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1. Introduction

The fractional calculus, which analyses the integrals and derivatives of arbitrary order, attracted
the attention of many researchers in the last century and continues to do so even in the present
century, as it is perceived as one of the most solid and powerful mathematical tools both in theory
and applications [1-9]. One of the pivotal efficacy of fractional calculus is that there are copious types


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022005

83

of fractional operators that appear from different aspects. The most illustrious ones are the Riemann-
Liouville and Caputo’s fractional operators that were effectively applied in developing models of
long-term memory processes and the problems that came to the fore in many areas of science and
technology [10-18]. Being incapacitated to model all the veracious problems of the world with the
operators in the traditional calculus, and for the sake of enhanced understanding and modeling the real-
world problems more accurately, researchers continuously observe the need to develop and discover
new types of fractional operators for the said cause that were confined to Riemann-Liouville fractional
derivatives and Caputo’s fractional derivatives before the hit of this century.

Katugampola [19,20] in 2011, came up with a new type of fractional operators called generalized
fractional operators to combine Riemann-Liouville and Hadamard fractional operators. Later Jarad et
al. in [21] modified these operators to include Caputo and Caputo-Hadamard fractional derivatives.
In [22], the authors established a new derivative and named it as a Conformable fractional derivative.
But this derivative faulted that it does not give the original function if the order tends to 0 and that is
a dearth. However, it is mandatory for any derivative that it should give the original function when
the order is zero and if the order is 1, it provides the first-order derivative of the function. To evade
this issue in conformable derivative, the authors in [23] provided a modification generated from the
former definition of the conformable derivative. Also, some more generalizations of these operators
are mentioned in [24]. Following the same trend, very recently some authors constructed new types
of derivative operators by replacing the singular kernel of Riemann-Liouville and Caputo with non-
singular (bounded) kernels. Although these operators suffer from various drawbacks which makes it
hard to use them, still discrete authors [25-28] and many more became enthusiastic in working with
these operators as they hold profits of Riemann-Liouville and Caputo derivative operators.

Jarad et al. in [29] developed a new class of generalized fractional operators in the sense of
Riemann-Liouville and Caputo involving a special case of proportional derivatives. After that, the
authors in [30] generalize the work done in [29] by using the concept of proportional derivatives of a
function with respect to another function. Moreover, in [31], Idris et al., constructed a new operator
called Hilfer generalized proportional fractional derivative that merges the operators defined in [29].
They also provide some fundamental properties and important lemmas.

Motivated by [31, 32], we study a proportional derivatives and provide a generalization of the
operator defined in [31] and named it as y-Hilfer generalized proportional fractional derivative of a
function with respect to another function which acts as a connection between proportional fractional
derivatives in Riemann-Liouville and Caputo sense as defined in [30].

The paper is organized as follows: In Section 2, we mention some preliminary definitions, lemmas,
and theorems that are used in other sections of the paper. In Section 3, we define the new operator, the
Y-Hilfer generalized proportional fractional derivative of a function with respect to another function,
together with some of its properties and important results. Furthermore, we discuss the equivalence
between a generalized Cauchy problem and the Volterra integral equation with this operator. The
existence and uniqueness results for the proposed problem are also conferred. In Section 4, three
illustrative examples were given, which show the theoretical analysis. In Section 5, we discuss
conclusions obtained from the analysis.
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2. Preliminaries

In this section, we recall some definitions, theorems, lemmas, corollaries and propositions which
we use later in this paper [21, 30, 32-34].
Let Q = [a,b] (0 < a < b < ) be a finite interval and y be a parameter such that n — 1 <y < n. The
space of continuous functions f on Q is denoted by C [a, b] and the associated norm is defined by [1,34]

lfllcrapr = max | f(y)l,
yela,b]

and
AC"la,b] = {f : [a,b] > R; f"" € ACla,b]},

be the space of n times absolutely continuous differentiable functions.
The weighted space C, ,[a, b] of functions f on (a, b] is defined by

Cyula, bl = {f : (a,b] = R; () - ¥(@)' f) € Cla, b},
having norm

1l anr = |00) = @) FO0) ., = max [0 - w@) £

Cla,b] yela,b]
The weighted space C;w [a, b] of functions f on (a, b] is defined by

Cryla,bl ={f : [a,b] > R; f(y) € C"'[a,bl; f"() € Cyyla,bl},

along the with norm

1fller, e = Z 1]

The above spaces satisfy the following properties:

(i) €9, la,b] = C,la,b], for n = 0.

Cla, b] ||f(”) Cyylabl’

(ii)) Forn—1<vy, <y, <n, C, yla,b]l C C,,la,b].

Definition 2.1. ( [30,32]) Let ¢g, ¢ : [0,1] X R — [0, 00) be two continuous functions such that for
all y € R and for ¢ € [0, 1], we have

ﬂlg{)g @o(P,y) =0, ﬂlg(r)g e y) =1, 0113{ wo(,y) = 1, ggllf{ e1(3,y) =0

and ¢y(3,y) # 0, 9 € (0,1]; ¢1(F,y) # 0 for ¢ € [0, 1). Also let ¥(y) be a strictly positive increasing
continuous function. Then,
JEC))

D™ () = o130 FB) + po(P, y)=—— 7o) (2.1)

gives the proportional differential operator of order ¢} with respect to function (y) of a function f(y).
In particular, when ¢(1, y) = ¢ and ¢,(,y) = 1 — 9. Then, the operator D’¥ (2.1) becomes

DM fy) = (1 = D)) + ﬂ% 22)
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and the integral corresponding to proportional derivative (2.2) is given as

T ) = é f e 00) poy (syds, (23)

a

where we assume that 7, 2 S fO») = fO).

The generalized proportional integral of order n corresponding to proportional derivative DY f(y), is
given as follows

(T2 £)y) = f OO ) — ()W (5)f(5)ds, (2.4)

ﬁnr( )
where, D= . .M ...

n—times

Now the general proportional fractional integral based on (2.4) is defined as;

Definition 2.2. ( [30,32]) If ¢ € (0, 1] and @ € C with Re(«) > 0. Then the fractional integral

(T2 ) = f T (y(y) = ()" W () f(s)ds. y > a, (2.5)

ﬁ(tl"( )
is called the left-sided generalized fractional proportional integral of order @ of the function f with

respect to another function .

Definition 2.3. ( [30,32]) For ¢ € (0,1], @ € C, Re(a@) > 0 and ¢ € Cla, b], where ¥/ (s) > 0, the
generalized left proportional fractional derivative of order « of the function f with respect to ¢ is
defined as

1,0

a/ 'Z) Y ‘?1 s n—-a—
(D3 f)) = Tt . ) ) W () f(s)ds.

where I'(-) is the gamma function and n = [Re(a)] + 1.

Proposition 2.1. ( [30,32]) If @, 8 € C such that Re(a) > 0 and Re(8) > 0, then for any > 0, we have

o1 r 9-1 a+B-
(l) (jaﬁlﬁ W(s)— l//(a))(w(s) w(a))ﬁ )(y) — W(ﬁllg)eﬂ('ﬁ(w—l//(a))(w(y) _ lﬂ(a)) B 1’
0 1 19 r 17 1 A —a—
() (D F 0 ) = p@)f ) = T T ) - w7

Theorem 2.1. ( [30, 32, 33]) Suppose ¥ € (0, 1], Re(a) > 0 and Re(B) > 0. Then, if f is continuous
and defined for y > a, we have

JENTE o) = TETE HO) = (TEE H).
Theorem 2.2. ( [30,32]) Suppose 9 € (0,1], 0 <n < [Re(a)] + 1 withn e N. If f € Li(a, b), then

DIUTE N = (T H). (26)

In particular, for n = 1, by using the Leibnitz rule , we have
@, a-1 Y 9-1 (s a=2 .7
DT N0 = g [ T — s W s @)

AIMS Mathematics Volume 7, Issue 1, 82—-103.



86

Corollary 2.1. ([30,32]) If 0 < Re(B) < Re(a) and n — 1 < Re(B) < n, n € N. then, we have
DT ) = TP ). (2.8)

Theorem 2.3. ( [30,32]) Suppose f € Li(a,b) and Re(a) > 0, 9 € (0,1], n = [Re(@)] + 1. Then, the
following equality holds

DT ) = ), yza (2.9)

Lemma 2.4. ( [32]) If « > n, ¥ € (0, 1] and n is positive integer, then we have

_§H R O) —wiay

k0
9 H (@ + k—n+ 1) (D™ )a). (2.10)

(To D ) = (DL T £)o)

k=0

Theorem 2.5. ( [32]) Assume that Re(a) > 0, n = —[—Re(a)], f € Li(a,b), and (j"“”f)(y) €
AC"[a, b]. Then,

T WO (y(y) — Y(a))*
P-il(a - j+1)

(T5 D™ F)o) = f0) = ) (T f)(a). @.11)

J=1

Definition 2.4. ( [30,32]) If ¢ € (0,1] and @ € C with Re(a) > 0, then the generalized left Caputo
proportional fractional derivative of function f with respect to function i is defined as

(o™ ) = T "”(D"”fxy)

f Ty (y) — ()Y (D F)(s)ds, (212)
T 9T(n-a) “F(n )

where, n = [Re(@)] + 1.
Corollary 2.2. [32] Let @ € C with Re(a) > 0 and ¢ € (0, ], n = [Re(@)] + 1. If f € C"[a, b] then

nz—ll "7 WO (y(y) — y(a))*

Ty (O @) (2.13)

(D r)o) = DjW[f(y) -

k=0

Proposition 2.2. ( [30,32]) If o, € C with Re(@) > 0 and Re(B) > 0, then for any ¥ > 0 and
n = [Re(a)] + 1, we obtain as follows

9TB)

o7 W)-v@) _ —a—1
TG-0° (WO) —v@)y™.

(cz)aﬂw T OO (g (5) — y(a))P )(y)
Fork=0,1,2,...,n— 1, we have
(COIe T (y(s) - (@) )y) =
In particular, (CZ)Z;ﬂ’we%(‘“s)“”(“)))(y) =0
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3. Main results

Definition 3.1. Let / = [a,b], where —co < a < b < oo be an interval and f, ¥ € C"[a,b] be
two functions such that y is positive, strictly increasing and ¢ (y) # 0, for all y € I. The y-Hilfer
generalized proportional fractional derivatives (left-sided/right-sided) of order a and type 5 of f with
respect to another function y are defined by

( a/,Bﬁ l//f)(y) — ( ﬂ(n a),d, l,[/(z)nﬂlp)j(l—ﬂ)(n )9, wf)(y) (31)
wheren—1<a<n,0<B<1withneNandd € (0,1]. Also, D™ f(y) = (1 = N f () +19£8; and
J is the generalized proportional fractional derivative defined in (2.5).

In particular, if n = 1,then0 <@ < 1 and 0 < 8 < 1, so (3.1) becomes,
(Z)a’ﬁ’ﬁ’wf)(y) — (jﬁ(l—(l)ﬂ?,w(z)l,ﬂ,w)j(]—ﬁ)(l—fl)sﬂ,lﬂf)(y)‘

Remark 3.1. From the Definition 3.1, we can view the operator Z)Zf ¥ as an interpolator between the
Riemann—Liouville and Caputo generalized proportional fractional derivatives, respectively, since

D"aﬁﬂ,lﬁ _ o an a9, lﬁf lfﬁ =0,
S = gpn-iu D ep
jai D]’l f, lfﬁ = 1.

Remark 3.2. In this paper we discuss our results involving -Hilfer generalized proportional fractional
derivatives using only one sided (left) operator. The similar procedure can be developed for the right-
sided operator.

The operator Z)Z;ﬁ " can be expressed in terms of the operators given in Definition 2.2 and Definition
2.3. This is given by the following property:

Property 3.1. The y-Hilfer generalized proportional fractional derivatives Z)Q'B Y

( aﬁﬂwf)(y) ( ,3(” @), 09”(1)11,19,1#) —ﬁ)(’l @), ﬂwf)(y) — ( ﬂ(” @), 19901)7;19,90](‘)0/)’

where y = a + f(n — a).
Proof. By the Definition 3.1 of D" and using (2.2), (2.5) , we have

( Ulﬁﬁl//f)(y) ( ,3(” QH’W(@nﬁlﬂ)j -B)(n— Ut)ﬁwf)(y)

jﬁ(n DY qyr=1.0.4 D
9T (n—7y)

is equivalent to

X f ' e WO (y(y) — w<s>)"‘7‘1w’<s>f<s>ds},

this gives by using (2.7)
1
LBn—a),9y n—1,9.0
D
=Ja ( ){0"‘7“F(n—y— 1)
X f e T VOO y(y) — () Y (s)f(s)ds}
Now repeating the above process (n — 1) times and using (2.7), we obtain the required result. O
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Theorem 3.1. Letn—1 <a<n withneN,0<B <1, 9 € (0, l]and)/—a/+ﬂ(n—a). ForneR
-1

such that n > n, then the image of the function f(y) = e 7 YO (y(y) — y(a))"" under the operator

Z)af s given as
9T

I'(n-a)
Proof. From Proposition 2.1. and (3.1), we obtain
DM () = T3 DR f )
jv DM e OO (g (y) — (@) )

aﬁﬂwf( ) = 195](W()’)—l//(d))(w(y) _ w(a))n—a—l‘

_ T y-avw(, 5w -va) _ n-y-1
= o=y Te e WO) = w@)™™)
= DI st m-sony ) - giayy.
(- a)

O

Lemma 3.2. Letn—1 <a<n withn e NO<B<1,9€0,1]andy = a+p(n - a). Ford > 0,
consider the function f(y) = e%(‘/’@)“/’("))EQ(G(d/(y) —(a))¥), where E,(-) is the Mittag-Leffler function
with one parameter. Then,

DM ) = 69° F().
Proof. Using the definition of Mittag-Leffler function and the Theorem 3.1. , we have

DI f(y) = “ﬁ’”"”{ TOODE (0 (y) - p(@))]

_ wﬁﬁw L W()-v(a) aj
Z r(w T2 W) - ¢(@)

_ ppres oo 3 ef'*F((w%v) - z@:"“
a(j —

= 09" f(y).

Property 3.2. Assume that the parameters «, 3,y satisfying the relations as
y=a+pBn—-a),n-1<a, y<n 0<B<1,

and

vy>a,y>p, n—y<n—-pn-a.
Therefore, we consider the following weighted spaces of continuous functions on (a, b] as follows:

Cob Jla.bl ={f € Coyyla.bl, DI f € Cyyla.bl),
and

Cr_, la.bl ={f € Ciyyla.bl, DI f € C,yyla. bl).
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Since D f = gPUDIV DIV it follows that

C)’

n=y.y

Lemma3.3. Letn—1<vy<nn-1<a<nwithne€Nand?¥ € (0,1]. If f € C,[a,b] then

[a,b] c C [a, b].

"7*//

“M'f(a) = hm jm”’f(y) =0, n-1<y<a.
Proof. Since f € C,[a, b], then (Y(y) — ¥(a))” f(y) is continuous on [a,b] and hence

|G - w(@) )| <N,

where y € [a, b] and N > 0 is a constant. Therefore,

j;;ﬂ’w 2L (y(y)— w(a))f(y)‘ < N aﬁz// 2L (y(s)- W(a))(l/,(s) lp(a))‘y](y)

and by Proposition 2.1, we can write

j; 9 l/, . 1@0) l/,(a))f(y)‘ [ﬂgrlzgl__;/l n)el{;al(l//(}’)—W(a))(w(y) _ W(Cl))a_y]‘

As a > 7, the RHS of above equation approaches to 0 as y — a*.

Lemma34. Letn—-1<a<n 9€(0,1,0<pB<1,withneNandy = a+Bn-a). If f € C)_

then

j)’l?‘ﬂz)yﬂlﬂf jaﬁlﬁ@aﬂﬂ*ﬂf
and

D%ﬂiﬂ Hﬂlﬁf DB(H (I)ﬂlﬁf
Proof. Using Theorem 2.1 and Property 3.1, we can write

j)’ﬂwz))’ﬂl//f: V’ﬂllf(j—ﬁ(n Cf)ﬂl//z)afﬁﬂkbf)
w+ﬁ(n (z)ﬁwj—ﬁ(n @), 1, wz)(zﬁﬂ t//f

0/+19 wz)afi'l? I,Df.
Again using Definition 2.3 and Theorem 2.1, we obtain

Dy,ﬁl// (u?;[/f Z)nﬁl//jn v, (1191//f
a+
_ z)n 9, l//jn —B(n—a),d, t//f — Z)ign—a),ﬁ,wf.

Lemma 3.5. Let f € L(a, b). If DP9 f exists in L, (a, b), then

aﬁ 9, dlja/ 0, wf ﬁ(n @),9, wz)ﬁ(n—a),ﬁ,wf
at at :

(3.2)

O

yla, bl
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Proof. From Definition 2.3., Theorem 2.1. and (3.1), we have
Da,ﬁ,ﬁl[/ aﬁzl/f ,B(n a)ﬁwz)y,ﬁw aﬁwf ,B(n a)ﬁw(z)nﬂ(//jn yﬂ(//)jaﬁw

_ j ('l 0),19,1//1)'1,19 l//ja n—-p(n—a), ﬂll’f
— ,3(” @)191/11)3(" Oé)ﬂlflf

O

Lemma 3.6. Assumen -1 < a <nforne N; 9 € (0,1,0<p<1l,andy =a+pn-a)lf
feC._labland J; P04 ¢ ¢ C,_, la, b, then Z)Z;ﬁ o 5;19"” f exists in (a, b] and

DM T () = (), y € (a,bl.

Proof. With the help of Theorem 2.5, Lemma 3.3 and Lemma 3.5, we get as follows

( w/jﬁ ://ja 9, wf)(y) — ( ﬁ(n @),9, zpz)ggn—(t),ﬁ,l//f)(y)

I ORI — (n-a)-k
= 10)= ), 5T krfg((,f) w(“),i 5@

k=1

= f).

Theorem 3.7. Forn—1<a <n,withneN, ¥ € (0,1], and 0 <B < 1. If f € C"[a, b), then

—1 B ) -w(a) _ k
Z e Y (lr//(y) W(a)) (.Z)Z;ﬂ,wf)(a) ,

aﬁﬂw —B(n RN nw?w
(DL f(y) = [ fO) -
k!

k=0

where y = a + B(k — a).

Proof. Suppose that g(y) = 7. A=Bn-l04 £(vy and n = n — B(n — @), then, by using Definition 2.4 and
Corollary 2.2, we get from (3.1) as

DM f) = D g)

—l T WO)-va)
= DZ’F"”[g(y) Z ﬂ(:,ify) L (D;"g )(a)]
k=0 '
,,9, nea), €7 VOO (y(y) — y(a))'
= DZ+ l//[ (1 —B)(n—a), l/’f(y) ZO e

{ kw(j(l -B)k—a), ﬁt/ff) )}]
_ DZ,:? ¢/|:j -B)(n—-a), ﬁwf(y) nz l(w()) l/I(a))(lr[/(y) l//(a)) (z))’lﬂ”f)(a)]‘
k=0

k!

O
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Lemma 3.8. Letn—1 < a <nwhereneN, ¢ € (0,1], 0 <8 < 1, withy = a + B(n — @) such that
n—1<y<nIffeClabland J:"""f € C la,b). then

"ol WO)-u(@) _ -k
TDE ) = 1) = ) g PO

k=1

(T Y @). (3.3)

Proof. Using Theorem 2.1 and Property 3.1, we get as
ja’ﬂ’wﬂa!ﬁ’ﬁ wf(;y) (Z 19 (//(jﬁ(n (l) 19 l/’z))’ﬂ"/’f)(y)
jy L, wz)y U, zpf(y)
Now,

Jr DV F(y)

T WO)-v(s) y-1 rm
ﬂYF(y)f WG) —w(s)) ¥ (s YDV f(s)ds

M( ) f T () - () DL (T f)s)ds

7 WO)-y(s) y-1 Loy D' Loy n Y0
M( 3 f v W) = w() 'y (DD (T £)(s) s
Using (2.2) and then integrating by parts, we obtain

j)’ 0, W@?’ B, wf(Y)

1 9-1

=~ grrple T W - @) DI P

mf e L)~ lﬁ(Y))(w(y) w(s)))’— l//( ){ - 119!!/( n 719¢/f)(s)}
Now, continue the above process (n — 1) times, we get
j)’ 9, l/’z))’ S, l//f(y)
1 L W()-(s)) y—(n—1) n—y. 9
RGLAT f e WO) =)™ (T f(s)ds

S w)- lﬁ(a))(w(y) ¢(a)) k(-
_Z — kr(y_k+ 1) {Dmkﬂw( Vﬂlllf)(a)}

. e TYOIO (y(y) — (@) | e
=TT ) - kz; e, k(20T @)

Therefore, by using Theorem 2.1 and Theorem 2.2, we arrive at (3.3). O

3.1. Equivalence between the generalized Cauchy problem and the Volterra integral equation

We consider the following nonlinear y-Hilfer generalized proportional fractional differential
equation:

DPM ey = f(y,¢(0), yel=l[abl, b>a>0, (3.4)
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where 0 < o < 1,0 < B < 1land f : I xR — R is a continuous function subject to the following
nonlocal initial condition

Ti"pla) = Zu o). y=a+Bl-a) 7€ ab)andy R (3.5)

Now, to shows the equivalence between the Cauchy problem (3.4)—(3.5) and the Volterra integral
equation

$(y) = e TYOVO (g (y) — y(a@))”

P9I ()

X Dt [ e ) - w9 s)ds (36)

25 () -9(9)) a1’
ﬂar(mf TGO 9@ (f (s, #5)ds,

where
1

A= Ti)-yla t
W)@ (y(1;) — Y(a))

9-1

P(y) = XLy e 7
We state and prove the following lemma.

Lemma 3.9. Let0 <@ < 1,0 < B <1,y = a+B(1 — ), and assume that f(-,¢(-)) € Ci_,la, b] for
any ¢ € Ci_,[a,b] where f : (a,b] XR — R be a function. If ¢ € Ci’_y[a, b), then ¢ satisfies (3.4)—(3.5)
if and only if ¢ satisfies (3.6).

Proof. Assume that ¢ € Cly_y[a, b] be a solution of (3.4)—(3.5). We prove that ¢ is also solution of
(3.6). From the Lemma (3.8) with n = 1, we have

-1

e TV YG) — @) iy
510 (T ¢)@.

TV D p(y) = () -

which implies that

e TV (Y(y) — (@)

-y, 9%
0= 91 (y) 0O 3.7)
2L () -y(s)) a=1
+ gres [ FO0) w005
Next, taking y = 7; and then multiplying on both side by y; in (3.7), we obtain
1) = 7_1 -1 _ (1’
() = W( l;)y_l ;"0((;1))) e PO Iy (T f(s, p(5)) (T,
this implies that
2 1) = 1r( ) 2 Zuzei’ﬂ“‘“ﬂ) YO ()~ p@) T @
i=1
(3.8)

ﬂgl"(a) Z,Uz f l el’ﬁl(l//(ﬂ) w(s))(l//(ﬂ) lﬁ(S))a ll//,(S)f(S, ¢(S))ds, > a

AIMS Mathematics Volume 7, Issue 1, 82—-103.



93

From the initial condition (3.5, we obtain

9 'T(y)

1=y 0.y -
T $la) = 9T (@)

Ame TSN () — () Y (Of (s B)ds. (3.9)
i=1 ar

Thus, the required result is obtained by replacing (3.9) in (3.7), which shows that ¢(y) satisfies (3.6).
Conversely, suppose that ¢ € Cf_y[a, b] satisfies (3.6), we show that ¢ also satisfies (3.4)—(3.5). Now
by applying the operator Z)Z;ﬂ’w on both sides of (3.6) and then using Proposition 2.1 and Lemma 3.4,
yields

¢TI (y(y) ~ @)

VAR —_ gy Oy
D7) =D, ( 9T(@)

x Z#f f SO () p(5) W (s ‘b(s))ds) (3.10)

Z)y 9, w( f e 2L (y(y)- ‘/’(‘»(tp(y) 1//(5)) (s)f(s, ¢(s))ds)
9T (@)
= DI [ (s, () )

Since by hypothesis ¢ € Cf_y[a, b] and by the definition of Cf_y[a, b] we have Z)Z;ﬂ’waﬁ € Cy,la,b]; so
from (3.10) , we have
Z)Bgl—a),ﬁ,lﬁf — Z)l,ﬁ,l//jl—ﬁ(l—a),ﬁ,l//f c Cl —yz//[a’ b]

Also for f(-,¢(-)) € Ci_,[a, b] and from Theorem 2.3, it follows that

1-B(1-a),9,
JAOM e, la,bl,

a

this implies from the definition of C" [a b], that

JIACOW el la,bl.

1=y

Now, applying the operator f =05 51 both sides of (3.10) and with the help of Theorem 2.5 and
Lemma 3.3, we obtain

jﬁ(l —a).8, (pZ)Zlﬂ Y(y) = ﬁ(l )9, wz)g(f—“)ﬁ"”f(s, d($))(y)
e T W@ (P00 £y g
9E1--1T(B(1 —

= f(,0() - W) — @' GB.1D)

= f(y. 6()).

Hence,
DI e(y) = f(.6()), ¥ € [a,b].

O
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Next, we prove that the initial condition of (3.4) also holds. To prove this, applying ;: 7 1o both
sides of (3.6) and then using Proposition 2.1 and Theorem 2.1, we get

R R R
XZM f YOO 1) — () ()£ ¢(s))ds)

gl 2L (y(y) -y (s)) a1
v (ﬂar(a) f W) = g ¥ () (s, ¢(s))ds)

P-Ir o1 i ol .’
:W«(Z)) e W”Zu f T )~ g()" Y () (5. 9()ds

+ TN £ (s, 9() ).
(3.12)

Since 1 —y < B(1 — @), so taking the limit as y — a* and using Lemma 3.3 in (3.12), we get

2 ¢ Ty a1 .7
T = T DAY [Tt ) W s doNds. (B13)
i=1 a

Now, substituting y = 7; and then multiplying through out by y; in (3.6),

e T VD ()~ y(a))!

Hip(T)) = 9T(@)

x D h f TR (1) — y(5) W () (5. B5))ds
i=1 a*

! " 251 () -y (s)) N a-1,
+ 9T (a) L* € (W) = w(s))" W (9)f(s, d(s))ds,

this implies that

Zu b(r) = A Zu T F(5 0 N)T) D e P () — @y

i=1

* Zu (T3 (s ()@

- Z,u (T2 £ (s, ps0) @) (1 + /lZu ¢TI ()~ y(@))” 1)

Thus,

24 ]F T a—1 .7
Zm( )= ﬂar((y)) Zﬂi f &7 VIV Y (zy) — ()" () (5, B(9))ds. (3.14)
i=1 ar

Hence, from (3.13) and (3.14), we have

T, pah) = Zu o(1), (3.15)

and this completes the proof.
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3.2. Existence of solution

Utilizing the concepts of krasnoselskii’s fixed point theorem, in this subsection, we state and prove

the existence of at least one solution of problem (3.4)—(3.5) in the weighted space c** 1oy, w[a, b].

Theorem 3.10. (Krasnoselskii’s fixed point theorem) Let B be a nonempty bounded closed convex
subset of a Banach space X. Let N,M : B — X be two continuous operators satisfying:

(i) Nx + My € B whenever x,y € B;

(ii) N is compact and continuous;

(iii) M is contraction mapping;
then, there exist u € B such that u = Nu + Mu.

For that firstly we called of the following assumptions:
(C1). Let f : (a,b] x R — R be a function such that f € Cf(_ly_j)[a, b), for any ¢ € CT_% yla. bl.

(C2). There exists a constant K > 0 such that

|f(y,w) —f(y,5)| < Klw-w|, forallw,w € Randy € I.

(C3). Assume that
KY < 1,

where
_ 80,0
9T (@)

(|A| D i) = (@)™ + () - pi@)” ), (3.16)
i=1

and |
By, a) = f Y71 - y)*'dy, Re(y), Re(a) > 0,
0

is the beta function.

(C4). Also let
Ka <1,

where
_ B0, ) a)

a+ 1
= 9T(a) IZﬂ(w(m w(@)™" (3.17)

Now, the following theorem yields the existence of at least one solution for the problem (3.4).

Theorem 3.11. Let 0 < @ < 1,0 < g < landy = a+ (1 — @). Suppose that the assumptions
(C1),(C2), and (C4) holds. Then the problem (3.4)—(3.5) has at least one solution in the space
C}_ la,bl.

-y

Proof. Given that [yllc,_, (a6 = SUP,c; |(o,b(y) w(a)) 7)(()/)| and choose & > . ||xllc,_, (a1, Where

By, )

= 5@

(|A| Zu,(m) (@) W) — w(@)") (3.18)
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also consider B, = {¢ € Cla, D] : ol e < g}. Thus, for all y € [a, b] consider the operators N and
M defined on B, by

(NOO) = G OOV g(y) — ()W ()£ (5, B(5))ds,
A 9-1 —
(Me)(y) = mﬁ(“”—“””(w@) ~ (@)

XD [T (m) = u ) (5. b5
i=1 a

Step 1. For all ¢, ¢ € B, yields

(NO) + MFGNW) - (@) 7|

L W) —y@)™
B VT ()

' ﬁalﬁl ) Z’“‘f f (W)~ 0" ) — @) s, BN ) — (@) s

,
f WO =) W) = w@) W ()| (s, bW (s) - @) s

a+y— 1 a
ILVII[WF( )|A|Zﬂt(w(71)_¢’( a)) ﬁal"( )(lﬁ(b) y(a))

< |ll.#
<9 < oo,

this implies that N + M¢ € B,.
Step 2. We show that M is a contraction. Let ¢, ¢ € Ciyla,bl and y € I, then

(M) — MEO) W) - w<a>)1‘y\
— [Ae T W)~ w(a»zlujl PO (£ (s, (s)) = £(s5,B(5)))(T7)

< ﬁKr'?CL) ;ui f @) =) W) — @)Y (9)Ie(s) - Bls)lds
KA = e -
< [ﬂall_(cly)B(% @) ;ﬂi(l/’(‘ri) —y(a)*™” ]]||¢ = @ller,y1an
< Kallp = dlic,_, 10 (3.19)

Hence, it follows from (C4) that M is a contraction.

Step 3. Now we verify that the operator N is continuous and compact.
Since the function f is continuous, so the operator N is also continuous ,
Hence, for any ¢ € C,_,[a, b], we obtain

(lﬁ(b) Y(@)" < oo.

NGl < ILVIIWF( )
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This shows that N is uniformly bounded on B,. So, it remains to prove that the operator N is compact.
Denoting sup, s c/xp, [f (7, #()| = 6 < co and forany a < 71 <7, < b,

| (r2) - 9(@)' 7 (Ng(2)) + W) - @) T (V)
_ ‘(lﬁ(Tz) (@)

f ¢ TV (r) — ()" () (5. H(s))ds

9T (@) +
_ 1-y 7|
N (w(ﬁz)wrw(a)) f TV (7 — ()W (5)f (s, d(5))ds
(@) at
1 19) _ e — a—
< JT f |(W(r2) = w(@) 7 (i) = w(s) ™ W) - w(@) W) - ws) ] (3.20)
(CU) at

X Y (9)|f (s, ¢(5))|ds
1 2 B o
ﬂal"(a,) fr; '7[’(7-1) - '7[’(61))1 y(lﬂ(Tl) — w(S))a ll,// (S)|f(s, </>(S))|ds

— 0 as 1ty — 1. (3.21)

+

As a consequence of Arzela-Ascoli theorem N is compact on B,. Thus, as a result of Theorem 3.10,
problem (3.4)—(3.5) has at least one solution. O

3.3. Uniqueness of solution

In this subsection, we state and prove the uniqueness of solutions of problem (3.4)—(3.5) via Banach
contraction principle,.

Theorem 3.12. (Contraction mapping principle) Let X be a Banach space, S C X be closed and
T : S — S a contraction mapping i.e

[Tz — TZ|| < kllz — Z||, forall z,Z € S, and some k € (0, 1).
Then S has a unique fixed point.
Theorem 3.13. Let 0 < a < 1,0 < B < 1landy = a+ B(1 — a). Suppose that the assumptions

(C2) — (C3) holds, then the problem (3.4)—(3.5) has a unique solution in the space CT_% w[a, b].

Proof. Consider the fractional operator T : C,_, 4[a, b] — C,_,la, b] defined by:

A 9-1 _
(TP)(y) = mew@*‘“‘l”(w@) — (@)

x D h f TN (1) — y(5) W () (5. D))
i=1

a+

1 ’y — a— ’
i f e T YOO () — ()W ()£ (5, §(s))ds. (3.22)
9T (@) J,+
Clearly the operator T is well defined. Now for any ¢, ¢, € C_,[a,b], y € I and 'e%‘m)' < 1, gives

((Te ) = TEIMWO) - @)
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|A| T a-1,’
< oo )Zlm [ @@= v Ol 0105 - S5, b2
_ 1=y )
L WO ;ar‘i(“)) [ w0y - sy W 601050 - 5. 0209
a’) at
K|A = Ti _ 1
< ﬂar'(c'l)( Zui f W) =) W)~ w@) (s)ds)||¢1 ~ alle,.,pian
* ST )(w(w W) Y( f W) = () W(s) —w@) 'y <s>ds)||¢1 alle, g tai)
K|A ity
< ﬂ“ll“( l) v, CY)Z#i(lﬁ(Ti) — () 7 g1 = palle,, y1an
ﬁ“l"( )(l//(b) (@) By, o)llp1 — allc,_, y1ap (3.23)

Hence,

I(Tg1) — (T¢2)||c1 Sulab]
B(y, Cl)(|/\| Z,Uz(%l/(ﬂ) W)™+ (Wb) - (@) |ligr = pallc, Julab]

N 001“( )
< KY¢1 — dallc,, y1at (3.24)

Thus, from (C3) it follows that T is a contraction map. So, in view of the Theorem 3.12, there exists
a unique solution of problem (3.4)—(3.5). O

4. Illustrative examples

Example 4.1. Consider the following fractional differential equation with generalized Hilfer’s
proportional fractional derivative as:

134y _ Cosx lpO —
i .
17 (0) = 5¢( )+ V3 ¢(§)-
On comparing (3.4)—(3.5) with (4.1), we obtain the values as follows
1 2 4 5 1 3
azi,ﬁzg,1925,’)/:8,61:0,[):1,/.11:5,/12: \/5, asm=2,s0T1| = g T2:§€I.
Also f : I xR — R is a function defined by
COSy 1 leO)l

Clearly, f is continuous function and
1
£ ¢1) = £, )| < %|¢1 — ¢al.
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It follows that conditions (C1) and (C2) holds with K = %. Now, choose ¢(y) = y* + 1, then it implies
that y(y) is positive increasing and continuous function in [0, 1] and ¢’(y) # O for all y € I. Substituting
these values and after simple calculation, yields

1
(%)%_11“(%) - (Se(%)(% +1- 1)%_1 + ﬁe(%)(% 11— 1)%—1)

IA| = ~0.12,

and
, 1 s+a-l 9 3+e-1 1
Wy = %{V\l(S(— F1-1)7" 4 VB 1-1) ) L (2- 1)i} ~ 2.04,
($)T3) ? 25
5 2
this implies that KW < 1, which is (C3).
Furthermore, A = 0.61 > 0 and KA < 1, which means that the assumption (C4) is also satisfied.

Hence, by Theorem 3.11 and Theorem 3.13, problem (4.1) has at least one solution and hence is
unique on the interval /.

Example 4.2. Consider the y-Hilfer generalized proportional fractional differential equation of the
form

331y oy 2 ol =
{D8*4 To0) =5+ 53 oo Y EI= (0,21, (4.2)

57 0(0) = =30(3) + 30(1) +3V28(5). T T T € (0.

After doing the same steps as in Example 1 above with y/(y) = 2y* + 3y* + 1, we obtain the values as
Al # 0.73, ¥ ~ 14.43 and A ~ 7.23. Therefore,

KY¥Y ~ 082 <1,

and
KA =057 <1,

where, K = % So, again in view of Theorem 3.11 and Theorem 3.13, the problem (4.2) has atleast
one solution and hence a unique solution on I.

Example 4.3. Let

ERCN N sin 2y
{DSJ‘) ¢0) = o2 (hay)  vel=104], 4.3)

T 90 = =9(5) +20G3) +2V36(3) + 4V26(%), 71, T2 T3, Ta € (0,4).

be the y-Hilfer generalized proportional fractional differential equation.

On comparing (4.3) with (3.4), (3.5), we have the values of parameters as follows: @ = %, B =

17_0’03:1’722’“:0’177:4’ﬂ1=—1,ﬂ2:2,ﬂ3:2\/§,ﬂ4=4‘/§ as m=4, so 7| = 1,

T, =3, T3 = %, 74 = 5 € I. In addition, let y(y) = y® + 2y + 1. Now, after performing simple

computations, we obtain the estimated values as |A| = 0.26, ¥ ~ 14.06 and A =~ 6.29. Since,

KY¥Y =~ 0.70 < 1,
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and
KA =031 <1,

where, K = %. Thus, with the help of Theorem 3.11 and Theorem 3.13, the problem (4.3) has atleast
one solution and hence a unique solution on I.

5. Conclusions

The main aim of this paper is to propose a generalized fractional derivative Z)Z;ﬁ ¥ with three
parameters @, 8 and ¢ of a function with respect to another function i, in the setting of Hilfer
generalized proportional fractional derivative. We derived some important properties of the proposed
derivative and we investigated conditions for which the semigroup properties are valid. Considering
the nonlinear fractional differential equations in sense of the proposed derivative, we established the
relationship between the Volterra integral equations and investigated its existence and uniqueness of
solutions using Krasnoselskii’s and Banach fixed point theorems. Furthermore, some examples are
illustrated to support the theoretical analysis. In addition, this paper improves the preceding ones as it
unifies two different derivatives which has many applications in science and engineering. Besides, its
of great important to note that:

e Setting ¢/(y) = y in problem (3.4)—(3.5), the formulation reduces to Hifer generalized proportional
fractional derivative studied by Idris et al. [31].

e Setting ¢ = 1, then the derivative operator Z)Zf ¥ reduces to the Y-Hilfer fractional derivative
Z)Zf ¥ studied by J.Vanterler et al. [34].

Finally, we conclude that the results obtained are new and generalized the existence ones in the
literature and this achievement can be regarded towards the improvement of qualitative aspect of
fractional calculus.
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