damping.
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Denote Q := [j + 2, j + T] ∩ Nj+2, where T ∈ N and Nj = {j, j + 1, . . .}, j ∈ R. Our main
equation has the form

⎧
⎪⎪⎨

⎪⎪⎩

�υ∗ [ψ(n)] + δψ(n + υ) + η(ψ(n + υ))3 + p(n + υ) = 0,

n ∈ [0,T] ∩N2–υ , 1 < υ ≤ 2,

ψ(0) = A, �(ψ(0)) = B,

(1.2)

where �υ∗ is the Caputo like difference operator, δ and η control the linear stiffness and
nonlinearity in restoring force, p : Q →R is the driving force with A, B ∈R+. The restoring
force represented by δψ + η(ψ)3 is vital in determining the nature of the spring to be used
in the model. The positive real values of δ and η describe the hardening spring, and η < 0
(δ > 0) denotes soft spring.

The choice of the operator plays a crucial role in developing models arising in physics.
Here the construction of the physical model using the Caputo difference operator is
preferred over the Riemann–Liouville operator to overcome some limitations of the
Riemann–Liouville operator in modeling real-life problems. One of the limitations con-
cern the initial conditions defined for the physical problems. Initial conditions of a Caputo-
type fractional difference operator are traditional integer-order (�k , k ∈ N0) conditions,
whereas for a Riemann–Liouville type operator, they are defined in terms of a fractional
sum or difference terms (�α ,α ∈ R), which fail to provide physical interpretation for the
model.

The plan of the paper is as follows. Section 2 imparts some necessary definitions, lem-
mas, and an existence result. Section 3 presents the Hyers–Ulam stability followed with
Hyers–Ulam Mittag-Leffler stability in Sect. 4. Appropriate examples accompanied with
simulation are provided in Sect. 5.

2 Mathematical background
In this section, we provide some fundamental definitions and lemmas and state an exis-
tence result used throughout this work.

Definition 2.1 ([16]) The Fractional sum of order ν > 0 for a function p is given by

�–νp(n) =
1

Γ (ν)

n–ν∑

r=j

(n – r – 1)(ν–1)p(r), (2.1)

where p is defined for r = j mod (1), and �–νψ is defined for n = (j + ν) mod (1) and
n(ν) = Γ (n+1)

Γ (n–ν+1) .

Definition 2.2 ([16]) Let γ > 0 and b – 1 < γ < b, where b ∈ N0, b = �γ �, and �·� denotes
the ceiling of a number. Set ν = b – γ . The Caputo fractional difference of order γ is

�γ
∗ p(n) = �–ν

(
�bp(n)

)

=
1

Γ (ν)

n–ν∑

r=j

(n – r – 1)(ν–1)(�bp
)
(r), ∀n ∈Nj+ν .
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Lemma 2.3 ([13]) For noninteger γ > 0, b = �γ �, ν = b – γ , p defined on Nj with j ∈ Z+, we
have

p(n) =
b–1∑

m=0

(n – j)(m)

m!
�m[

p(j)
]

+
1

Γ (γ )

n–γ∑

r=j+ν

(n – r – 1)(γ –1)�γ
∗
[
p(r)

]
.

In particular, if 1 < γ < 2 and j = 0, then this relation becomes

p(n) = p(0) + n�
(
p(0)

)
+

1
Γ (γ )

n–γ∑

r=2–γ

(n – r – 1)(γ –1)�γ
∗
[
p(r)

]
, (2.2)

where p is defined on N2.

Lemma 2.4 A function ψ : Q→ R is a solution of (1.2) if and only if ψ is a solution of

ψ(n) = A + nB +
1

Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(–p(r + υ) – δψ(r + υ) – η
(
ψ(r + υ)

)3), (2.3)

where n ∈Q.

Proof Let ψ be a solution of (1.2). Then from (2.2) we have

ψ(n) = ψ(0) + n�
(
ψ(0)

)
+

1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)�υ
∗
[
ψ(r)

]

or

ψ(n) = A + nB +
1

Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(–p(r + υ) – δψ(r + υ) – η
(
ψ(r + υ)

)3),

which satisfies (2.3). On the other hand, if ψ is a solution of (2.3), then by comparison of
(2.2) and (2.3) we get

n–υ∑

r=2–υ

(n–r –1)(υ–1)�υ
∗
[
ψ(r)

]
=

n–υ∑

r=2–υ

(n–r –1)(υ–1)(–p(r +υ)–δψ(r +υ)–η
(
ψ(r +υ)

)3),

which takes the form

n–υ∑

r=2–υ

(n – r – 1)(υ–1)[�υ
∗
[
ψ(r)

]
–

(
–p(r + υ) – δψ(r + υ) – η

(
ψ(r + υ)

)3)] = 0,

n ∈Q. (2.4)

Letting n = 1, 2, 3, . . . yields

�υ
∗
[
ψ(n)

]
+ δψ(n + υ) + η

(
ψ(n + υ)

)3 + p(n + υ) = 0, n ∈Q. (2.5)

It is evident that ψ satisfies (1.2). The proof is complete. �
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Lemma 2.5 We have

n–υ∑

r=2–υ

(n – r – 1)(υ–1) =
(n + υ – 2)(υ)

υ
. (2.6)

Proof For a, d ∈R with d > a, d > –1, and a > –1, we have

Γ (d + 1)
Γ (d – a + 1)

=
1

a + 1

[
Γ (d + 2)

Γ (d – a + 1)
–

Γ (d + 1)
Γ (d – a)

]

. (2.7)

Then

n–υ∑

r=2–υ

(n – r – 1)(υ–1) =
n–υ∑

r=2–υ

Γ (n – r)
Γ (n – r – υ + 1)

=
n–υ–1∑

r=2–υ

Γ (n – r)
Γ (n – r – υ + 1)

+ Γ (υ)

=
n–υ–1∑

r=2–υ

1
υ

[
Γ (n – r + 1)

Γ (n – r – υ + 1)
–

Γ (n – r)
Γ (n – r – υ)

]

+ Γ (υ)

=
1
υ

[
Γ (n + υ – 1)

Γ (n – 1)
– Γ (υ + 1)

]

+ Γ (υ)

=
(n + υ – 2)(υ)

υ
. �

To ensure the existence of solution, we consider

Fψ(n) = A + nB +
1

Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(–p(r + υ) – δψ(r + υ) – η
(
ψ(r + υ)

)3).

To prove the existence, we apply the Krasnoselskii fixed point theorem. Let W be a
nonempty, closed, bounded, and convex subset of a Banach space (S;‖ · ‖). Suppose that
F1, F2 map W into W and that

• for all ψ ,φ ∈ W , F1ψ + F2φ ∈ W ,
• F1 is continuous, and F1W is contained in a compact subset of W ,
• F2 is a contraction.

Then there is z ∈ W such that z = F1z + F2z.
We define W := {y ∈ C(Z;R),‖y‖ ≤ K}, where C(Z;R) denotes the set of continuous

functions from Z to R, and F = F1 + F2, where

F1ψ(n) = A + nB

and

F2ψ(n) =
1

Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(–p(r + υ) – δψ(r + υ) – η
(
ψ(r + υ)

)3).
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Theorem 2.6 Problem (1.2) has a solution in the set W , provided that

A + BT +
1

Γ (υ)
(T + υ – 1)υ–1(T – 2)

(‖p‖ + δK + ηK3) ≤ K ,

where ‖p‖ = supn∈Q |p(n)|. Moreover, the solution is unique if

1
Γ (υ)

(T + υ – 1)υ–1(T – 2)
(
δ + η3K2) ≤ 1.

Proof First, we can easily check that |F1ψ(n)| ≤ A + BT. On the other hand, we compute

∣
∣F2ψ(n)

∣
∣ ≤ 1

Γ (υ)

n–υ∑

r=2–υ

∣
∣(n – r – 1)

∣
∣(υ–1)(∣∣p(r + υ)

∣
∣ + δ

∣
∣ψ(r + υ)

∣
∣ + η

∣
∣ψ(r + υ)

∣
∣3)

≤ 1
Γ (υ)

n–υ∑

r=2–υ

∣
∣(n – r – 1)

∣
∣(υ–1)(‖p‖ + δK + ηK3)

≤ 1
Γ (υ)

(T + υ – 1)υ–1(T – 2)
(‖p‖ + δK + ηK3)

:= W ∗.

We can choose the constants δ, η, T such that A + BT+ W ∗ ≤ K . For such a choice, |F1ψ +
F2φ| ≤ K , and hence F1ψ + F2φ ∈ W for ψ ,φ ∈ W .

The continuity of F1 is easy to check as it is just a function of n. Besides, the set F1W is
bounded. Thus F1W is contained in a compact subset of W .

Now we check the contractivity of F2. For y1, y2 ∈ W , we have

‖F2y1 – F2y2‖

≤ 1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(δ
∣
∣y1(r + υ) – y2(r + υ)

∣
∣ + η

∣
∣
(
y1(r + υ)

)3 –
(
y2(r + υ)

)3∣∣
)

≤ 1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(δ
∣
∣y1(r + υ) – y2(r + υ)

∣
∣ + η3K2∣∣y1(r + υ) – y2(r + υ)

∣
∣
)

≤ 1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(δ + η3K2)∣∣y1(r + υ) – y2(r + υ)
∣
∣

≤ 1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(δ + η3K2)‖y1 – y2‖

≤ 1
Γ (υ)

(T + υ – 1)υ–1(T – 2)
(
δ + η3K2)‖y1 – y2‖

≤ K∗‖y1 – y2‖,

where K∗ = 1
Γ (υ) (T + υ – 1)υ–1(T – 2)(δ + η3K2). We can choose the parameters so that

K∗ < 1, so F2 is a contraction. Combining the above, the existence of a solution is ensured.
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On the other hand, we can easily see that for y1, y2 ∈ W and F = F1 + F2, we get

‖Fy1 – Fy2‖

≤ 1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(δ
∣
∣y1(r + υ) – y2(r + υ)

∣
∣ + η

∣
∣
(
y1(r + υ)

)3 –
(
y2(r + υ)

)3∣∣
)

≤ 1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(δ
∣
∣y1(r + υ) – y2(r + υ)

∣
∣ + η3L2∣∣y1(r + υ) – y2(r + υ)

∣
∣
)

≤ 1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(δ + η3L2)∣∣y1(r + υ) – y2(r + υ)
∣
∣

≤ 1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(δ + η3L2)‖y1 – y2‖

≤ 1
Γ (υ)

(T + υ – 1)υ–1(T – 2)
(
δ + η3L2)‖y1 – y2‖

≤ K∗‖y1 – y2‖.

We can see that for T ≥ 2, K∗ is nonnegative. Hence under the condition K∗ = 1
Γ (υ) (T +

υ – 1)υ–1(T – 2)(δ + η3L2) ≤ 1, the mapping F is a contraction. Applying the Banach fixed
point theorem, the existence and uniqueness of solution is ensured. We can see that we
do not need any additional assumptions for uniqueness. �

3 Hyers–Ulam stability
This section provides results on the Hyers–Ulam stability of (1.2).

For ψ ∈ W , define the norm ‖ψ‖ = supn∈Q |ψ(n)|.

Definition 3.1 ([35]) The discrete fractional initial value problem (1.2) is Hyers–Ulam
stable if there exists U > 0 such that for any ε > 0, φ ∈R satisfies

∣
∣�υ

∗
[
φ(n)

]
+ δφ(n + υ) + η

(
φ(n + υ)

)3 + p(n + υ)
∣
∣ ≤ ε, n ∈ Q, (3.1)

with φ(0) = A, �(φ(0)) = B. Then there is a solution ψ(n) of (1.2) such that |φ(n) – ψ(n)| ≤
Uε.

Remark 3.2 A function φ ∈ R solves (3.1) if and only if there exists h : Q × R → R that
satisfies

A1 |h(n + υ,φ(n + υ))| ≤ ε, n ∈Q,
A2 �υ∗ [φ(n)] + δφ(n + υ) + η(φ(n + υ))3 + p(n + υ) = h(n + υ,φ(n + υ)).

Lemma 3.3 If φ solves (3.1), then
∣
∣
∣
∣
∣
φ(n) – A – nB +

1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(δφ(r + υ) + η
(
φ(r + υ)

)3 + p(r + υ)
)
∣
∣
∣
∣
∣

≤ ε
(T + υ – 2)(υ)

Γ (υ + 1)
(3.2)

for n ∈Q.
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Proof If φ solves (3.1), then by Remark (3.2) and (2.2) the solution to (A2) satisfies

φ(n) = A + nB +
1

Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(h
(
r + υ,φ(r + υ)

)

– p(r + υ) – δφ(r + υ) – η
(
φ(r + υ)

)3)

for n ∈Q. Hence

∣
∣φ(n) – A – nB – �–υ

(
–p(n + υ) – δφ(n + υ) – η

(
φ(n + υ)

)3)∣∣

=
∣
∣�–υh

(
n + υ,φ(n + υ)

)∣
∣

≤ 1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)∣∣h
(
r + υ,φ(r + υ)

)∣
∣

≤ ε
1

Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)

≤ ε
(T + υ – 2)(υ)

Γ (υ + 1)
.

The proof is complete. �

We make the following assumptions before proving the stability of (1.2).
(H1)

√
M = maxn∈Q |ψ(n)|.

(H2) The function E(n + υ,ψ) = –p(n + υ) – δψ – η(ψ)3 is Lipschitz continuous, that is,
there exists a constant L > 0 such that for all ψ ,φ ∈R and n ∈Q,

∣
∣E(n,ψ) – E(n,φ)

∣
∣ ≤ L|ψ – φ|, (3.3)

where L = δ + 3Mη.

Theorem 3.4 Assume that (H2) holds. Let φ ∈ R solve (3.1) for some ε > 0, and let ψ ∈ R

be the solution of

⎧
⎪⎪⎨

⎪⎪⎩

�υ∗ [ψ(n)] + δψ(n + υ) + η(ψ(n + υ))3 + p(n + υ) = 0,

n ∈ [0,T] ∩N2–υ , 1 < υ ≤ 2,

ψ(0) = φ(0), �(ψ(0)) = �(φ(0)).

(3.4)

Then (1.2) is Hyers–Ulam stable, provided that

Γ (T + υ – 1)[δ + 3Mη] < Γ (υ + 1)Γ (T – 1).

Proof It is clear from Lemma (2.4) that the solution ψ of (3.4) satisfies

ψ(n) = φ(0) + n�
(
φ(0)

)

+
1

Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(–p(r + υ) – δψ(r + υ) – η
(
ψ(r + υ)

)3), n ∈Q.



Selvam et al. Advances in Difference Equations        (2020) 2020:456 Page 9 of 15

Therefore

∣
∣φ(n) – ψ(n)

∣
∣

=
∣
∣φ(n) – φ(0) – n�

(
φ(0)

)
– �–υ

(
–p(n + υ) – δψ(n + υ) – η

(
ψ(n + υ)

)3)∣∣

=
∣
∣φ(n) – φ(0) – n�

(
φ(0)

)
– �–υ

(
–p(n + υ) – δφ(n + υ) – η

(
φ(n + υ)

)3)

– �–υ
(
–p(n + υ) – δψ(n + υ) – η

(
ψ(n + υ)

)3)

+ �–υ
(
–p(n + υ) – δφ(n + υ) – η

(
φ(n + υ)

)3)∣∣

≤ ∣
∣φ(n) – φ(0) – n�

(
φ(0)

)
– �–υ

(
–p(n + υ) – δφ(n + υ) – η

(
φ(n + υ)

)3)∣∣

+ �–υ
(
δ
∣
∣φ(n + υ) – ψ(n + υ)

∣
∣ + η

∣
∣φ(n + υ)3 – ψ(n + υ)3∣∣

)

≤ ε
(T + υ – 2)(υ)

Γ (υ + 1)
+ (δ + 3Mη)�–υ

∣
∣φ(n + υ) – ψ(n + υ)

∣
∣.

Using ‖ψ‖ = supn∈Q |ψ(n)|, we have

‖φ – ψ‖ ≤ ε
(T + υ – 2)(υ)

Γ (υ + 1)
+ (δ + 3Mη)

(T + υ – 2)(υ)

Γ (υ + 1)
‖φ – ψ‖,

‖φ – ψ‖ ≤ Uε.

Thus (1.2) is Hyers–Ulam stable, and the stability constant is U = (T+υ–2)(υ)

Γ (υ+1)(1–ξ ) , where ξ =
(T+υ–2)(υ)

Γ (υ+1) (δ + 3Mη). The proof is complete. �

4 Hyers–Ulam Mittag-Leffler stability
For the initial value problem (1.2), Hyers–Ulam Mittag-Leffler stability is investigated in
this section.

Definition 4.1 ([35]) The initial value problem (1.2) is Hyers–Ulam Mittag-Leffler stable
with Fυ(λ, n) if there exists V > 0 with the following property:

For every ε > 0, φ(n) ∈ R satisfies the inequality

∣
∣�υ

∗
[
φ(n)

]
+ δφ(n + υ) + η

(
φ(n + υ)

)3 + p(n + υ)
∣
∣ ≤ Fυ(λ, n)ε, n ∈Q, (4.1)

with φ(0) = A, �(φ(0)) = B. Then there exists a solution ψ(n) of (1.2) such that |φ(n) –
ψ(n)| ≤ VεFυ(λ, n), where Fυ(λ, n) is the discrete Mittag-Leffler function.

Remark 4.2 A function φ ∈ R solves (3.1) if and only if there exists χ : Q × R → R that
satisfies

B1 |χ (n + υ,φ(n + υ))| ≤ εFυ(λ, n), n ∈Q,
B2 �υ∗ [φ(n)] + δφ(n + υ) + η(φ(n + υ))3 + p(n + υ) = χ (n + υ,φ(n + υ)).
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Lemma 4.3 If φ solves (4.1), then

∣
∣
∣
∣
∣
φ(n) – A – nB +

1
Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(δφ(r + υ) + η
(
φ(r + υ)

)3 + p(r + υ)
)
∣
∣
∣
∣
∣

≤ ε

λ
Fυ(λ, n) (4.2)

for n ∈Q.

Proof If φ solves (4.1), then using Remark (4.2) and (2.2), we have that the solution to (B2)
satisfies

φ(n) = φ(0) + n�
(
φ(0)

)

+
1

Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(χ
(
r + υ,φ(r + υ)

)

– p(r + υ) – δφ(r + υ) – η
(
φ(r + υ)

)3)

for n ∈Q. Hence we obtain

∣
∣φ(n) – φ(0) – n�

(
φ(0)

)
– �–υ

(
–p(n + υ) – δφ(n + υ) – η

(
φ(n + υ)

)3)∣∣

=
∣
∣�–υχ

(
n + υ,φ(n + υ)

)∣
∣

≤ �–υ
∣
∣χ

(
n + υ,φ(n + υ)

)∣
∣

≤ ε�–υFυ(λ, n)

≤ ε

λ
Fυ(λ, n).

This completes the proof. �

Theorem 4.4 Assume that (H2) holds. Let φ ∈ R solve (4.1) for some ε > 0, and let ψ ∈ R

be the solution of (3.4). Then (1.2) is Hyers–Ulam Mittag-Leffler stable, provided that

(T + υ – 2)(υ)[δ + 3Mη] < Γ (υ + 1).

Proof By Lemma (2.4) the solution ψ of (3.4) satisfies

ψ(n) = φ(0) + n�
(
φ(0)

)

+
1

Γ (υ)

n–υ∑

r=2–υ

(n – r – 1)(υ–1)(–p(r + υ) – δψ(r + υ) – η
(
ψ(r + υ)

)3)

for n ∈Q. Therefore

∣
∣φ(n) – ψ(n)

∣
∣

=
∣
∣φ(n) – φ(0) – n�

(
φ(0)

)
– �–υ

(
–p(n + υ) – δψ(n + υ) – η

(
ψ(n + υ)

)3)∣∣

=
∣
∣φ(n) – φ(0) – n�

(
φ(0)

)
– �–υ

(
–p(n + υ) – δφ(n + υ) – η

(
φ(n + υ)

)3)
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– �–υ
(
–p(n + υ) – δψ(n + υ) – η

(
ψ(n + υ)

)3)

+ �–υ
(
–p(n + υ) – δφ(n + υ) – η

(
φ(n + υ)

)3)∣∣

≤ ∣
∣φ(n) – φ(0) – n�

(
φ(0)

)
– �–υ

(
–p(n + υ) – δφ(n + υ) – η

(
φ(n + υ)

)3)∣∣

+ �–υ
(
δ
∣
∣φ(n + υ) – ψ(n + υ)

∣
∣ + η

∣
∣φ(n + υ)3 – ψ(n + υ)3∣∣

)

≤ ε

λ
Fυ(λ, n) + (δ + 3Mη)�–υ

∣
∣φ(n + υ) – ψ(n + υ)

∣
∣.

Using ‖ψ‖ = supn∈Q |ψ(n)|, we have

‖φ – ψ‖ ≤ ε

λ
Fυ(λ, n) + (δ + 3Mη)

(T + υ – 2)(υ)

Γ (υ + 1)
‖φ – ψ‖,

‖φ – ψ‖ ≤ VεFυ(λ, n).

Thus we can conclude that (1.2) is Hyers–Ulam Mittag-Lefflar stable with V = 1
λ(1–ξ ) ,

where ξ = (T+υ–2)(υ)

Γ (υ+1) (δ + 3Mη). This completes the proof. �

5 Applications
Springs are elastic in nature, and thus the original shape is regained after it is subject to
some stress. They follow Newton’s third law of motion: the harder you pull, the harder it
hits back. The rapid increase in restoring force of a spring than suggested by Hooke’s law
remains the main criterion for a spring to be nonlinear and hard. The motion of such hard
springs plays a significant role in study and understanding of nonlinear physics. For a hard
spring oscillator, the increase in amplitude results in decrease in period.

In this section, we consider a pendulum with its center of mass above its pivot point.
One of the common challenges for engineers and researchers is achieving the stability of
an inverted pendulum. The applications of the inverted pendulum varies from personal
transporters to electronic unicycles. The motion of an inverted pendulum with forcing
term (τ sin(ωt)) described by Duffing equation is [5]

m�2ẍ + bẋ + (k – mg�)x +
(

1
6

mg�

)

x3 + τ sin(ωt) = 0, (5.1)

where bẋ is the damping term, k is the stiffness constant, m is the mass provided at the
pendulum top by two or more strong magnets, � is the effective length of the pendulum,
g is the acceleration due to gravity, the maximum torque is denoted by τ , and ω is the
driving frequency.

Example 5.1 Consider the inverted pendulum equation neglecting the damping term (b =
0). The discrete fractional version of the equation is given by

⎧
⎪⎪⎨

⎪⎪⎩

�1.895∗ [ψ(n)] + ( k
m�2 – g

�
)ψ(n + 1.895) + ( g

6�
)(ψ(n + 1.895))3

= –18.5 sin(n + 1.895),

ψ(0) = 0, �(ψ(0)) = 1,

(5.2)

where n ∈ [0, 10] ∩N0.105. We will now establish that (5.2) is Hyers–Ulam stable.
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Let the parameters take the values k = 3.15, m = 0.8 kg, g = 9.8 m
s2 , � = 510 mm. Then we

obtain

E
(
n + 1.895,ψ(n + 1.895)

)

= –18.5 sin(n + 1.895) –
(

k
m�2 –

g
�

)

ψ(n + 1.895) –
(

g
6�

)
(
ψ(n + 1.895)

)3,

which satisfies the assumption (H2) with
√

M = maxn∈Q |ψ(n)| = 1.4149. Moreover, we get

∣
∣E

(
n + 1.895,ψ(n + 1.895)

)
– E

(
n + 1.895,φ(n + 1.895)

)∣
∣

=
∣
∣
∣
∣–18.5 sin(n + 1.895) –

(
k

m�2 –
g
�

)

ψ(n + 1.895) –
(

g
6�

)
(
ψ(n + 1.895)

)3

+ 18.5 sin(n + 1.895) +
(

k
m�2 –

g
�

)

φ(n + 1.895) +
(

g
6�

)
(
φ(n + 1.895)

)3
∣
∣
∣
∣

≤
[(

k
m�2 –

g
�

)

+
(

Mg
2�

)]

|ψ – φ|

≤ 0.0193|ψ – φ|,

where n ∈ [0, 10] ∩N0 and L = 0.0193. Thus E is Lipschitz continuous for n ∈ [0, 10] ∩N0.
It is clear from Theorem 3.4 that ξ = 0.7443 < 1.

Let ε = 0.6 and ψ(n) = n(2)

102 for n ∈ [0, 10] ∩ N0. Now we make sure that inequality (3.1)
holds. We have

∣
∣
∣
∣�

1.895
∗

[
ψ(n)

]
+

(
k

m�2 –
g
�

)

ψ(n + 1.895)

+
(

g
6�

)
(
ψ(n + 1.895)

)3 + 18.5 sin(n + 1.895)
∣
∣
∣
∣

=
∣
∣
∣
∣�

–0.105�2
(

(n)(2)

100

)

– 17.9503 + 18.5 sin(n + 1.895)
∣
∣
∣
∣

≤ 0.5764 < ε.

Theorem 3.4 clearly shows that (5.2) is Hyers–Ulam stable with U as the stability constant.
The value of ξ given in Theorem 3.4 for different fractional orders with lengths varying

from 510 mm to 610 mm are tabulated in Table 1 and are plotted in Fig. 2.

Table 1 Illustration of ξ and υ

υ ξ

� = 510 � = 550 � = 590 � = 610

1.09 0.2038 0.1890 0.1762 0.1650
1.19 0.2430 0.2253 0.2100 0.1967
1.29 0.2883 0.2673 0.2492 0.2333
1.39 0.3405 0.3157 0.2943 0.2756
1.49 0.4006 0.3714 0.3462 0.3242
1.59 0.4693 0.4352 0.4056 0.3799
1.69 0.5479 0.5080 0.4735 0.4434
1.79 0.6373 0.5909 0.5508 0.5158
1.89 0.7389 0.6851 0.6386 0.5981
1.99 0.8540 0.7918 0.7381 0.6912
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Figure 2 υ versus ξ

Example 5.2 We consider the forced simple harmonic motion equation of discrete-time
fractional order. With υ = 1.5, δ = 0.01, and p(n + υ) = 0.2 cos(n + υ) and neglecting η from
(1.2), we arrive at

⎧
⎨

⎩

�1.5∗ [ψ(n)] + 0.01ψ(n + 1.5) + 0.2 cos(n + 1.5) = 0,

ψ(0) = 0, �(ψ(0)) = 1,
(5.3)

where n ∈ [0, 13] ∩ N0.5. We will prove the Hyers–Ulam stability of (5.3). Straightforward
calculations show that

E
(
n + 1.5,ψ(n + 1.5)

)
= 0.01ψ(n + 1.5) + 0.2 cos(n + 1.5)

is Lipschitz continuous with L = 0.01. The value of ξ in Theorem 3.4 is 0.3224 < 1.
We now ensure that inequality (3.1) holds. Let ε = 0.72 and ψ(n) = n(2)

20 for n ∈ [0, 13] ∩
N0. Then

∣
∣�1.5

∗
[
ψ(n)

]
+ 0.01ψ(n + 1.5) + 0.2 cos(n + 1.5)

∣
∣

=
∣
∣
∣
∣�

–0.5�2
(

(n)(2)

20

)

+ 0.0979 + 0.2 cos(n + 1.5)
∣
∣
∣
∣

≤ 0.7008 < ε.

Thus (3.1) holds, and Theorem 3.4 confirms the Hyers–Ulam stability of (5.3) with con-
stant U.

6 Conclusion
Following the trend in investigating equations of fractional order, we consider a discrete
fractional form of Duffing equation with forcing term. We accommodate the newly es-
tablished discrete fractional calculus to determine sufficient conditions for the existence,
Hyers–Ulam, stability, and Hyers–Ulam Mittag-Leffler stability for the addressed equa-
tion. We analyze practical examples describing the undamped inverted pendulum and
forced simple harmonic case as applications of the theoretical results. Stability conditions
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are obtained numerically for different lengths of the pendulum and the values are thus
tabulated and represented graphically. We believe that results of this paper are of utmost
importance for audience engaged in studying stability of mathematical models describing
real physio-electrical phenomena.
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