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Abstract: The purpose of this article is to construct some
novel exact travelling and solitary wave solutions of
the time fractional (2 + 1) dimensional Konopelchenko—
Dubrovsky equation, and two different forms of integra-
tion schemes have been utilized in this context. As a
result, a variety of bright and dark solitons, kink- and
antikink-type solitons, hyperbolic functions, trigono-
metric functions, elliptic functions, periodic solitary
wave solutions and travelling wave solutions are ob-
tained, and the sufficient conditions for the existence
of solution are also discussed. Moreover, some of the
obtained solutions are illustrated as two- and three-di-
mensional graphical images by using computational soft-
ware Mathematica. These types of solutions have a wide
range of applications in applied sciences and mathema-
tical physics. The proposed methods are very useful for
solving nonlinear partial differential equations arising in
physical science and engineering.

Keywords: Fractional Konopelchenko-Dubrovsky equa-
tion, Jumarie’s modified Riemann-Liouville, unified Riccati
equation expansion, modified extended auxiliary equation
mapping method

1 Introduction

Over the last few decades, nonlinear phenomena have
been observed to have fascinating characteristics in
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mathematical physics and engineering. The phenomena
of nonlinear evaluation equations (NLEEs) have attracted
much attention and have become one of the most inter-
esting fields of research. These types of equations are
broadly utilized to explain complex physical phenomena
arising in fluid mechanics, plasma wave, optical fibre
telecommunication, biophysics, soliton theory and atmo-
spheric science [1-3]. Nowadays, for the constructions of
the travelling wave solutions of these types of coupled
equations have been one of the most attractive areas of
research, exact solutions of coupled nonlinear equations
can be useful for better understanding rather than nu-
merical solutions. Therefore, it is necessary for mathema-
ticians and physicists to construct the exact solutions of
these NLEEs for aiming this, and many effective and
powerful techniques have been established such as the
inverse scattering transformation [4,5], the Backlund trans-
formation technique [6], the auxiliary equation method
[7,8], the extended direct algebraic method [9,10], the Dar-
boux transformation method [11], the homotopy perturba-
tion method [12,13] and many others [14-16]. Recently,
many scientists and researchers have agreed that we
cannot neglect space and time-fractional evaluation for
exploring the many physical problems due to the presence
of nonlocality or nonconservative systems in real-world
problem. For this purpose, scientist community have de-
noted their energy for finding new solutions of NLEEs by
using various types of fractional derivatives such as con-
formable fractional [17], beta-fractional [18], M-truncated
fractional [19] and time-fractional depending upon the re-
quirement of the dynamical system.

In our present work, the unified Riccati equation ex-
pansion method and the modified extended auxiliary
equation mapping method are successfully employed
to construct a variety of new travelling wave solutions
to a coupled time fractional (2 + 1) dimensional
Konopelchenko—Dubrovsky system [20,21]:
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where Y =Y(x,y,t), E=E(x,y,t) are complex valued
functions and p, A are real constants while D;* represents
the conformable derivative operator of order a. The inde-
pendent variables t, x and y are temporal and spatial
variables. The Konopelchenko-Dubrovsky equation
(KDE) system is widely used by many authors in different
forms such as the coupled system equation (1) will give
Kadomtsev—Petviashvili [22] and modified Kadomtsev—
Petviashvili [23] for p =0 and A =0 and many more
[24-34].

Fractional calculus has been found to have a revolu-
tionary effect in many physical phenomena to overcome
the limitations found in classical integers and have many
applications such as signal processing, acoustic waves,
systems identifications, biomechanics and many others
[35-37]. Due to abundant features of fractional differen-
tial equations (FDEs), it has become one of the most in-
teresting fields of research. For this purpose, various
techniques have been developed to formulate exact and
travelling wave solutions of FDEs. Recently, a new defini-
tion of fractional calculus has been introduced by
Jumarie’s modified Riemann-Liouville (mRL) of order a
as [38,39]:

Y, (<0 (%) pit + (a - n)g)
P () = Tim | (») ,
a—0 q* )

aeR O0<ac<O.

This paper is arranged as follows: in Section 2, the
mathematical analysis of (1) is discussed, and the unified
Riccati equation expansion and the modified extended
auxiliary equation mapping method are applied to ex-
tract a variety of novel solutions in Sections 3 and 4.
Finally, in Section 5 concluding remarks are presented.

2 Mathematical analysis

In this section, consider the travelling wave transforma-
tion in equation (1) as

Y(x,y,t) =¥(0), Ex,y,t)=>20),
pyt” 3)

Ca+1)’

0=pux+wy+

where p,, 4, and p; and a are constants to be determined.
By utilizing the aforementioned transformation, we ac-
quire the following ordinary differential equation of the
couple system as
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By integrating (5) once with respect to 8, we acquire
wY
M

D= +c, (6)

where c is the constant of integration, by inserting equa-
tion (6) into equation (4), we obtain
= 2"+ 3] Y+ 6y (pp, — 24 WY

) Sy @)
+2Ccpp; + pypy — 3p)¥ = 0.

2.1 The unified Riccati equation expansion
method

Let us suppose the solution of equation (7) will be of
the form:

¥(8) = by + b1x(6), (8)

where by and b; are parameters to be determined, such
that b; #+ 0, while y(6) satisfies the Riccati equation:

X'©) =fo + fix(0) + £Lx*(0), &)

where f; (i = 0, 1, 2) are constants to be determined, such
that /5 # 0. Now, equation (9) has the formal rational
solution of the form:

JA
fi /A ki tanh (76) +

2, 26

ko
X)) = ,

10
ki + ko tanh(f@] (10)

A> 0, (k + k) 0,

e
k3 tan (——60) - k4
x@ = -2 X8 (9) ,

2 2 11
. /2 ks + ky tan[?@j 1
A<O, (ks +kZ) +0,
and
fi 1
0) = -—— - , A=0, 12
x(6) % Foic (12)
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where A = f? - 4fof; and k; (i=1,2,3,4) are arbitrary
constants and c is the integration constant. Now, putting
equation (8) along with (9) into equation (7), and then
collecting each coefficient of all terms with same powers
of fi(®) (i=0,1,2,3,4)to zero, we get a system of alge-
braic equations for fy, fi, >, bo and b;.

= bifo[Bu’(4boA + bgp — 2cp) — 2, 3bopup + 1)
+2(f + 2fofo)u)' + 651 =0,
= bi[ fiB3p; (4boA + b3p — 2cp) — 2u,3bop,p + 1)
+2(f + 8fofo)u, + 61))
+ 6bifop,(My(bop + 24) — ppp)] = 0,
- bil L3ul(4boA + bgp - 2¢p) — 2u,(3bopp + i)
+207fF + 8fof ), + 6115)
+ 6b1fipy (g (bop + 24) — ,p) + 3bifoulpl = 0,
= 3b1, 2b1f5(py (bop + 21) — pyp)
+bifimp + 8fifiu]’] = 0,

= 3bi[blfoplp + 4f3 1. (13)

DE GRUYTER

Solving this system of algebraic equations, with
the aid of Mathematica yields the following results of
the form:

CaseI:
b thiul o - 24 + p
o=* ’
WP
2if 1y
bl:i ’ flzfi’fZ:fZ’ (14)
N/
. 611 (cp? + 20%) + f7 ' p + 20, p (s — A1) + 31, (p - 2)p
0 — .

4futp

From equations (3), (6), (7), (8), (10) and (14), for only the
positive value of by, the solutions of equation (1) can be
acquired as follows:

mp - 24y, — i\/2)11p(6}ly2 - 1) - 6},112(Cp2 +20) - 3“22('0 - 2)p

\IJI(X’ Y, t) =
Hp
_ _ 2 2 2y _ 2 _
fl tanh (\/2V1P(GA}‘2 ) 6}‘;(5417 +24%) =3y (p - 2)p (9) +f2]
P
_ _ 2 2 2y _ 200 ’
£+ f tanh ( \/ 2060ty — ) 6;12(65 +20) - 312 - Dp (e)j
WP
wY U te
O, y,t) =—~—+c, O=ux+ + . 15
106y, t) ) H wy T(a + 1) (15)

Case II:

If we set fi = 0 and f, # O in equation (15), then we have singular soliton solution:

Wop — 24, - i\/2#1P(6/lﬂz W) - 61112(‘:/)2 +20%) - 3}122(P -2p

\PZ(X’y’t):
Hmp
2, p(6A1, — 1) — 612(cp? + 2A%) — 3ul(p - 2
Coth\/ulp( Wy — 1s) ul(/: 20 - 3430 - 2p |
4ul'p
P2 st
Dy(x,y,t) = —— , 0= .
2%, y, t) " +C y1x+y2y+r(a+l)

Case III:

If we set fi # 0 and f, = 0 in equation (15), then we have the dark soliton solution:

\IJ3(X’ Y, t) =

1P — 20, — i\ 2,p(6A, — ) — 6p(cp? + 202) - 3p2(p - 2)p

Wp

{tanh [ \/ 2p(6My — 1) — 6u2(cp? + 20)

) ¥;

1

D3(x, y, t) = +c,

0 =px+ iy +

4p'p

ust®
Ta+1)"

— 2 p—
3u;,(p - 2)p (e)ﬂ’
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These results are valid for

it p(=6p(cp? + 20%) + 2u,p(6AW, — 5) — 35

Case IV:
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-2)p) < 0.

From equations (3), (6)—(8), (11) and (14), we have the following new solitary solutions of equation (1):

‘H,(X, Y, t) =

Wop — 24, + 1\J6u2(cp? + 202) - 2u,p(6A, — 1) + 3uZ(p - 2)p

Hp

4utp

6uf(cp? + 22%) — 2u,p(6Ap, — 3ul(p-2
fi tan (\/ Ui (Cp” + 2A%) = 22U, p(6AY, — 1) + 35 (p - 2)p (9) +f2j

6u2(cp? + 2A2) — 2u,p(6Ap, — 3ul(p-2 ’
fi + f, tan (\/ W (cp? +24%) uli(]ﬁzz M) +3uy(p-2)p (Q)J
1

¥,
D(x, y, t) = B c,

1
Case V:

0=pux+wy+

Kstt
Ca+1)°

Similarly, for f; = 0 and f, # O in equation (29), we have the periodic solution:

WP — 24, + 1\J6u2(cp? + 202) - 2u,p(6A, — 1) + 3uZ(p — 2)p

\I"5(X,)/,t)=
mp
6u2(cp? + 242) — 2u, p(6Au, — 1) + 3ul(p — 2
cot| | BHi(eP ) = 2pu;p( 4;42 1) + 3, (p >p)(9),
4u’p
wYs Kt
Os(x,y, ) =—==+¢c, 0= .
5(X, ¥, t) " +c 'ulx+y2)/+1“(a+1)

Case VI:

When f; # 0 and f, = 0 in equation (29), we have the periodic solution:

Jop — 201, + 1,J6p(cp? + 20%) — 2u,p(6M, — 1) + 3uZ(p - 2)p

\IIG(X’ Y, t) =
mp
6U2(cp? + 242 — 2u. p(6Aw, — us) + 3u(p - 2
can | [BH(P ) = 2u,p( 4u2 W+ 30 —2p o 1|
4u'p
1Y st
Og(x,y,t) =——+c¢c, 0= .
6(X, ¥, t) N + HX + Ly + T+ 1)
Y U t®
These results are valid for D;(x, y, ) =2 +c, 0=pXx+py+———.(22)
M I'a+1)

w1 p(6pl(cp? + 24%) — 2u,p(6Ap, — 13)
+3ul(p - 2)p) > 0.
Case VII:

From equations (3), (6)—(8), (12) and (14), we have
the rational solution of equation (1) as:
2if 1y

S P . . W
7%, ¥, t) }1 P+ f0) (21)

2.2 Modified extended auxiliary equation
mapping method

In this section, the modified extended auxiliary equation
mapping method is employed to the time fractional (2 + 1)
dimensional KDE to compute the families of travelling
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and solitary wave solutions. The formal solutions of the
couple system of KDE have a series of the following form:

= Y fix®) + Y fix(®) + ) fix(0)*'(6)

i=0 i=-1 i=2
X'
Z fl+2 [ (9) J

DO) = Y fix®F + Y fix©6) + Zf,x(e)f '(6)
j=0 j=-1 j=2
® j (24)
X
ZEQ((QJ
where fy, fi, ..., fy are constants and m, n are the non-

negative integers, the values of y(6) and y’(0) satisfy the
following equations:

Y(6)
(23)

2
X% (0) = (d_xj =yx2(0) + X3 (0) + y3x4(0), (25)

do
X'6) = Wx©) + 20 + 200, (20
X'"(6) = (1 + 3y,x(0) + 6y5x2(0))x'(0), (27)

where y,, y, and y; are arbitrary constants. Balancing ¥'"
and ¥2V¥' in equation (7), we acquire N = 1. The formal
solutions of equation (7) will be of the form:

X' (©)
fo+ fix©0) + > (9) 3)((9)'
Inserting equation (28) into equation (7) and by
equating the coefficients of all terms of
X'y (i=0,1;j=0,1,2,3,4,..,n) to zero, we have a
system of algebraic equations. Then by solving this
system of equation by utilizing any computational solver
software such as Mathematica, Maple and MATLAB, we
determine the values of fy, fi, f, f.

Y() =

(28)

Case I:
2Lp.[Y; — B JYs + iR P
fO = I’
2u,p./y;
fi - iZiul\/%,fz=f3=0
(29)
— _3C — 6_A2 + 3 — 3_)/22
My =py|—3cp ) | P 8,
3ul(p - 2
+ 6Ap, — HZ—)
2

Inserting equation (29) into equation (28), for only
the positive value of f;, the solutions of equation (1) can
be acquired as follows:
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\Fl’l(X, y, t)
_zllzp\/% —4/\].11\/73 +iYZV12\/ﬁ
2up.fy; (30)
. [a
)
2N ,
¢
Dy4(x, y,t) = B, 6 (31)
1
\I"l’z(x, y, t)
3P Vs - A Y + i P
2u,p.[vs
32
- eosinh{ﬁ(ﬂﬁ“‘l‘z)”f u;il)ﬂ G2
iu \/j y3|1+
Iy \/_3 8o+ cosh[\/Tl(M"*sz*'m)}
\/[—) ’
Y
(Dl,Z(X! y, t) — M + C, (33)
1
\1’1,3(X, Y, t)
_2pYs — ALY + iy, P
2up.Jys

€ [mh[\/ﬁ(ylx + Iy + rz‘;i)ﬂ + qj o (34)

¢
801+ ¢% + cosh [m(ylx + Y+ ”“3”)”

2ipy \fy; | -

N
¥
®y5(x, ¥, £) = % e (35)
1
Case II:
Piy — 24, i
fo = P 2 ﬁ—ﬂu( =0, f=sts
Hyp ' N
A 6ul(cp? + 20) — 120,p + ' ppy; + 315 (0 - 2)p

Inserting equation (36) into equation (28), for only
the positive values of f; and f;, the solutions of equation
(1) can be acquired as follows:

-2A
\IJZ,I(X’ Y, t) = M
mp
TN (1 + €p coth [@(G)D

2N (37)

2
iylmeocsch[@(e)}
JP (2 + 2¢0 coth [@(6)},
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Y
qDZ,l(X) Y, t) = M +C,
! (38)

0=ux+ + Kt
THX TR Ta+1)’

\PZ,Z(X’ Y, t)

. i €o sinh /1 (0)]
Py~ 2y 1111\/;\/)’—3(1 T G0+ cosh (7 0)]

mp 2Jp
41 \/¥1€0(6p cosh [/y (0)] + 1)

" P 6o +cosh| \/71 )] (60 + cosh[\/V1 ©)] + €osinh [\/71 o)’

¥,
q)Z,Z(X’ )” t) = M +C,
H . (39)
0=ux+uwy+ =k
H 103 T@a+1)

¥),3(x, y, )

. eo(sinh [/7;(0)] + 6o)
i V| ——F— -1
P -2y My ( So\1+4? + cosh [[7;(0)] j

WP N/
. (80+/1+¢? cosh (V1 (0)] g sinh [/, (0)] +1)
(g0 (sinh [/y;(0)] + q) +cosh [/y;(0)] + 6o+/1 + ¢?)

!
X ’
JP (cosh [(J7(0)] + 8o\/1 + ¢?) (40)
¥
D500, y, 1) = P22 4 ¢
l'll . (41)
0=pux+ + el
MXTHY T Ty
Case III:
3cy;
fO = 0! fl = iz"’lz ’
"\ i - 305 - pny!
f2 :f3 =0,
_ a — 345 - py!
3cp; ’ (42)
_ 2095~ bl — 6K + priiy)

2

u

V3
x > -
\/30(1“‘1113 = 3u; - pyily)

Inserting equation (42) into equation (28), for only
the positive value of f;, the solutions of equation (1) can
be acquired as follows:
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\113,1()(, Y, t)

tﬂ
2‘1112),1 \/3—%(14. €o COth[@ (,Ll1X+}12y+ r::+ 1)):D

Yoyt = 313 - pyip’ “3)
¥

D31(x, y, t) = % +c, (4t4)
1

\113’2()(’ Y, t)

€o sinh [Wl (ylx Y+ %ﬂ (45)
)

[
80+ cosh ‘:\M(ylx Y+ ﬁ

z 3":,,_;\/731‘*

>

JHas = 3u2 - pyf

yz\ylz

1

q)3,2(x’ Vs t) = +C, (46)

W5 5(x,y, £)
go(sil’lh {\/71 [ﬂlx Tyt %ﬂ " qj

2l \Beys |- -1
171 3 o /1+qZ+cosh‘:\m(p1x+u2y+%):|

Vo Babs = 37 = pyip’ (47)
D35(x,y, ) = ZAEE +c. (48)
)
Case IV:
fo=F=f=0, f;=¢%, =’;_Z2,
b )

3u; — Myl — 3Py,
2u) '

1:

Inserting equation (49) into equation (28), for only the
positive value of f;, the solutions of equation (1) can be
acquired as follows:

%,I(X’ y’ t)
. v ta 2
M, /Y1 €0 CSCh[_;1 (Hlx Ty + 1“(}:13+1))] s

ta
JP1+ € coth [@ (},llx + Y + r(’:+ 1))} (50)

}12_\1’4,1
M
Zi;zl\/V1 €0(0p cosh [(0)] + 1)
JB (60 + cosh [y(6)](8o + cosh [;(6)] (52)
+ €o sinh [(0)])

Dy1(x, y, t) = +c, (51)

W, 200) =
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Y,
Do,y 1) = 2202 4,
H ) (53)
0=pux+wy+ !
X Ta+1)°

\P4,3(Xs Y, t)
_ (80+/1 + g* cosh [y,(8)] - q sinh [y(8)] +1)
(eo(sinh [y(0)]+¢q) + cosh [y(0)]+80+/1 + g%)

2ip,
4
f(cosh W(O)] + 8041 + ¢ 2y’ (4)
¥,
Dy 3(x,y, t) = Kt +c,
l’ll . (55)
0=ux+uwy+ =k
HXTIY Y Tav )
Case V:
fo=£=0,
2
6
fox Hi\/6CY3
JHEo% + 2y - 62
£zt K\ 6ey;
VU v+ 2y — 6112 (56)
_ 61y — PHMy — 2454
6cp; ’
Lo O PR — 21
12cp} '

Inserting equation (56) into equation (28), for only the
positive value of f; and f;, the solutions of equation (1)
can be acquired as follows:

\PS,I(X’ Y, t)
1 6eys

VLY + sy — 617
2
] (l + € coth [@(G)D JVi€o csch[@(@)}
+

(57)

X s
Y2 2 + 2¢o coth [@(9)}
W
Dsa(x,y, £) = 222 4 g,
M . (58)
0=pux+uwy+ Lk
H 1) Ta+1)
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‘Y5,2(X7 Y, t)
" €o sinh [ /y;(0)]
‘ulz 6Cy3 \/7\/),—3 ( 8o + cosh [\/1}71(9 )
VI PV 2 — i
B JY €o(8o cosh [y(6)] + 1) j
(6o +cosh [y,(8)]1(6 + cosh [y(8)] + €o sinh [y(8)]) ’
(59)
V.
(DS,Z(X’ y’ t) = FZ >2 + C,
Hl . (60)
0=pux+uwy+ =k
WX+ Ta+1)
‘{IS,B(Xa Y, t)
__co(sinh [ (0)]+60) 1
ul/6cy, 1 60y1+@ + cosh (37 (0)]
\/ W' PYy+ 25— 615 Ya
(61)
(80+/1+¢? cosh [y(0)]—g sinh [y(0)] +1)
(eo(sinh [y;(8)] +q) +cosh [,(0)] + 80 1+g?)
« 1
cosh [ 7 (0)] + 6041+ ¢ |
Y
CDS,3(X’ Y, t) = HZ >3 +C,
meo (62)
0=pux+py+ i
X+ i Ta+1)
Case VI:
6k = w(Beup + Vi, + 2)
fO = % ’
3pp,
io=h=0, f=+H 0, )
JP
L3Pk J3p(612 — wy(6cpp + i + 25))
61, '

Inserting equation (63) into equation (28), for only
the positive value of f, and f5, the solutions of equation
(1) can be acquired as follows:

‘{,6,1()(9 y, t)
_ \/ 61, — py(6cu,p + Vi) + 25)

3pu;
, (64)
7
1y1\/71€0csch[7( X+ Wy + F(a+1)):|
\//—)2 + 260 coth £(H1X + Iy + r(a+1))j|
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\II L] L] L]
D 1(x, y, 1) = sz b1, . 65 3 Physical description of the
' solutions
\P6,2(X5 y5 t)
61 22 — u, (6cup + y V13 +2u) To visualize the behaviour of model (1), Mathematlc'a 11.0
= 3o (66) is employed for some selected parameters. A collection of
1

) bright, dark, singular kink- and antikink-type solitons,
iy V€0 (6o cosh [/ (0)] + 1) hyperbolic functions, trigonometric functions, elliptic

" Jp (80+ cosh[ /¥, O)]) (6o +cosh[;(8)] +eosin[[ KO functions and periodic solitary wave solutions have
been plotted to investigate the phenomenon of some

¥
g 2(x, y, t) = KX +c, novel travelling wave solutions corresponding to various
! (67) constraints.
0 X wt
= + + ,
HX YT Tt
¥ 3%, ¥, 1) 4 Concluding remarks
|6y~ (6cup + ypl + 2u5)
- 3pu2 In this study, we have introduced two interesting algo-
: ! ] rithms for the extraction of travelling and solitary wave
(801+¢* cosh [/ (0)] - g sinh [/y; (©)] +1) solutions of NLEE, which demonstrate a wide range of
(eo(sinh [/, (0)] +q) + cosh [/, (0)] + So/1 + q?) applications in mathematical physics, plasma wave che-
i, mical physics, particularly in fluid mechanics and many
X ’ 68) other nonlinear sciences. To aiming this, we have suc-
cosh 0)] + bo/1 + ¢ ( : ’
Pl MmO + b ) cessfully applied two interesting algorithms that are uni-
Y%, 3 fied Riccati equation expansion and modified extended
D¢ 3(x,y,t) = —= +c, - . .
’ M auxiliary equation mapping method to compute the exact
N (69) travelling and solitary wave solutions of the time frac-
0= px+ppy + Ta+1) tional (2 + 1) dimensional coupled KDE. This system

of coupled KDE describes the evolution of nonlinear
wave, which is the extension of Kadomtsev—Petviashvili

(a) (b)

Figure 1: (a) 3D and (b) 2D dark soliton solutions of absolute value of W3(x, y, t) when A = 0.45, p = 1.50, y, = -1.75, y, = 0.15, y; = 0.90,
a=0.75T=1y=-0.50,c=0.
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(a) (b)

Figure 2: (a) 3D and (b) 2D periodic solutions of imaginary value of Ws(x, y, t) when A = 0.45, p = 2.50, y, = -0.75, p, = 1.15, 5 = 0.90,
a=0.70,T=1,y=0.50,c=0.

(a) (b)

Figure 3: (a) 3D and (b) 2D periodic solutions of imaginary value of ®s(x, y, t) when A = 0.45, p = 2.50, p, = -0.75, p, = 1.15, 5 = 0.90,
a=0.70,T=1,y=0.50,c=0.

(2) (b)

Figure 4: (a) 3D and (b) 2D solitary wave solutions of absolute value of Wy 1(x, y, t) when A = 0.45, p = -1.50, y, = 1.75, y, = 0.15, 5 = 0.90,
¥ =150, =050,,=1,a=1T=1,y=-0.50,c=0, € = 0.25.
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Figure 5: (a) 3D and (b) 2D solitary wave solutions of absolute value of ®,(x, y, t) when A = 0.45, p = -1.50, p, = 1.75, p, = 0.15, p; = 0.90,
},=150,1,=0.50,),=1,a0=1,T=1,y=-0.50,c =0, € = 0.25.

(a) (b)

Figure 6: (a) 3D and (b) 2D solitary wave solutions of real value of Wy ;(x,y, t) when A = 2, p = -1, y; = 1, p, = 0.75, p; = 0.30, y, = 1.50,
/,=0.50,5=1,a=1T=2,y=-0.50,¢ = -0.25.

(a) (b)

Figure 7: (a) 3D and (b) 2D solitary wave solutions of real value of W5 4(x, y, t) when A = 1.45, p = -1.50, p; = 0.75, p, = 0.15, y; = 0.90,
},=150,1,=0.50,),=1,a0=1,T=1,y=-0.50,c=1, ¢ = 0.25.

and modified Kadomtsev-Petviashvili. As a result, new antikink-type solitons, hyperbolic functions, trigonometric
families of traveling and solitary wave solutions are recov- functions and elliptic functions, and for details see Figures
ered in the form of bright and dark solitons, kink- and 1-13. The obtained solutions in this work will be useful for
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-5

-5

(a) (b)

Figure 8: (a) 3D and (b) 2D solitary wave solutions of real value of ®3(x, y, t) when A = 1.45, p = -1.50, p, = 0.75, p, = 0.15, y; = 0.90,
$h=150,%=0.50,),=1,a=1T=1,y=-0.50,c=1,¢€ = 0.25.

(a) (b)

Figure 9: (a) 3D and (b) 2D solitary wave solutions of absolute value of @, 1(x, y, t) when A = 1, p = -1.50, p, = -1.75, p1, = 1, p; = 1.90,
h=1)%b=150,,=150,a=1T=1y=0.50,c=1,¢€ = 0.05.

(a) (b)

Figure 10: (a) 3D and (b) 2D solitary wave solutions of absolute value of W, 1(x, y, t) when A = 1, p = -1.50, p, = -1.75, i, = 1, p; = 1.90,
h=1)%b=150,,=150,a=1T=1y=0.50,c=1,¢€ = 0.05.
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(a) (b)

Figure 11: (a) 3D and (b) 2D solitary wave solutions of real value of ®5 3(x, y, t) when A = 1.45, p = -1.50, p, = 0.75, p, = 0.15, y; = 0.90,
$h=150,%=050,,=1a=1T=1,y=-0.50,q9 =190, c=1,¢ = 0.25, 5, = 0.90.

(a) (b)

Figure 12: (a) 3D and (b) 2D solitary wave solutions of absolute value of Wg 1(x, y, t) when A =1, p = 1.50, p, = 2, i, = 2, py; = 1.50, y, = 4,
,=150,)3=1,a=1T=1,y=2,qg =190, c=150,€ = 0.25, § = 0.90.

(a) (b)

Figure 13: (a) 3D and (b) 2D solitary wave solutions of absolute value of ®(x, y, t) when A =1, p = 1.50, p, = 2, i, = 2, y; = 1.50, y, = 4,
»,=150,),=1,a=1T=1,y=2,qg =190, c=150,€ = 0.25, §, = 0.90.
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a better understanding of many physical phenomena that
occur in nature. Furthermore, the effectiveness, capability
and reliability of the proposed methods can be extended to
extract the exact solutions of many NLEEs.
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