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Abstract
The main motivation of this study is to bring together the field of inequalities with
fractional integral operators, which are the focus of attention among fractional
integral operators with their features and frequency of use. For this purpose, after
introducing some basic concepts, a new variant of Hermite–Hadamard (HH-)
inequality is obtained for s-convex functions in the second sense. Then, an integral
equation, which is important for the main findings, is proved. With the help of this
integral equation that includes fractional integral operators with Mittag-Leffler kernel,
many HH-type integral inequalities are derived for the functions whose absolute
values of the second derivatives are s-convex and s-concave. Some classical
inequalities and hypothesis conditions, such as Hölder’s inequality and Young’s
inequality, are taken into account in the proof of the findings.
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1 Introduction
Mathematics has basically started its adventure as a theoretical field with the efforts of
researchers for centuries, and has continuously aimed to formulate events and phenom-
ena in various fields such as physics, engineering, modeling, and mathematical biology
into a form that can be calculated. Not content with this, it has always been looking for
more effective and original solutions to problems. Fractional analysis is also one of the
important tools that serve mathematics to find solutions to real world problems. In fact,
recent studies have shown that fractional analysis serves this purpose more than classical
analysis. The basic working principle of fractional analysis is to introduce new fractional
derivatives and integral operators and to analyze the advantages of these operators with
the help of real world problem solutions, modeling studies, and comparisons. New frac-
tional derivatives and related integral operators are a quest to gain momentum to frac-

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-021-02721-9
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-021-02721-9&domain=pdf
https://orcid.org/0000-0003-2466-0508
mailto:aocakakdemir@gmail.com


Kavurmacı Önalan et al. Journal of Inequalities and Applications        (2021) 2021:186 Page 2 of 16

tional analysis and to gain the most effective operators to the literature. This search is a
dynamic process, and different features of kernel structures, time memory effect, and the
desire to reach general forms are factors that differentiate fractional operators in this dy-
namic process. We will now take a look at some of the basic concepts of fractional analysis
and build the basis for our work.

Definition 1 (see [1]) Let ϑ ∈ L[ϕ1,ϕ2]. The Riemann–Liouville integrals Jζ
ϕ1+ϑ and Jζ

ϕ2–ϑ

of order ζ > 0 with ϕ1,ϕ2 ≥ 0 are defined by

(
Jζ
ϕ1+

)
ϑ(y) =

1
�(ζ )

∫ y

ϕ1

(y – σ )ζ–1ϑ(σ ) dσ ; y > ϕ1,

and

(
Jζ
ϕ2–

)
ϑ(y) =

1
�(ζ )

∫ ϕ2

y
(σ – y)ζ–1ϑ(σ ) dσ ; y < ϕ2,

respectively, where �(·) is the gamma function and (J0
ϕ+

1
)ϑ(y) = (J0

ϕ2–)ϑ(y) = ϑ(y).

The Riemann–Liouville fractional integral operator is a very useful operator and has
been applied to many problems by researchers in both mathematical analysis and applied
mathematics (see [2–4]). For many years, Caputo derivative and Riemann–Liouville inte-
grals have been the best known operators in fractional analysis. Recently, the development
of new fractional operators has accelerated and comparisons have been made by taking
these operators as reference. We will now proceed with the definition of a new fractional
integral operator that contains the kernel of the Riemann–Liouville integral operator.

Definition 2 (see [5]) The fractional integral related to the new fractional derivative with
nonlocal kernel of a mapping ϑ ∈ H1(ϕ1,ϕ2) is defined as follows:

AB
ϕ1 Iζ

t
{
ϑ(t)

}
=

1 – ζ

B(ζ )
ϑ(t) +

ζ

B(ζ )�(ζ )

∫ t

ϕ1

ϑ(σ )(t – σ )ζ–1 dσ ,

where ϕ2 > ϕ1, ζ ∈ [0, 1].

In [6], the authors gave the right-hand side of integral operator as follows:

(ABIζ
ϕ2

){
ϑ(t)

}
=

1 – ζ

B(ζ )
ϑ(t) +

ζ

B(ζ )�(ζ )

∫ ϕ2

t
ϑ(σ )(σ – t)ζ–1 dσ .

Here, �(ζ ) is the gamma function. Due to B(ζ ) > 0 that is called the normalization func-
tion, this yields that the fractional Atangana–Baleanu integral of a positive function is pos-
itive. It should be noted that, when the order ζ −→ 1, we recapture the standard integral.
Also, the original function is recovered whenever the fractional order ζ −→ 0.

This interesting integral operator owes its strong kernel to its associated fractional
derivative operator. The Atangana–Baleanu fractional derivative operator is a nonsingular
and nonlocal fractional integral operator with its kernel structure containing the Mittag-
Leffler function. This rare operator is described in the Caputo sense and the Riemann–
Liouville sense as follows.
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Definition 3 (see [5]) Let ϑ ∈ H1(ϕ1,ϕ2), ϕ2 > ϕ1, ζ ∈ [0, 1]. Then the definition of the
new fractional derivative is given as follows:

ABC
ϕ1 Dζ

t
[
ϑ(t)

]
=

B(ζ )
1 – ζ

∫ t

ϕ1

ϑ ′(σ )Eζ

[
–ζ

(t – σ )ζ

(1 – ζ )

]
dσ . (1.1)

Definition 4 (see [5]) Let ϑ ∈ H1(ϕ1,ϕ2), ϕ2 > ϕ1, ζ ∈ [0, 1]. Then the definition of the
new fractional derivative is given as follows:

ABR
ϕ1 Dζ

t
[
ζ (t)

]
=

B(ζ )
1 – ζ

d
dt

∫ t

ϕ1

ϑ(σ )Eζ

[
–ζ

(t – σ )ζ

(1 – ζ )

]
dσ . (1.2)

To obtain more information related to structures and further properties of fractional
operators, the interested readers can consider the following papers [3, 6–19].

After giving some basic information and concepts about fractional analysis, which is
one of the basic foundations of the study, we will continue by reminding some basic con-
cepts on convex functions and inequalities. Analytical and geometric inequalities are a
topic that researchers focus on in mathematics both theoretically and practically. Espe-
cially in the last centuries, with the effect of convex analysis on theory, new inequalities
and its applications have expanded the field. The contribution of different types of con-
vex functions to the literature is supported by the inequalities proved based on them. The
concept of convexity, which has a special position among functions with the aesthetics of
its algebraic structure, its geometrical properties and the richness of its application areas,
encounters the interest of researchers in many disciplines such as physics, engineering,
economics, and approximation theory, as well as in mathematics. With the effect of this
interest, many new types of convex functions have been introduced, and the concept of
convexity has been carried to different spaces with multidimensional versions. The di-
verging and convergent aspects of each new convex function type have been identified,
and enrichment has been added to the field of convex analysis.

Now let us refresh our memory by talking about the convex function, the s-convex func-
tion in the second sense, and the HH-inequality.

Definition 5 (see [20]) The function ϑ : [ϕ1,ϕ2] ⊆ R → R is called a convex function if
the inequality

ϑ
(
σx + (1 – σ )y

) ≤ σϑ(x) + (1 – σ )ϑ(y) (1.3)

is satisfied for all x, y ∈ [ϕ1,ϕ2] and σ ∈ [0, 1].

In [21], Orlicz has given the definition of s-convexity as follows.

Definition 6 A function ϑ : R+ → R, where R
+ = [0,∞), is called s-convex in the first

sense if

ϑ(κ1ϕ1 + κ2ϕ2) ≤ κ s
1ϑ(ϕ1) + κ s

2ϑ(ϕ2)

for all ϕ1,ϕ2 ∈ [0,∞), κ1,κ2 ≥ 0 with κ s
1 + κ s

2 = 1 and for some fixed s ∈ (0, 1].
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Definition 7 A function ϑ : R+ → R, where R
+ = [0,∞), is said to be s-convex in the

second sense if

ϑ(κ1ϕ1 + κ2ϕ2) ≤ κ s
1ϑ(ϕ1) + κ s

2ϑ(ϕ2)

for all ϕ1,ϕ2 ∈ [0,∞), κ1,κ2 ≥ 0 with κ1 + κ2 = 1 and for some fixed s ∈ (0, 1].

Obviously, one can see that in case of s = 1, both definitions overlap with the standard
concept of convexity.

The famous HH-inequality, which is built on convex functions with its different mod-
ifications, generalizations, and iterations, generates lower and upper limits for the mean
value in the Cauchy sense and is given as follows.

Assume that ϑ : I ⊂R →R is a convex mapping on I ⊆R, where ϕ1,ϕ2 ∈ I , with ϕ1 < ϕ2.
The HH-inequality for convex mappings can be presented as follows (see [20]):

ϑ

(
ϕ1 + ϕ2

2

)
≤ 1

ϕ2 – ϕ1

∫ ϕ2

ϕ1

ϑ(σ ) dσ ≤ ϑ(ϕ1) + ϑ(ϕ2)
2

. (1.4)

In [22], a new variant of HH-inequality for s-convex mappings in the second sense has
been performed by Dragomir and Fitzpatrick.

Theorem 1 Assume that ϑ : [0,∞) → [0,∞) is an s-convex function in the second sense,
where s ∈ (0, 1), and let ϕ1,ϕ2 ∈ [0,∞), ϕ1 < ϕ2. If ϑ ∈ L[ϕ1,ϕ2], then one has the following:

2s–1ϑ

(
ϕ1 + ϕ2

2

)
≤ 1

ϕ2 – ϕ1

∫ ϕ2

ϕ1

ϑ(σ ) dσ ≤ ϑ(ϕ1) + ϑ(ϕ2)
s + 1

. (1.5)

Here, we must note that k = 1
s+1 is the best possible constant in (1.5).

To provide more details related to different kinds of convex functions and generaliza-
tions, new variants and different forms of this important double inequality, we suggest to
read the papers [20–42].

This study is organized as follows. First of all, the basic concepts to be used in the study
were defined, and the scientific infrastructure required for the proof of the findings was
created. In the main findings section, a new generalization of the HH-inequality, which
includes Atangana–Baleanu integral operators for s-convex functions in the second sense,
is obtained. Then, by giving an integral identity for differentiable s-convex functions in the
second sense, new HH-type inequalities are proved for functions whose absolute value is
s-convex in the second sense with the help of this identity. Also, a similar inequality is
obtained for s-concave functions.

2 New results by Atangana–Baleanu fractional integral operators
We start this section by giving the following inequalities containing the versions of the
HH-inequality for s-convex mappings in the second sense via new fractional integral op-
erators defined by Atangana and Baleanu.

Throughout the study, we denote the terms �(ζ ), B(ζ ) > 0, and βx as gamma function,
normalization function, and incomplete beta function, respectively.
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Theorem 2 Let ϑ : R+ → R+ be an s-convex function in the second sense, s ∈ (0, 1], and
ϕ1,ϕ2 ∈ R+ with ϕ1 < ϕ2. If ϑ ∈ L[ϕ1,ϕ2], the inequalities for Atangana–Baleanu integral
operators for all ζ ∈ (0, 1] are obtained as follows:

2s ϑ( ϕ1+ϕ2
2 )

B(ζ )�(ζ )
+

1 – ζ

(ϕ2 – ϕ1)ζ

[
ϑ(ϕ1) + ϑ(ϕ2)

B(ζ )

]
(2.1)

≤ 1
(ϕ2 – ϕ1)ζ

[AB
ϕ1

Iζ
ϕ2

{
ϑ(ϕ2)

}
+AB Iζ

ϕ2

{
ϑ(ϕ1)

}]

≤
[

ϑ(ϕ1) + ϑ(ϕ2)
B(ζ )

][
ζ

�(ζ )(ζ + s)
+

1 – ζ

(ϕ2 – ϕ1)ζ
+

ζβ(ζ , s + 1)
�(ζ )

]
.

Proof As ϑ is an s-convex function in the second sense, we can write

ϑ
(
σϕ1 + (1 – σ )ϕ2

) ≤ σ sϑ(ϕ1) + (1 – σ )sϑ(ϕ2)

for all σ ∈ [0, 1]. Multiplying the above inequality with σ ζ–1 and then integrating the ob-
tained inequality on [0, 1], we have

∫ 1

0
σ ζ–1ϑ

(
σϕ1 + (1 – σ )ϕ2

)
dσ

≤
[
ϑ(ϕ1)

∫ 1

0
σ ζ+s–1 dσ + ϑ(ϕ2)

∫ 1

0
σ ζ–1(1 – σ )s dσ

]
.

If we multiply both sides of the last inequality by ζ (ϕ2–ϕ1)ζ
B(ζ )�(ζ ) , and then if we add the term

1–ζ

B(ζ )ϑ(ϕ2), we get

ζ (ϕ2 – ϕ1)ζ

B(ζ )�(ζ )

∫ 1

0
σ ζ–1ϑ

(
σϕ1 + (1 – σ )ϕ2

)
dσ +

1 – ζ

B(ζ )
ϑ(ϕ2)

≤ ζ (ϕ2 – ϕ1)ζ

B(ζ )�(ζ )

[
ϑ(ϕ1)

∫ 1

0
σ ζ+s–1 dσ + ϑ(ϕ2)

∫ 1

0
σ ζ–1(1 – σ )s dσ

]
+

1 – ζ

B(ζ )
ϑ(ϕ2).

By making use of the change of variable σϕ1 + (1 – σ )ϕ2 = y, we have

AB
ϕ1 Iζ

ϕ2

{
ϑ(ϕ2)

}
(2.2)

≤ ϑ(ϕ2)
[

1 – ζ

B(ζ )
+

ζ (ϕ2 – ϕ1)ζ β(ζ , s + 1)
B(ζ )�(ζ )

]
+

ζ (ϕ2 – ϕ1)ζ

B(ζ )�(ζ )(ζ + s)
ϑ(ϕ1).

And similarly we get

(ABIζ
ϕ2

){
ϑ(ϕ1)

}
(2.3)

≤ ϑ(ϕ1)
[

1 – ζ

B(ζ )
+

ζ (ϕ2 – ϕ1)ζ β(ζ , s + 1)
B(ζ )�(ζ )

]
+

ζ (ϕ2 – ϕ1)ζ

B(ζ )�(ζ )(ζ + s)
ϑ(ϕ2).

If we consider the inequalities in (2.2) and (2.3), we conclude the second inequality in (2.1).
For obtaining the first inequality in (2.1), we use that, for all u, v ∈R+, we have

ϑ

(
u + v

2

)
≤ ϑ(u) + ϑ(v)

2s . (2.4)
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Now, let u = σϕ1 + (1 – σ )ϕ2 and v = (1 – σ )ϕ1 + σϕ2 with σ ∈ [0, 1]. Then we get by (2.4)
that

ϑ

(
ϕ1 + ϕ2

2

)
≤ ϑ(σϕ1 + (1 – σ )ϕ2) + ϑ((1 – σ )ϕ1 + σϕ2)

2s .

Multiplying the above inequality with σ ζ–1 and then integrating this inequality on [0, 1],
we have

2s ϑ( ϕ1+ϕ2
2 )

ζ

≤
∫ 1

0
σ ζ–1ϑ

(
σϕ1 + (1 – σ )ϕ2

)
dσ +

∫ 1

0
σ ζ–1ϑ

(
(1 – σ )ϕ1 + σϕ2

)
dσ .

If we multiply both sides of the last inequality ζ (ϕ2–ϕ1)ζ
B(ζ )�(ζ ) and then if we add the term

1–ζ

B(ζ ) [ϑ(ϕ1) + ϑ(ϕ2)] to two sides of the resulting inequality, we get

2s (ϕ2 – ϕ1)ζ

B(ζ )�(ζ )
ϑ

(
ϕ1 + ϕ2

2

)
+

1 – ζ

B(ζ )
[
ϑ(ϕ1) + ϑ(ϕ2)

]

≤ ζ (ϕ2 – ϕ1)ζ

B(ζ )�(ζ )

∫ 1

0
σ ζ–1ϑ

(
σϕ1 + (1 – σ )ϕ2

)
dσ

+
ζ (ϕ2 – ϕ1)ζ

B(ζ )�(ζ )

∫ 1

0
σ ζ–1ϑ

(
(1 – σ )ϕ1 + σϕ2

)
dσ

+
1 – ζ

B(ζ )
[
ϑ(ϕ1) + ϑ(ϕ2)

]
.

The change of variables σϕ1 + (1 – σ )ϕ2 = y and σϕ2 + (1 – σ )ϕ1 = z gives us

2s (ϕ2 – ϕ1)ζ

B(ζ )�(ζ )
ϑ

(
ϕ1 + ϕ2

2

)
+

1 – ζ

B(ζ )
[
ϑ(ϕ1) + ϑ(ϕ2)

]
(2.5)

≤ [AB
ϕ1

Iζ
ϕ2

{
ϑ(ϕ2)

}
+

(ABIζ
ϕ2

){
ϑ(ϕ1)

}]
.

If we multiply both sides of (2.5) by 1
(ϕ2–ϕ1)ζ , we get the first inequality in (2.1). �

We continue this section by giving an equality containing second order derivatives for
Atangana–Baleanu integral operators.

Lemma 1 Let ϕ1 < ϕ2, ϕ1,ϕ2 ∈ I◦and ϑ : I ⊂ R −→ R be a differentiable function on I◦. If
ϑ ′′ ∈ L[ϕ1,ϕ2], the identity for Atangana–Baleanu integral operators in equation (2.6) is
valid for all ζ ∈ (0, 1]:

1
ϕ2 – ϕ1

[(ABIζ
ϕ1+ϕ2

2

){
ϑ(ϕ1)

}
+ AB

ϕ1+ϕ2
2

Iζ
ϕ2

{
ϑ(ϕ2)

}]
(2.6)

–
1 – ζ

(ϕ2 – ϕ1)B(ζ )
[
ϑ(ϕ1) + ϑ(ϕ2)

]

–
(ϕ2 – ϕ1)ζ–1

2ζ–1B(ζ )�(ζ )
ϑ

(
ϕ1 + ϕ2

2

)
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=
(ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

×
∫ 1

0
mζ (σ )

[
ϑ ′′(σϕ1 + (1 – σ )ϕ2

)
+ ϑ ′′(σϕ2 + (1 – σ )ϕ1

)]
dσ ,

where

mζ (σ ) =

⎧
⎨

⎩
σ ζ+1, σ ∈ [0, 1

2 ),

(1 – σ )ζ+1, σ ∈ [ 1
2 , 1],

and also �(ζ ) is a gamma function and B(ζ ) > 0.

Proof By using the integration by parts, we can get

(ϕ2 – ϕ1)ζ+2

2(ζ + 1)B(ζ )�(ζ )

∫ 1

0
mζ (σ )ϑ ′′(σϕ1 + (1 – σ )ϕ2

)
dσ

=
(ϕ2 – ϕ1)ζ+2

2(ζ + 1)B(ζ )�(ζ )

[∫ 1
2

0
σ ζ+1ϑ ′′(σϕ1 + (1 – σ )ϕ2

)
dσ

+
∫ 1

1
2

(1 – σ )ζ+1ϑ ′′(σϕ1 + (1 – σ )ϕ2
)

dσ

]

=
(ϕ2 – ϕ1)ζ+2

2(ζ + 1)B(ζ )�(ζ )

{
σ ζ+1 ϑ ′(σϕ1 + (1 – σ )ϕ2)

(ϕ1 – ϕ2)

∣
∣∣
∣

1
2

0

–
∫ 1

2

0
(ζ + 1)σ ζ ϑ ′(σϕ1 + (1 – σ )ϕ2)

(ϕ1 – ϕ2)
dσ

+ (1 – σ )ζ+1 ϑ ′(σϕ1 + (1 – σ )ϕ2)
(ϕ1 – ϕ2)

∣∣∣
∣

1

1
2

+
∫ 1

1
2

(ζ + 1)(1 – σ )ζ
ϑ ′(σϕ1 + (1 – σ )ϕ2)

(ϕ1 – ϕ2)
dσ

}

=
(ϕ2 – ϕ1)ζ+2

2(ζ + 1)B(ζ )�(ζ )

{
–
(

ζ + 1
ϕ1 – ϕ2

)∫ 1
2

0
σ ζϑ ′(σϕ1 + (1 – σ )ϕ2

)
dσ

+
(

ζ + 1
ϕ1 – ϕ2

)∫ 1

1
2

(1 – σ )ζ ϑ ′(σϕ1 + (1 – σ )ϕ2
)

dσ

}
.

If we use the integration by parts again, we can write

(ϕ2 – ϕ1)ζ+2

2(ζ + 1)B(ζ )�(ζ )

{
–
(

ζ + 1
ϕ1 – ϕ2

)∫ 1
2

0
σ ζϑ ′(σϕ1 + (1 – σ )ϕ2

)
dσ

+
(

ζ + 1
ϕ1 – ϕ2

)∫ 1

1
2

(1 – σ )ζ ϑ ′(σϕ1 + (1 – σ )ϕ2
)

dσ

}

=
(ϕ2 – ϕ1)ζ+2

2(ζ + 1)B(ζ )�(ζ )

{
–
(

ζ + 1
ϕ1 – ϕ2

)

×
(

σ ζ ϑ(σϕ1 + (1 – σ )ϕ2)
(ϕ1 – ϕ2)

∣∣∣
∣

1
2

0
–

∫ 1
2

0
ζσ ζ–1 ϑ(σϕ1 + (1 – σ )ϕ2)

(ϕ1 – ϕ2)
dσ

)
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+
(

ζ + 1
ϕ1 – ϕ2

)(
(1 – σ )ζ

ϑ(σϕ1 + (1 – σ )ϕ2)
(ϕ1 – ϕ2)

∣
∣∣
∣

1

1
2

+
∫ 1

1
2

ζ (1 – σ )ζ–1 ϑ(σϕ1 + (1 – σ )ϕ2)
(ϕ1 – ϕ2)

dσ

)}

=
(ϕ2 – ϕ1)ζ+2

2(ζ + 1)B(ζ )�(ζ )

{
–
(

ζ + 1
ϕ1 – ϕ2

)

×
( ( 1

2 )ζ ϑ( ϕ1+ϕ2
2 )

(ϕ1 – ϕ2)
–

ζ

(ϕ1 – ϕ2)

∫ 1
2

0
σ ζ–1ϑ

(
σϕ1 + (1 – σ )ϕ2

)
dσ

)

+
(

ζ + 1
ϕ1 – ϕ2

)

×
(

–
( 1

2 )ζ ϑ( ϕ1+ϕ2
2 )

(ϕ1 – ϕ2)
+

ζ

(ϕ1 – ϕ2)

∫ 1

1
2

(1 – σ )ζ–1ϑ
(
σϕ1 + (1 – σ )ϕ2

)
dσ

)}

=
(ϕ2 – ϕ1)ζ+2

2(ζ + 1)B(ζ )�(ζ )

{–2(ζ + 1)( 1
2 )ζ ϑ( ϕ1+ϕ2

2 )
(ϕ1 – ϕ2)2

+
ζ (ζ + 1)

(ϕ1 – ϕ2)2

∫ 1
2

0
σ ζ–1ϑ

(
σϕ1 + (1 – σ )ϕ2

)
dσ

+
ζ (ζ + 1)

(ϕ1 – ϕ2)2

∫ 1

1
2

(1 – σ )ζ–1ϑ
(
σϕ1 + (1 – σ )ϕ2

)
dσ

}
.

By using the changing of variable, we get the term for Atangana–Baleanu integral opera-
tors

(ϕ2 – ϕ1)ζ+2

2(ζ + 1)B(ζ )�(ζ )

{–2(ζ + 1)( 1
2 )ζ ϑ( ϕ1+ϕ2

2 )
(ϕ1 – ϕ2)2 (2.7)

+
ζ (ζ + 1)

(ϕ1 – ϕ2)2

∫ ϕ1+ϕ2
2

ϕ2

(
y – ϕ2

ϕ1 – ϕ2

)ζ–1

ϑ(y)
dy

ϕ1 – ϕ2

+
ζ (ζ + 1)

(ϕ1 – ϕ2)2

∫ ϕ1

ϕ1+ϕ2
2

(
ϕ1 – y
ϕ1 – ϕ2

)ζ–1

ϑ(y)
dy

ϕ1 – ϕ2

}

= –
(ϕ2 – ϕ1)ζ

B(ζ )�(ζ )

(
1
2

)ζ

ϑ

(
ϕ1 + ϕ2

2

)
+

1
2
(AB

ϕ1+ϕ2
2

Iζ
ϕ2

{
ϑ(ϕ2)

})

–
1 – ζ

2B(ζ )
{
ϑ(ϕ2)

}
+

1
2
(ABIζ

ϕ1+ϕ2
2

){
ϑ(ϕ1)

}
–

1 – ζ

2B(ζ )
{
ϑ(ϕ1)

}
.

As a similar calculation of (2.7), we get

(ϕ2 – ϕ1)ζ+2

2(ζ + 1)B(ζ )�(ζ )

∫ 1

0
mζ (σ )ϑ ′′(σϕ2 + (1 – σ )ϕ1

)
dσ (2.8)

= –
(ϕ2 – ϕ1)ζ

B(ζ )�(ζ )

(
1
2

)ζ

ϑ

(
ϕ1 + ϕ2

2

)
+

1
2
(AB

ϕ1+ϕ2
2

Iζ
ϕ2

{
ϑ(ϕ2)

})

–
1 – ζ

2B(ζ )
{
ϑ(ϕ2)

}
+

1
2
(ABIζ

ϕ1+ϕ2
2

){
ϑ(ϕ1)

}
–

1 – ζ

2B(ζ )
{
ϑ(ϕ1)

}
.

If we add (2.7) and (2.8), and after this step if we multiply the resulting equality by 1
(ϕ2–ϕ1) ,

we complete the proof of the inequality in (2.6). �
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Now, we are going to produce generalizations of the HH-type inequalities for Atangana–
Baleanu fractional integral operators by using the new integral equation and s-convexity
identity. Throughout the study, we denote the following terms with F :

F =
1

ϕ2 – ϕ1

[ABIζ
ϕ1+ϕ2

2

{
ϑ(ϕ1)

}
+ AB

ϕ1+ϕ2
2

Iζ
ϕ2

{
ϑ(ϕ2)

}]

–
1 – ζ

(ϕ2 – ϕ1)B(ζ )
[
ϑ(ϕ1) + ϑ(ϕ2)

]
–

(ϕ2 – ϕ1)ζ–1

2ζ–1B(ζ )�(ζ )
ϑ

(
ϕ1 + ϕ2

2

)
.

Theorem 3 Let ϕ1 < ϕ2, ϕ1,ϕ2 ∈ I◦ and ϑ : I ⊂ [0,∞) −→ R be a differentiable function
on I◦ and ϑ ′′ ∈ L[ϕ1,ϕ2]. If |ϑ ′′| is an s-convex function in the second sense on [ϕ1,ϕ2] for
some fixed s ∈ (0, 1], we obtain the following inequality for Atangana–Baleanu integral
operators:

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )ζ+s+2

ζ + s + 2
+ β 1

2
(ζ + 2, s + 1)

)
(∣∣ϑ ′′(ϕ1)

∣∣ +
∣∣ϑ ′′(ϕ2)

∣∣), (2.9)

where ζ ∈ (0, 1].

Proof By using the equality in (2.6) and the s-convexity of |ϑ ′′|, we have

|F| ≤ (ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

×
∫ 1

0

∣
∣mζ (σ )

∣
∣[

∣
∣ϑ ′′(σϕ1 + (1 – σ )ϕ2

)∣∣ +
∣
∣ϑ ′′(σϕ2 + (1 – σ )ϕ1

)∣∣]dσ

≤ (ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

{∫ 1
2

0
σ ζ+1[σ s∣∣ϑ ′′(ϕ1)

∣
∣ + (1 – σ )s∣∣ϑ ′′(ϕ2)

∣
∣]dσ

+
∫ 1

1
2

(1 – σ )ζ+1[σ s∣∣ϑ ′′(ϕ1)
∣∣ + (1 – σ )s∣∣ϑ ′′(ϕ2)

∣∣]dσ

+
∫ 1

2

0
σ ζ+1[σ s∣∣ϑ ′′(ϕ2)

∣∣ + (1 – σ )s∣∣ϑ ′′(ϕ1)
∣∣]dσ

+
∫ 1

1
2

(1 – σ )ζ+1[σ s∣∣ϑ ′′(ϕ2)
∣
∣ + (1 – σ )s∣∣ϑ ′′(ϕ1)

∣
∣]dσ

}
.

Afterwards, by getting the necessary calculations, we complete the proof of the inequality
in (2.9). �

Corollary 1 In Theorem 3, if we choose s = 1, we have the following inequality:

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )ζ+3

ζ + 3
+ β 1

2
(ζ + 2, 2)

)
(∣∣ϑ ′′(ϕ1)

∣∣ +
∣∣ϑ ′′(ϕ2)

∣∣).

Corollary 2 In Theorem 3, if |ϑ ′′| ≤ M on I◦, M > 0, we have the following inequality:

|F| ≤ 2M(ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )ζ+s+2

ζ + s + 2
+ β 1

2
(ζ + 2, s + 1)

)
.



Kavurmacı Önalan et al. Journal of Inequalities and Applications        (2021) 2021:186 Page 10 of 16

Theorem 4 Let ϕ1 < ϕ2, ϕ1,ϕ2 ∈ I◦ and ϑ : I ⊂ [0,∞) −→ R be a differentiable mapping
on I◦ and ϑ ′′ ∈ L[ϕ1,ϕ2]. If |ϑ ′′|q is an s-convex function in the second sense on [ϕ1,ϕ2]
for some fixed s ∈ (0, 1], we obtain the following inequality for Atangana–Baleanu integral
operators:

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )ζp+p

ζp + p + 1

) 1
p 1

(s + 1)
1
q

(∣∣ϑ ′′(ϕ1)
∣∣ +

∣∣ϑ ′′(ϕ2)
∣∣), (2.10)

where ζ ∈ (0, 1], q > 1, and 1
p + 1

q = 1.

Proof By using the equality in (2.6) and Hölder’s inequality, we get

|F| ≤ (ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

×
∫ 1

0

∣
∣mζ (σ )

∣
∣[

∣
∣ϑ ′′(σϕ1 + (1 – σ )ϕ2

)∣∣ +
∣
∣ϑ ′′(σϕ2 + (1 – σ )ϕ1

)∣∣]dσ

≤ (ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

(∫ 1

0

∣∣mζ (σ )
∣∣p dσ

) 1
p

×
[(∫ 1

0

∣∣ϑ ′′(σϕ1 + (1 – σ )ϕ2
)∣∣q dσ

) 1
q

+
(∫ 1

0

∣∣ϑ ′′(σϕ2 + (1 – σ )ϕ1
)∣∣q dσ

) 1
q
]

.

To reach the result, we use the s-convexity in the second sense on [ϕ1,ϕ2], and then we
use the fact that

n∑

k=1

(uk + vk)m ≤
n∑

k=1

um
k +

n∑

k=1

vm
k

for 0 ≤ m < 1, u1, u2, . . . , un ≥ 0, v1, v2, . . . , vn ≥ 0. So, we obtained the inequality in (2.10).
The proof is completed. �

Corollary 3 In Theorem 4, if we choose s = 1, we have the following inequality:

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )ζp+p

ζp + p + 1

) 1
p 1

2
1
q

(∣∣ϑ ′′(ϕ1)
∣
∣ +

∣
∣ϑ ′′(ϕ2)

∣
∣).

Corollary 4 In Theorem 4, if |ϑ ′′| ≤ M on I◦, M > 0, we have the following inequality:

|F| ≤ 2M(ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )ζp+p

ζp + p + 1

) 1
p 1

(s + 1)
1
q

.

Theorem 5 Under the assumptions of Theorem 4, we get the inequality in (2.11):

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

(
1

2ζ+1(ζ + 2)

) 1
p

(2.11)

×
( ( 1

2 )ζ+s+2

ζ + s + 2
+ β 1

2
(ζ + 2, s + 1)

) 1
q (∣∣ϑ ′′(ϕ1)

∣
∣q +

∣
∣ϑ ′′(ϕ2)

∣
∣q) 1

q ,

where ζ ∈ (0, 1], q > 1, 1
p + 1

q = 1.
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Proof When we use Hölder’s inequality from a different point of view, we can write

|F| ≤ (ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

×
∫ 1

0

∣
∣mζ (σ )

∣
∣[

∣
∣ϑ ′′(σϕ1 + (1 – σ )ϕ2

)∣∣ +
∣
∣ϑ ′′(σϕ2 + (1 – σ )ϕ1

)∣∣]dσ

≤ (ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

(∫ 1

0

∣
∣mζ (σ )

∣
∣dσ

) 1
p

×
[(∫ 1

0

∣∣mζ (σ )
∣∣∣∣ϑ ′′(σϕ1 + (1 – σ )ϕ2

)∣∣q dσ

) 1
q

+
(∫ 1

0

∣
∣mζ (σ )

∣
∣
∣
∣ϑ ′′(σϕ2 + (1 – σ )ϕ1

)∣∣q dσ

) 1
q
]

.

If we apply the s-convexity of |ϑ ′′|q and calculate the above integrals, we get the de-
sired. �

Corollary 5 In Theorem 5, if we choose s = 1, we have the following inequality:

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

(
1

2ζ+1(ζ + 2)

) 1
p

×
( ( 1

2 )ζ+3

ζ + 3
+ β 1

2
(ζ + 2, 2)

) 1
q (∣∣ϑ ′′(ϕ1)

∣
∣q +

∣
∣ϑ ′′(ϕ2)

∣
∣q) 1

q .

Corollary 6 In Theorem 5, if |ϑ ′′| ≤ M on I◦, M > 0, we have the following inequality:

|F| ≤ 2
1
q M(ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

(
1

2ζ+1(ζ + 2)

) 1
p

×
( ( 1

2 )ζ+s+2

ζ + s + 2
+ β 1

2
(ζ + 2, s + 1)

) 1
q

.

Theorem 6 Let ϕ1 < ϕ2, ϕ1,ϕ2 ∈ I◦ and ϑ : I ⊂ [0,∞) −→ R be a differentiable function
on I◦ and ϑ ′′ ∈ L[ϕ1,ϕ2]. If |ϑ ′′|q is an s-convex function in the second sense on [ϕ1,ϕ2] for
some fixed s ∈ (0, 1], we obtain the following inequality in (2.12) for Atangana–Baleanu
integral operators:

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )(ζ+1)( q–p

q–1 )(q – 1)
(ζ + 1)(q – p) + q – 1

)1– 1
q (∣∣ϑ ′′(ϕ1)

∣
∣q +

∣
∣ϑ ′′(ϕ2)

∣
∣q) 1

q (2.12)

×
( ( 1

2 )(ζ+1)p+s+1

(ζ + 1)p + s + 1
+ β 1

2

(
(ζ + 1)p + 1, s + 1

)
) 1

q
,

where ζ ∈ (0, 1], q ≥ p > 1.

Proof By using Hölder’s inequality in a different way, we can write

|F| ≤ (ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

{(∫ 1

0

∣
∣mζ (σ )

∣
∣

q–p
q–1 dσ

)1– 1
q
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×
(∫ 1

0

∣∣mζ (σ )
∣∣p∣∣ϑ ′′(σϕ1 + (1 – σ )ϕ2

)∣∣q dσ

) 1
q

+
(∫ 1

0

∣∣mζ (σ )
∣∣

q–p
q–1 dσ

)1– 1
q

×
(∫ 1

0

∣∣mζ (σ )
∣∣p∣∣ϑ ′′(σϕ2 + (1 – σ )ϕ1

)∣∣q dσ

) 1
q
}

.

If we use the s-convexity of |ϑ ′′|q above, we have

|F| ≤ (ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

(∫ 1

0

∣∣mζ (σ )
∣∣

q–p
q–1 dσ

)1– 1
q

×
(∫ 1

0

∣
∣mζ (σ )

∣
∣p[

σ s∣∣ϑ ′′(ϕ1)
∣
∣q + (1 – σ )s∣∣ϑ ′′(ϕ2)

∣
∣q]dσ

) 1
q

+
(ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

(∫ 1

0

∣∣mζ (σ )
∣∣

q–p
q–1 dσ

)1– 1
q

×
(∫ 1

0

∣
∣mζ (σ )

∣
∣p[

σ s∣∣ϑ ′′(ϕ2)
∣
∣q + (1 – σ )s∣∣ϑ ′′(ϕ1)

∣
∣q]dσ

) 1
q

.

By making the necessary integral calculations, the proof is completed. �

Corollary 7 In Theorem 6, if we choose s = 1, we have the following inequality:

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )(ζ+1)( q–p

q–1 )(q – 1)
(ζ + 1)(q – p) + q – 1

)1– 1
q

× (∣∣ϑ ′′(ϕ1)
∣∣q +

∣∣ϑ ′′(ϕ2)
∣∣q) 1

q

( ( 1
2 )(ζ+1)p+2

(ζ + 1)p + 2
+ β 1

2

(
(ζ + 1)p + 1, 2

)
) 1

q
.

Corollary 8 In Theorem 6, if |ϑ ′′| ≤ M on I◦, M > 0, we have the following inequality:

|F| ≤ 2
1
q M(ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )(ζ+1)( q–p

q–1 )(q – 1)
(ζ + 1)(q – p) + q – 1

)1– 1
q

× [
( ( 1

2 )(ζ+1)p+s+1

(ζ + 1)p + s + 1
+ β 1

2

(
(ζ + 1)p + 1, s + 1

)
) 1

q
.

Theorem 7 Let ϕ1 < ϕ2, ϕ1,ϕ2 ∈ I◦ and ϑ : I ⊂ [0,∞) −→ R be a differentiable function
on I◦ and ϑ ′′ ∈ L[ϕ1,ϕ2]. If |ϑ ′′|q is an s-convex function in the second sense on [ϕ1,ϕ2] for
some fixed s ∈ (0, 1], we obtain the following inequality in (2.13) for Atangana–Baleanu
integral operators:

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )(ζ+1)p

((ζ + 1)p + 1)p
+

|ϑ ′′(ϕ1)|q + |ϑ ′′(ϕ2)|q
(s + 1)q

)
, (2.13)

where ζ ∈ (0, 1] and q > 1.
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Proof By using Lemma 1, we have

|F| ≤ (ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

×
∫ 1

0

∣
∣mζ (σ )

∣
∣[

∣
∣ϑ ′′(σϕ1 + (1 – σ )ϕ2

)∣∣ +
∣
∣ϑ ′′(σϕ2 + (1 – σ )ϕ1

)∣∣]dσ .

By using Young’s inequality as xy ≤ 1
p xp + 1

q yq, we get

|F| ≤ (ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

×
{

1
p

∫ 1

0

∣
∣mζ (σ )

∣
∣p dσ +

1
q

∫ 1

0

∣
∣ϑ ′′(σϕ1 + (1 – σ )ϕ2

)∣∣q dσ

+
1
p

∫ 1

0

∣∣mζ (σ )
∣∣p dσ +

1
q

∫ 1

0

∣∣ϑ ′′(σϕ2 + (1 – σ )ϕ1
)∣∣q dσ

}
.

By using the s-convexity of |ϑ ′′|q and by simple calculations, we provide the result. �

Corollary 9 In Theorem 7, if we choose s = 1, we have the following inequality:

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )(ζ+1)p

((ζ + 1)p + 1)p
+

|ϑ ′′(ϕ1)|q + |ϑ ′′(ϕ2)|q
2q

)
.

Corollary 10 In Theorem 7, if |ϑ ′′| ≤ M on I◦, M > 0, we have the following inequality:

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )(ζ+1)p

((ζ + 1)p + 1)p
+

2Mq

(s + 1)q

)
.

Theorem 8 Let ϕ1 < ϕ2, ϕ1,ϕ2 ∈ I◦ and ϑ : I ⊂ [0,∞) −→ R be a differentiable function
on I◦ and ϑ ′′ ∈ L[ϕ1,ϕ2]. If |ϑ ′′|q is an s-concave function in the second sense on [ϕ1,ϕ2]
for some fixed s ∈ (0, 1], we obtain the following inequality in (2.14) for Atangana–Baleanu
integral operators:

|F| ≤ (ϕ2 – ϕ1)ζ+1

(ζ + 1)B(ζ )�(ζ )

( ( 1
2 )ζp+p

ζp + p + 1

) 1
p

2
s–1

q

∣∣∣
∣ϑ

′′
(

ϕ1 + ϕ2

2

)∣∣∣
∣, (2.14)

where ζ ∈ (0, 1], q > 1, 1
p + 1

q = 1.

Proof If we apply Hölder’s inequality, we have

|F| ≤ (ϕ2 – ϕ1)ζ+1

2(ζ + 1)B(ζ )�(ζ )

(∫ 1

0

∣
∣mζ (σ )

∣
∣p dσ

) 1
p

×
[(∫ 1

0

∣∣ϑ ′′(σϕ1 + (1 – σ )ϕ2
)∣∣q dσ

) 1
q

+
(∫ 1

0

∣∣ϑ ′′(σϕ2 + (1 – σ )ϕ1
)∣∣q dσ

) 1
q
]

.



Kavurmacı Önalan et al. Journal of Inequalities and Applications        (2021) 2021:186 Page 14 of 16

Since |ϑ ′′|q is s-concave on [ϕ1,ϕ2], we can write the following results by taking into ac-
count the variant of the HH-inequality for s-concave functions:

∫ 1

0

∣
∣ϑ ′′(σϕ1 + (1 – σ )ϕ2

)∣∣q dσ ≤ 2s–1
∣∣
∣∣ϕ

′′
(

ϕ1 + ϕ2

2

)∣∣
∣∣

q

,

∫ 1

0

∣∣ϕ′′(σϕ2 + (1 – σ )ϕ1
)∣∣q dσ ≤ 2s–1

∣
∣∣
∣ϕ

′′
(

ϕ1 + ϕ2

2

)∣
∣∣
∣

q

.

By using these results in the above inequality, we complete the proof. �

3 Conclusion
We see that the main idea for most of the studies in the field of inequalities is to general-
ize, to reveal new boundaries, and to create findings that will allow different applications.
In this direction, sometimes the features of the function, sometimes new methods, and
sometimes new operators are used, and these choices add original value to the studies.
In this context, in the paper, which includes reflections of fractional analysis to inequality
theory, the main motivation point is to obtain new integral inequalities for s-convex and
s-concave functions that involve Atangana–Baleanu fractional integral operators. First,
a general form of the HH-inequality for Atangana–Baleanu fractional integral operators
has been obtained. Then, using a newly established integral identity, various HH-type in-
equalities have been derived. The special cases of these inequalities, which are presented
in general forms, have been taken into consideration.
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20. Pečarić, J., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press,
San Diego (1992)

21. Orlicz, W.: A note on modular spaces I. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 9, 157–162 (1961)
22. Dragomir, S.S., Fitzpatrick, S.: The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math.

32(4), 687–696 (1999)
23. Kavurmaci, H., Avci, M., Özdemir, M.E.: New inequalities of Hermite–Hadamard type for convex functions with

applications. J. Inequal. Appl. 2011, 86 (2011)
24. Özdemir, M.E., Ekinci, A., Akdemir, A.O.: Some new integral inequalities for functions whose derivatives of absolute

values are convex and concave. TWMS J. Pure Appl. Math. 10(2), 212–224 (2019)
25. Ozdemir, M.E., Latif, M.A., Akdemir, A.O.: On some Hadamard-type inequalities for product of two h-convex functions

on the co-ordinates. Turk. J. Sci. 1(1), 41–58 (2016)
26. Hussain, S., Bhatti, M.I., Iqbal, M.: Hadamard-type inequalities for s-convex functions I. Punjab Univ. J. Math. 41, 51–60

(2009)
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