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Abstract The principal aim of this paper is to study the approximate solution of nonlinear

Caudrey-Dodd-Gibbon equation of fractional order by employing an analytical method. The

Caudrey-Dodd-Gibbon equation arises in plasma physics and laser optics. The Caputo derivative

is applied to model the physical problem. By applying an effective semi-analytical technique, we

attain the approximate solutions without linearization. The uniqueness and the convergence anal-

ysis for the applied method are shown. The graphical representation of solutions of fractional

Caudrey-Dodd-Gibbon equation demonstrates the applied technique is very efficient to obtain

the solutions of such type of fractional order mathematical models.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Since the classical calculus describes the nature of the problem
by considering current state but the fractional calculus
observes and analyze the behavior of problem by using the

past history. Thus, from the several branches of mathematics,
fractional calculus is one of the modern and effective branch
that deals with the real-world problems very easily and give

very impressive results. Fractional order derivatives and inte-
grals are very important to show the behavior of the problems
arising in chemistry, biology, engineering, plasma physics,

laser optics, mathematical physics etc.[1–6].
To study the behavior of nonlinear partial differential equa-

tions occurring in physical sciences are challenging and main
issues. But the fractional calculus performs a very crucial part

to analyze the nonlinear problems. Consequently, here we are
motivated to examine the nature and solution of the
Korteweg-deVries (KdV) equation [7,8] in a particular case.

The general form of the fifth order KdV equation is given
as follows

vt þ xvyyyyy þ avvyyy þ bvyvyy þ cv2vy ¼ 0 ð1Þ
where, v ¼ vðy; tÞ is a variable, a; b; c and x are non-zero arbi-

trary real parameters. Here, we present approximate solutions
for a particular case of this equation obtained by setting
a ¼ 30; b ¼ 30; c ¼ 180;x ¼ 1. For these particular values,
KdV equation can be expressed as
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vt þ vyyyyy þ 30vvyyy þ 30vyvyy þ 180v2vy ¼ 0 ð2Þ
Eq. (2) represents the Caudrey-Dodd-Gibbon equation.
Since Caputo fractional derivative [9] narrates the memory

of system at past historical stages, because of such property

this derivative of arbitrary order is handy to demonstrate
new real-world phenomenon of atmospheric physics, earth-
quake, ocean climate, vibration, dynamical system, polymers

etc. Hence, the Caudrey-Dodd-Gibbon equation in Caputo
type can be written as

Da
t v y; tð Þ þ vyyyyy þ 30vvyyy þ 30vyvyy þ 180v2vy ¼ 0 ð3Þ

where Da
t v y; tð Þ represents the fractional order derivatives of

vðy; tÞ in caputo type. For a ¼ 1, Eq. (3) represents the classical
Caudrey-Dodd-Gibbon equation which was given by Caudrey,

Dodd and Gibbon [7]. The fractional model of this nonlinear
equation studied as a mathematical model of the internal
waves in a shallow density-stratified fluid and surface waves

of small amplitude and long wave length on shallow water.
It plays a very important role in plasma physics and laser
optics. Since in the modelling of nonlinear partial differential
equation, crucial aspects i.e. convergence, divergence and

efficiency of solutions in numerical evaluation are equally
important. So, in order to produce more attainable and more
efficient results, various numerical and analytical techniques

[10–13] are available for solving the nonlinear partial
differential equations. For solving the Caudrey-Dodd-
Gibbon equation so many methods are given by numerous

mathematicians [14–21]. But these methods have their own
drawbacks and limitations for example huge computational
work, more computer memory, time and divergent results.

In recent years homotopy techniques are coupled with inte-

gral transforms and for handling different kind of mathemati-
cal models by several authors [22–23]. In this acrticle, we
apply a semi-analytical technique namely homotopy analysis

Sumudu transform method [24]. The homotopy analysis
Sumudu transform method is amalgamation of two powerful
and crucial techniques, the one is homotopy analysis method

[25–27] and another is standard Sumudu transform technique
[28] with homotopy polynomial. The main advantage of the
considered method is that it easily handles the nonlinear terms

with high accuracy and control the convergence of solution due
to involvement of an auxiliary parameter �h. This paper is devel-
oped as: In Section 2, Sumudu transform as well as arbitrary
order derivatives in Riemann-Liouville and Caputo sense are

discussed. Section 3 involves the elementary idea of the consid-
ered method. Analysis of convergence and uniqueness of the
obtained solution by using considered scheme is stated in Sec-

tion 4. Section5 gives the solution of fractional Caudrey-
Dodd-Gibbon model. In Section 6, numerical results are inti-
mated and finally in Section 7, we present concluding remarks.

2. Some primitive definitions

Definition 2.1. Let a function h tð Þ 2 Cb; b � �1, thus the

Riemann-Liouville derivative of order a > 0 is written in the

subsequent manner [1]

Gah tð Þ ¼ 1

CðaÞ
Z t

0

t� gð Þa�1
h gð Þdg; ða > 0Þ ð4Þ
Definition 2.2. The Caputo derivative of fractional order

m� 1 < a � mð Þ of function h tð Þ is represented as follows [1]

Da
t h tð Þ ¼ Gm�aDmh tð Þ

¼ 1

Cðm� aÞ
Z t

0

ðt� gÞm�a�1
hmðgÞdg; ð5Þ

where m� 1 < a � m;m 2 N; t > 0.

Definition 2.3. Since Fourier, Laplace, Hankel and many more
well-known integral transforms are available. In this sequence,

Watugala [28] proposed a novel transform namely Sumudu
transform, described and interpreted over the set of functions

N ¼ fh tð Þ : 9N; d1; d2 > 0; h tð Þj j < Ne tj j=dj , if t 2 ð�1Þj�
½0;1Þg,

as follows

H uð Þ ¼ S h tð Þ½ � ¼
Z 1

0

h utð Þe�tdt; u 2 ð�d1; d2Þ ð6Þ

More properties and other important information are given
in so many papers, see [29–31]. The Sumudu transform of
Da

t h tð Þ is given as follows

S Da
t h tð Þ� � ¼ u�aS h tð Þ½ � �

Xm�1

s¼0

u�aþsh sð Þ 0þð Þ; m� 1 < a � mð Þ:

ð7Þ
3. Elementary idea of homotopy analysis Sumudu transform

method

To discuss and understand the homotopy analysis Sumudu
transform method [23–24], here we consider a general frac-

tional order nonlinear partial differential equation as follows

Da
t v y; tð Þ þ Rv y; tð Þ þNv y; tð Þ ¼ w y; tð Þ;m� 1 < a � m ð8Þ
here, vðy; tÞ denotes the function of two variables y and t,

Da
t representsthe Caputo derivative of fractional order a,

m 2 N, R stands for bounded linear operator in two variables
y in addition t, Nindicates the general nonlinear differential
operator in y and t and w y; tð Þ is the source term.

Utilizing the Sumudu transform on Eq. (8), we get

S½Da
t v� þ S½RvþNv� ¼ S½w y; tð Þ� ð9Þ
Employing differentiation properties of Sumudu transform,

we get the consequent equation

u�aS v½ � �
Xm�1

s¼0

u�aþsvðsÞ y; 0ð Þ þ S RvþNv½ � ¼ S½w y; tð Þ� ð10Þ

On simplifying we have,

S v½ � � ua
Xm�1

s¼0

u�aþsvðsÞ y; 0ð Þ þ uaS RvþNv½ � � uaS w y; tð Þ½ � ¼ 0

ð11Þ
By Eq. (11), the nonlinear operator can be expressed as

follows
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N n y; t; pð Þ½ � ¼ S n y; t; pð Þ½ � � ua
Xm�1

s¼0

u�aþsnðsÞ y; t; pð Þð0Þ

þ ua S Rn y; t; pð Þ þNn y; t; pð Þ½ � � S w y; tð Þ½ �½ � ¼ 0

ð12Þ
here n y; t; pð Þ denotes a function of y; t additionallyp repre-

sents embedding parameter with 0 � p � 1. Now, we represent
the homotopy demonstrated by Eq. (13) as

1� pð ÞS n y; t; pð Þ � v0½ � ¼ �hN v y; tð Þ½ �; ð13Þ
where S stands for the Sumudu transform, �h–0 denotes auxil-

iary parameter, v0ðy; tÞ indicatesthe initial approximation of
vðy; tÞ in addition n y; t; pð Þ represents an unknown function.
Further, it can be observed that, if we put values of embedding

parameter as p ¼ 0 in addition p ¼ 1 then, it yields

n y; t; 0ð Þ ¼ v0 y; tð Þ; n y; t; 1ð Þ ¼ v y; tð Þ; ð14Þ
respectively. Hence, solution n y; t; pð Þ changes from initial

approximation v0 y; tð Þ to the solution vðy; tÞ, here p variate
from 0 to 1. Expanding the function n y; t; pð Þ in terms of Tay-

lor’s series about the parameterp, we obtain the subsequent
equation

n y; t; pð Þ ¼ v0 y; tð Þ þ
X1
k¼1

vkðy; tÞpk; ð15Þ

vk y; tð Þ ¼ 1

k!

@k

@pk
n y; t; pð Þf gjp¼0: ð16Þ

If the convergence control parameter �h and the initial
approximation v0 y; tð Þ are described appropriately, then at
p ¼ 1, Eq. (15) is convergent. Thus, we have

v y; tð Þ¼ v0 y; tð Þ þ
X1
k¼1

vkðy; tÞ ð17Þ

The outcome given by Eq. (17) represents the one of the

solution of discussed arbitrary order nonlinear differential
equation. The governing equation attained by utilizing Eq.
(13) and Eq. (17).

We write the vectors in the subsequent manner

v!k ¼ fv0 y; tð Þ; v1 y; tð Þ; v2 y; tð Þ; v3 y; tð Þ; � � � ; vk y; tð Þg ð18Þ
Now, differentiating Eq. (13), k – times w. r. t. p, then

dividing by k! additionally at the end put p ¼ 0, we get the fol-
lowing equation

S vk y; tð Þ � vkvk�1 y; tð Þ½ � ¼ �hIk v!k�1

� � ð19Þ
Now exerting the inverse Sumudu transform operator on

the above equation, we get the subsequent result

vk y; tð Þ ¼ vkvk�1 y; tð Þ þ �hS�1 Ik v!k�1

� �� � ð20Þ
where

vk ¼
0; k � 1

1; k > 1

�
ð21Þ

and we illustrate the value of Ik v!k�1

� �
in an enhanced

manner as follows

Ik v!k�1

� � ¼ S vk�1 y; tð Þ½ � � 1� vkð Þuað
Xm�1

s¼0

u�aþsv sð Þ y; 0ð Þ

þ S w y; tð Þ½ �Þ þ uaS Rvk�1 þ Pk�1½ � ð22Þ
In Eq. (22) Pk indicates the homotopy polynomial [32] and
described as follows

Pk ¼ 1

CðkÞ
@k

@pk
Nnðy; t; pÞ

� �
p¼0

ð23Þ

and

n y; t; pð Þ ¼ n0 þ pn1 þ p2n2 þ � � � : ð24Þ
using Eq. (22) in Eq. (20), we have

vk y; tð Þ ¼ ðvk þ �hÞvk�1 y; tð Þ

� �h 1� vkð ÞS�1 ua
Xm�1

s¼0

u�aþsv sð Þ y; 0ð Þ þ uaS w y; tð Þ½ �
 !

þ �hS�1 uaS Rvk�1 þ Pk�1½ �½ �
ð25Þ

Thus, we can find the several components vk y; tð Þ for k � 1
by Eq. (25) and the solution is explored by the subsequent
equation as follows

v y; tð Þ ¼
X1
k¼0

vkðy; tÞ ð26Þ

4. Analysis of convergence and uniqueness

In this section, we examine the convergence in addition
uniqueness of the solution obtained by applied method.

Theorem 1 ((Uniqueness Theorem)). The outcome of frac-

tional Caudrey-Dodd-Gibbon equation (3) obtained by
HASTM is unique, while, 0 < q < 1, where q ¼ 1þ �hð Þþ
�h d1 þ 30ðd2CþDd3Þ þ 30ðd4Cd5 þ d6Dd7 þ 180ðd8C CþDð Þþ�
D2d5ÞÞT.

Proof. Here, we demonstrate the solution of fractional

Caudrey-Dodd-Gibbon equation (3)

Da
t vþ vyyyyy þ 30vvyyy þ 30vyvyy þ 180v2vy ¼ 0

as

v y; tð Þ ¼
X1

k¼0
vkðy; tÞ; ð27Þ

where

vk y; tð Þ ¼ vk þ �hð Þvk�1 y; tð Þ� �h 1� vkð Þv0 y; tð Þ
þ �hS�1 uaS v k�1ð Þyyyyy þ 30Ak�1 þ 30Bk�1 þ 180Ck�1

� �� �
ð28Þ

Let, if possible, v as well as v� be two separate solutions of

fractional Caudrey-Dodd-Gibbon equation (3) s.t.
vj j � C; jv�j � D, then using Eq. (28), we have

v� v�j j ¼ j 1þ �hð Þ v� v�ð Þ þ �hS�1 uaS vyyyyy � v�yyyyyÞ
�	�

þ 30ðvvyyy � v�v�yyyÞ þ 30 vyvyy � v�yv
�
yy

� �
þ 180ðv2vy � v�2v�y

�
�j ð29Þ
Now by applying convolution theorem for Sumudu trans-

form, we get

v� v�j j � 1þ �hð Þjv� v�j

þ �h

Z t

0

jvyyyyy � v�yyyyyj þ 30jvvyyy � v�v�yyyj
�

þ 30jvyvyy � v�yv
�
yyj þ 180jv2vy � v�2v�yj

� t� gð Þa�1

C að Þ dg
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� 1þ �hð Þjv� v�j þ �h

Z t

0

@5

@y5
v� v�ð Þ

����
����þ 30

@3v

@y3
v� v�ð Þ

����
�

þ v�
@3

@y3
v� v�ð Þ

����þ 30j @
2v

@y2
@

@y
ðv� v�Þ þ @v�

@y

@2

@y2
ðv� v�Þj

þ 180j @v
@y

ðv� v�Þ vþ v�ð Þ þ v�2
@

@y
ðv� v�Þj



t� gð Þa�1

C að Þ dg

� 1þ �hð Þjv� v�j þ �h

Z t

0

d1 v� v�j j þ 30ðd2CþDd3Þ v� v�j j�
þ 30ðd4Cd5 þ d6Dd7Þ v� v�j j

þ 180ðd8C CþDð Þ þD2d5Þjv� v�jÞ t� gð Þa�1

C að Þ dg ð30Þ

Now, applying the mean value theorem [33,34], we get

v� v�j j � 1þ �hð Þjv� v�j þ �h d1 v� v�j jð
þ 30ðd2CþDd3Þ v� v�j j
þ 30ðd4Cd5 þ d6Dd7Þ v� v�j j
þ 180ðd8C CþDð Þ þD2d5Þjv� v�j�T ð31Þ

On simplifying Eq. (31), we get the following relation

v� v�j j � q v� v�j j ð32Þ
where, q ¼ 1þ �hð Þ þ �h d1 þ 30ðd2CþDd3Þ þ 30ðd4Cd5 þ d6Dd7þ

�
180ðd8C CþDð Þ þD2d5ÞÞT.

It gives 1� qð Þ v� v�j j � 0. Here,0 < q < 1,
thus v� v�j j ¼ 0 which gives that v ¼ v�. Therefore, the solu-
tion is unique.

Theorem 2 ((Convergence Theorem)). Let H is a Banach
space additionally G : H ! H be a nonlinear mapping also
assume that

kG vð Þ � G wð Þk � kv� wk; 8v;w 2 H: ð33Þ
Then by the fixed-point theory of Banach space, we know

that, G has a fixed point. Further, sequence formed by using
HASTM solution having an arbitrary solution of v0;w0 2 H,

converges to the fixed point of G and

kvk � vrk � qr

1� q
kv1 � v0k; 8v;w 2 H ð34Þ

Proof. Let us assume the Banach space C J½ �; k:kð Þ of all the
continuous functions on J associated to the norm given as
kg tð Þk ¼ max

t2J
jgðtÞj.

Next, we will prove that vrf g is a Cauchy sequence in to the
Banach space.

kvk � vrk ¼ max
t2J

jðvk � vrÞj

¼ max
t2J

j 1þ �hð Þ vk�1 � vr�1ð Þ

þ �hS�1 uaS vðk�1Þyyyyy � v r�1ð ÞyyyyyÞ þ 30ðv k�1ð Þv k�1ð Þyyy

�nh
� v r�1ð Þv r�1ð ÞyyyÞ þ 30 v k�1ð Þyv k�1ð Þyy � v r�1ð Þyv r�1ð Þyy

� �
þ 180ðv2ðk�1Þvðk�1Þy � v2ðr�1Þvðr�1Þy

�oi
j

� max
t2J

h
1þ �hð Þ vk�1 � vr�1j j

þ �hS�1 uaS v k�1ð Þyyyyy � v r�1ð Þyyyyy
�� ��þ 30 v k�1ð Þv k�1ð Þyyy

���n�
� v r�1ð Þv r�1ð Þyyy

��þ 30 v k�1ð Þyv k�1ð Þyy � v r�1ð Þyv r�1ð Þyy
�� ��

þ 180 v2k�1ð Þv k�1ð Þy � v2r�1ð Þv r�1ð Þy
��� ���o�i

Implementing the convolution theorem for Sumudu trans-
form, it gives

kvk � vrk � max
t2J

�
1þ �hð Þ vk�1 � vr�1j j

þ �h

Z t

0

v k�1ð Þyyyyy � v r�1ð Þyyyyy
�� ��þ 30 v k�1ð Þv k�1ð Þyyy

����

� v r�1ð Þv r�1ð Þyyy
��þ 30 v k�1ð Þyv k�1ð Þyy � v r�1ð Þyv r�1ð Þyy

�� ��
þ 180 v2k�1ð Þv k�1ð Þy � v2r�1ð Þv r�1ð Þy

��� ���� t� gð Þa�1

C að Þ dg

#

or

kvk � vrk � max
t2J

1þ �hð Þ vk�1 � vr�1j j þ �h

Z t

0

d1 v k�1ð Þ � v r�1ð Þ
�� ���2

4
þ 30ðd2CþDd3Þ vðk�1Þ � vðr�1Þ

�� ��
þ 30ðd4Cd5 þ d6Dd7Þ vðk�1Þ � vðr�1Þ

�� ��
þ 180ðd8C CþDð Þ þD2d5Þjv k�1ð Þ � vðr�1Þj

�
� t� gð Þa�1

C að Þ dg

#

Further, applying the mean value theorem [33,34], it yields

kvk � vrk � max
t2J

1þ �hð Þ vk�1 � vr�1j j þ �h d1 vðk�1Þ � vðr�1Þ
�� ����

þ 30ðd2CþDd3Þ vðk�1Þ � vðr�1Þ
�� ��

þ 30ðd4Cd5 þ d6Dd7Þ vðk�1Þ � vðr�1Þ
�� ��

þ 180ðd8C CþDð Þ þD2d5Þjvðk�1Þ � vðr�1Þj
�
T

kvk � vrk � qkvk�1 � vr�1k
Setting k ¼ rþ 1, it yields

kvrþ1 � vrk � qkvr � vr�1k � q2kvr�1 � vr�2k � � � �
� qrkv1 � v0k

On using triangular inequality, we have

kvk � vrk � kvrþ1 � vrk þ kvrþ2 � vrþ1k þ � � � þ kvk � vk�1k

� qr þ qrþ1 þ � � � þ qk�1
� �jkv1 � v0kj

� qr 1þ qþ q2 þ � � � þ qk�r�1
� �kv1 � v0k

� qr 1� qk�r�1

1� q

� �
kv1 � v0k

As 0 < q < 1, so 1� qk�r�1 < 1, then we have

kvk � vrk � qr

1� q
kv1 � v0k

Since, kv1 � v0k < 1, so as k ! 1 then kvk � vrk ! 0.

Thus, the sequence vrf g is convergent as it is a Cauchy
sequence in C J½ �.
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5. Solution of fractional Caudrey-Dodd-Gibbon equation

Example 1. Here, we evaluate the fractional Caudrey-Dodd-
Gibbon equation (3) having the subsequent initial condition

v y; 0ð Þ ¼ 15þ ffiffiffiffiffiffiffiffi
105

p

30
� tanh2ðyÞ ð35Þ

The exact solution of the standard Caudrey-Dodd-Gibbon

equation is attained for the value of a ¼ 1, for more details see
[14].

Employing ST on both the sides of Eq. (3), using initial

condition given by Eq. (35) and on simplification we get the
consequent results

S v y; tð Þ½ � � 15þ ffiffiffiffiffiffiffiffi
105

p

30
þ tanh2 yð Þ

þ uaS vyyyyy þ 30vvyyy þ 30vyvyy þ 180v2vy
� � ¼ 0 ð36Þ

Now, we represent a non-linear operator as follows

N n y; t; pð Þ½ � ¼ S n y; t; pð Þ½ � � 15þ ffiffiffiffiffiffiffiffi
105

p

30
þ tanh2 yð Þ

þ uaS nyyyyy y; t; pð Þ þ 30n y; t; pð Þnyyy y; t; pð Þ�
þ 30ny y; t; pð Þnyy y; t; pð Þ þ 180n2ðy; t; pÞnyðy; t; pÞ

� ¼ 0

ð37Þ

Thus, we define the Ik v!k�1

� �
for given problem in the fol-

lowing manner

Ik v!k�1

� � ¼ S vk�1 y; tð Þ½ �

� 1� vkð Þ 15þ ffiffiffiffiffiffiffiffi
105

p

30
� tanh2 yð Þ

" #

þ uaS vðk�1Þyyyyy þ 30Aðk�1Þ þ 30Bðk�1Þ þ 180Cðk�1Þ
� �

ð38Þ
The kth order deformation equation is expressed as follows

S vk y; tð Þ � vkvk�1 y; tð Þ½ � ¼ �hIk v!k�1

� � ð39Þ

Now, on utilizing inverse ST in above equation, we get

vk y; tð Þ ¼ vkvk�1 y; tð Þ þ �hS�1 Ik v!k�1

� �� � ð40Þ
On using the recursive formula given by Eq. (25) and initial

approximation expressed by Eq. (35), we get the following

iteration
Table 1 Comparative analysis of obtained solution and exact solut

y t Exact Solution

0.5 0.00 0.6280127585

0.01 0.6388936545

0.02 0.6496327491

0.03 0.6602163246

0.04 0.6706305549

0.05 0.6808615377

1.0 0.00 0.2615393671

0.01 0.2712439912

0.02 0.2810871794

0.03 0.2910662174

0.04 0.3011780846

0.05 0.3114194433
v1 y; tð Þ ¼ �4 11�p
105ð Þ�hSech2 yð Þtanh yð Þ ta

Cð1þ aÞ ð41Þ

The remaining components vk; k � 0 can be readily
obtained by following the same procedure, hence, we obtain
the entire solution. Ultimately, the series solution can be

expressed as

v y; tð Þ ¼ lim
N!1

XN
k¼0

vkðy; tÞ ð42Þ

Example 2. Here, we analyse the Caudrey-Dodd-Gibbon equa-

tion of fractional order (3) with the subsequent initial condition

v y; 0ð Þ ¼ l2sech2ðlyÞ ð43Þ
The exact solution of the standard Caudrey-Dodd-Gibbon

equation is attained for the value of a ¼ 1, for more details see
[35].

Applying ST on Eq. (3), using initial condition (43) and on

simplification, we get the consequent results

S v y; tð Þ½ � � l2sech2 lyð Þ
þ uaS vyyyyy þ 30vvyyy þ 30vyvyy þ 180v2vy

� � ¼ 0 ð44Þ

Now, the nonlinear operator can be represented as follow-

ing way

N n y; t; pð Þ½ � ¼ S n y; t; pð Þ½ � � l2sech
2
lyð Þ

þ uaS nyyyyy y; t; pð Þ þ 30n y; t; pð Þnyyy y; t; pð Þ�
þ 30ny y; t; pð Þnyy y; t; pð Þ þ 180n2ðy; t; pÞnyðy; t; pÞ

� ¼ 0

ð45Þ

Hence, we define the Ik v!k�1

� �
for given problem in the fol-

lowing manner

Ik v!k�1

� � ¼ S vk�1 y; tð Þ½ � � 1� vkð Þl2sech2 lyð Þ
þ uaS vðk�1Þyyyyy þ 30Aðk�1Þ þ 30Bðk�1Þ þ 180Cðk�1Þ

� �
ð46Þ

The kth order deformation equation is given in the follow-
ing way

S vk y; tð Þ � vkvk�1 y; tð Þ½ � ¼ �hIk v!k�1

� � ð47Þ
ion for vðy; tÞ when a ¼ 1 and �h ¼ �1 for the Example 1.

Present Solution Absolute Error

0.6280127585 0.0000000000

0.6389287758 0.0000351211

0.6499137702 0.0002810211

0.6611649272 0.0009486029

0.6728794350 0.0022488807

0.6852544747 0.0043929376

0.2615393671 0.0000000000

0.2712298483 0.0000141429

0.2809741345 0.0001130449

0.2906850246 0.0003811928

0.3002753180 0.0009027666

0.3096578141 0.0017616292
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Now, on applying the inverse ST, we get

vk y; tð Þ ¼ vkvk�1 v; tð Þ þ �hS�1 Ik v!k�1

� �� � ð48Þ
On using the recursive formula represented by Eq. (25) and

initial approximation given by Eq. (43), we get the subsequent

iteration
Fig. 1 Surface of vðy; tÞ w.r.t. y and t for a ¼ 1:

Fig. 2 Surface of vðy; tÞ w.r.t. y and t for a ¼ 0:95:
v1 y; tð Þ ¼ 8�h �34� 90tanh lyð Þ4 þ 75sech lyð Þ2
h

� 45sech lyð Þ4 þ 15 8� 9sech lyð Þ2
� �

tanh lyð Þ2
i

� sech lyð Þ2tanhðlyÞl7 ta

Cð1þ aÞ ð49Þ
Fig. 3 Surface of vðy; tÞ w.r.t. y and t for a ¼ 0:90:

Fig. 4 Surface of vðy; tÞ w.r.t. y and t for a ¼ 0:85:
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The remaining components vk; k � 0 can be readily
obtained by following the same procedure, therefore, we
obtain the entire solution. Ultimately, the series solution can

be written as

v y; tð Þ ¼ lim
N!1

XN
k¼0

vkðy; tÞ ð50Þ
Fig. 5 Surface of vðy; tÞ w.r.t. y and t for a ¼ 1:

Fig. 6 Surface of vðy; tÞ w.r.t. y and t for a ¼ 0:95:
6. Numerical results and discussion

Here, we perform numerical simulation by exerting the sugg-
sted technique for the fractional Caudrey-Dodd-Gibbon equa-

tion at fractional Brownian motions a ¼ 0:95; a ¼ 0:90 and
a ¼ 0:85 in addition for the standard motion a ¼ 1. The com-
parative analysis of solution obtained by applied method and
Fig. 7 Surface of vðy; tÞ w.r.t. y and t for a ¼ 0:90:

Fig. 8 Surface of vðy; tÞ w.r.t. y and t for a ¼ 0:85:
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exact solution for vðy; tÞ when a = 1 and ⁄=-1 for the Exam-
ple 1 is demonstrated in Table 1. The results of this simulation
are expressed in the form of Figs. 1-14. Behavior of solutions

of standard model is shown in Fig. 1 (for Example 1) and
Fig. 5 (for Example 2) respectively. Fig. 2,3,4 (for Example
1) and Fig. 6,7,8 (for Example 2) show the behavior of

vðy; tÞ for the fractional Caudrey-Dodd-Gibbon equation.
Fig. 9 Response of vðy; tÞwith respect to y for different values of a:

Fig. 10 Characteristic of vðy; tÞwith respect to t for different

values of a:
Fig. 9 (for Example 1) and Fig. 11 (for Example 2) express that
the impact of order of fractional derivative on the displace-
ment profile vðy; tÞ. Fig. 10 (for Example 1) and Fig. 12

(for Example 2) reveal the effect of order of fractional deriva-
tive on displacement profile vðy; tÞ. Fig. 13 (for Example 1) and
Fig. 14 (for Example 2) exhibits �h-curves for several values of
a. In Fig. 13 and Fig. 14, horizontal line segment demonstrates
Fig. 11 Response of vðy; tÞ with respect to y for different values

of a:

Fig. 12 Characteristic of vðy; tÞ with respect to t for different

values of a:



Fig. 13 �h- curve for several values of a at t ¼ 0:0001 for vðy; tÞ.

Fig. 14 �h- curve for several values of a at t ¼ 0:0001 for vðy; tÞ:
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the range of convergence of the obtained solution. From

Figs. 10 and 12, we observe that as we increase the order of
fractional derivative than, the displacement profile vðy; tÞ
decreases. From Figs. 13 and 14, we observe that as we
increase the order of fractional derivative than, the range of

convergence for the obtained solution enhances. Thus, we
can observe that there is a significant impact of order of frac-
tional derivative on displacement profile due to well known
nonlocal nature of Caputo fractional derivative. The nonlocal
nature of Caputo fractional derivative plays a great role in the
study of mathematical modelling of physical problems. There-

fore, the main advantage of using fractional operators in math-
ematical modeling of physical systems is that such type of
models captures the dynamic behavior of the system in a better

manner due to the memory effect of the fractional operators.

7. Conclusions

In this research work, we applied the homotopy based tech-
nique to analyze the approximate solution of Caudrey-Dodd-
Gibbon equation of fractional order. The results of present

work show that utility of applied technique for solution of
the considered fractional model is quite worthy. The displace-
ment reveals specific and new attributes for the fractional

order model in comparison of the classical model. The
employed scheme needs less computational work and gives
very precise result. Thus, we observe that the suggested
method is very efficient and accurate technique for solving

fractional Caudrey-Dodd-Gibbon model with better physical
aspects. This work is very useful in the field of sciences and
engineering, it opens a new vista in these fields.
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