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Abstract

The primary goal of this study is to define the weighted fractional operators on some spaces.
We first prove that the weighted integrals are bounded in certain spaces. Afterwards, we
discuss the weighted fractional derivatives defined on absolute continuous-like spaces. At
the end, we present a modified Laplace transform that can be applied perfectly to such

operators.

Keywords: Weighted Fractional Integrals;

Weighted Spaces of Absolute Continuous

Transform.

1. INTRODUCTION AND
PRELIMINARIES

In the last decades, the fractional calculus have
acquired a largish significance on the account of
diversity of applications in different fields of science
and engineering.

In most used fractional operators (with singu-
lar kernels), there exists the Riemann-Liouville and
Caputo fractional derivatives. Nonetheless, there
are more types of fractional operators that helped
researchers in their attempts to understand the
world surrounding us. We mention the ones in
Refs. [7HI4. Tt should be noted that all the oper-
ators mentioned in the aforementioned references
are just special cases of the operators studied
by Agrawal 1818 T these papers, the author pre-
sented some generalized fractional derivatives and
listed some of their properties. However, the spaces
on which these operators are defined were not
mentioned.

It should be remarked that in Refs. [I7 and (18,
the authors discussed the weighted fractional oper-
ators associated with the Caputo-Fabrizio and
Atangana-Baleanu fractional operators %20

Motivated by the works mentioned previously,
we prove that the weighted fractional integrals
are bounded in a space of Lebesgue measurable
functions. We also show that the weighted frac-
tional derivatives of functions defined on a cer-
tain space exist everywhere. We discuss the semi-
group property of weighted fractional integrals, the
action of integrals on derivatives and vice versa. At
last, we propose an appropriately modified Laplace
transform.

The nth, n € N order weighted fractional integral
of a function f with respect to the function g has

Weighted Spaces of Summable Functions;
Functions; Weighted Generalized Laplace

the form

(e 28D)e) =0 @) | " ()t | oty

(1.1)

where w(z) # 0 is a weighted function, w=!(z) =
ﬁ and g is a strictly increasing differentiable func-
tion. The corresponding derivative is

! z)=w Nz Dy w(x)f(x
(D f)(2) ( )g,(x)( (@) f(x)),
D f =Dy, (D5 f)

@) (5 @),
(1.2)

where D, = %. The fractional versions of the
integral in (1)) and the derivative (in Riemann—
Liouville settings) in (L2) are

w”! ()

(w30 = s [ 6@ - a0

xw(t)f(t)g (t)dt, z>a, a>0

(1.3)
and
(a+ Do f)(x) = (DT “f)(2)
1 n
- I'(n—a) Du
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< ([ o) - sty

X w(t)f(t)g'(t)dt) , x>a, a>0,
(1.4)

respectively, where n = [a]+1, [a] being the integer
part of c.

Before we go further, let’s present the effect of the
weighted integrals and derivatives of integer order
on each other and the weighted fractional integrals
and derivatives of a certain function. This will help
us in the rest of this paper.

Lemma 1.1. Forn € N, we have

(Dipat Tip) [ = T (1.5)
Proof. The proof can be done by using (L1I), (L2
and the Leibniz rule for integrals. O

Lemma 1.2. For n € N, we have

n—1
(a+ T2 f(2) = f(2) —w™ ' (x)
k=0
RECETI YR
where fr(x) = (L= (w(z) f(z)),m =0,1,2,....

g'(z)
Proof. Using (L)) and (L2), we have

) —g()""
(n—1)!

(D) f(2) = w i (x) /x (9(z

X fu(t)g' (t)dt

T ) — n—1

xw™ (1) fr_y (t)dt.

Now, performing the integration by parts formula,
we get

(9(z) —g(t)"~
(n—1)!

() /: (g(xzn—_g(lz)!)"

1
(a+33®$)f($) - _wil(x) fn—l(a)

X fl_o(t)dt.

Repeating the same procedure n—2-times, we arrive

at (L4]). O

Proposition 1.3. (1) For a > 0 and § > 0, we
have

(2) For a <mn and 8 > 0, we have

(o D (w ™ () (9(t) = g(@)” ™)) (@)

where § = £ (t):g (a) Now,
g(z)—g(a)

(o D (w ™ ()(9(t) — g(a)" 1)) ()
= (Do T *(w ™ ()(9(1) — 9(a))" ™)) (@)

o F(ﬂ) n n—a—
= TG tn—a) Pwlslt) - g(a)?* =) ()
_ INE) HB+n—a)
L(B+n—a) I(B-a)
x (g(z) — g(a))?ret
v
o @eE —g@) T g
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2. THE WEIGHTED
FRACTIONAL INTEGRALS

In this section, we define the space where the
weighted fractional integrals are bounded and
present some properties of these operators.

Definition 2.1. Let w # 0 be a function defined on
[a, b], g is a differentiable strictly increasing function
on [a, b]. The space X% (a,b),1 < p < oo is the apace
of all Lebesgue measurable functions f defined on
[a,b] for which || f]| x» < oo, where

fllp, = ( / b Iw(x)f(ﬂf)\”g’(ﬂf)dw) g

l1<p<oo (2.1)
and
[fllxee = ess sup,<pcplw(@) f(2)] < oo (2.
Remark 2.2. It should be noted that f
1
Xi(a,0) < w(x)f(x)(g'(x))? € Lp(a,b) for 1
p<ooand f € X2(a,b) < wx)f(zr) € Loo(a,b).
Theorem 2.3. Let o > 0,1 < p < o0 and [ €
X1 (a,b). Then ,+3%f is bounded in X% (a,b) and

(9(b) — g(a))*
T Tlat1) 1fllxz - (2.3)

2)
€
<

la+ T fllxz, <

Proof. For 1 < p < 0o, we have

la+ TS Nl

soils

xw(t)f(t)g (t)dt

1 9(b)
- T() M(a)

x flg™" (u))du

[ (o) - e

=

P

J (x)d:c]

/ " - w) Mg ()
g(a)

P 1s
dv] ,
where g~ is the inverse function of g. Due to the

generalized Minkowski inequality (1.33 in Ref. [6),
we can write

1

1

g(b) B B ,
o30Sl < 7y / ., (@)™ @)

9(b)
x/ (v—u)(al)pdv> du

Sl

1 g(b)w iy iy
=y L, T @S )

((g(b) - u><a—1>p+l> o

X

(a=1p+1
Now, using Holder’s inequality, we get

o+ TSl x,

1 g(b) B B »
< 5 ( / ol @) (o™ W) du>

(a
q 1
9(b) P !
X / du )
g(a)

where % + % = 1. Thus, we have

1
p

(g(b) — w)t> et
(a—1)p+1

la+ TSNl xz

< i ([ mswr )

N
du

3=

—_

9(b) (g(b) — )l Dpt1
/g [ (@ —1p+1

1£1lxz, (9(b) — g(a))*

- I'(w) a
(9(b) — g(a))"
EECESIE 11l xe, -

Now, for p = oo, we have

() o232 f(2)] = ﬁ / “(gle) - gt)*
% w(t)F(£)g (£)dt
1/ .
< 57 |, 0@ =g

_ HfHng’ (9(z) — g(a))*
I'(«) a

(9(b) — g(a))”
< T Tatl) 1 Nl xze - ]
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Next, we present the semi-group property for
integrals.

Theorem 2.4. Let f € X% (a,b),1 < p < oo, >
0,8 > 0. Then,

(a*jg a*jg)f - (a*j%Jrﬁ)f' (24)

Proof.

(3% 430 F)(

)
=@ @) - gt e

(a )
wl)()g (1)t

i / [ o
(9(t) — (7))~
_w 1(
- T(a)l /
X (g(t) - 9(7))6 fw(r) f(r)g (T)g (t)dtdr.
)—9

Now, letting 6 = (( = g((z)) we get

X (at
I(a

X

fw(r)f(r)g (7)g'(t)drdt

(ot T a+ Topf) ()

- iy [ a=armea [

« / “(g(2) — g(r) ™ Nw(r) f(7) ()

w™l(z) T(a)T'(F)
[(a)0(B) T'(e+ 5)

[ [wn-sr
7')]:( )g'(7)dr

w’l(w)

= xx—Taﬁ_l
- ft @/(g() g(r)™+
w(r)f(r)g (r)dr

ﬁ

= (a+ I )- 0

)g
)z

In what follows, we discuss the combination of
the weighted fractional integrals with the weighted
differential operator (I.2).

Theorem 2.5.

Du ot Tuf) = oty ™ [ (2.5)

Let « > m,m € N. Then

Proof. The proof can be adhibited by using (L.2)
and using the Leibniz rule for integrals. O

Theorem 2.6. Let a > 1 and DL f € XI(a,b).
Then

w(z
(+32DL1) (@) = (D, 475 )() - F(o(z))
x (g(x) = g(a))* w(a) f(a).
(2.6)
Proof
(a+3a@11”f)(x)
_w_l(x) ‘ ) — aflw wil
ot | et = gy ee o
Dy ,
( g,(t)w(t)f (t)) g'(t)dt
w ()

<u) () 0]
20 (00 — gl () fla)
o)
wHz)(a — *
<) (1) (1)t
= ) () wla) f(a)
()

x (g(z) — g(£)* w(t) f(t)g'( )dt

_ ~a w ! (x)

- (Qzlu a+‘j f)(SC) F(Oé)

x (g(z) — g(a)* w(a) f(a). O

By induction on m, one can prove the following
corollary.
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Corollary 2.7. For a > m, @7 f € Xh(a,b), we
have

(a+ T D ) (@)
= (Dl o+ T0f)(@) —w™ ' (2)
m—1 ) — g(a))e—mtk
S @) =)

— MNa—m+k+1)

3. THE WEIGHTED
FRACTIONAL DERIVATIVES

In this section, we define the weighted fractional
derivatives on a certain weighted absolute contin-
uous functions space and discuss their interaction
with the weighted fractional integrals.

Definition 3.1. The space AC}}[a,b] is defined as
follows:

ACyla,b] == {f : [a,b] — R such that
fn—1 € AC[a, b}, (3.1)

where AC([a,b] is the set of absolute continuous
functions on the interval [a, b].

In what follows, we propose the form of functions
in the space AC!![a,b].

Theorem 3.2. The space ACJ[a,b] consists of
those functions which has the form

f(.’L’) — w_l(x) |:/x (g(.’E) — g(t))nil f(t)dt

(n—1)!
n—1
EDUOR g(a))k] . (32
k=0

Proof. Let a function f € AC}[a,b]. Then, by Def-

inition Bl we have f, 1(z) = (%)”_lf(u’ﬂ) €

ACTa,b]. Thus, there exists a function £ € Lq[a, b]
such that

fn—l(w) =Cp—1+ /x f(t)dt
Hence,
fr—a() = cn1d'(x) + ¢'(x) /m ¢(t)dt.

Therefore,

T

foa(@) = s + cus / Cg byt + / ¢(7)

x / " e(t)dtdr

=z +ent(g(a) — gla)) + [ (ol
—g()&(t)dt.
Taking a step further, we will have

fn3(2) = cn3 + cn2(g(x) — g(a))

(9(=) — g(a))

+cn—2 91

" / x (g(x)(_ g(t))!(n_l)ﬁ(t)dt.

n—1)

The result is found then by multiplying the above
equation by w1t (z). O

By construction, it can be obviously seen that

¢k = fr(a), k=0,1,...,n—1 and
§(x) = g'(z) fu(2). (3-3)
Theorem 3.3. If f € AC}}[a,b], then the weighted

fractional derivative of f exists almost everywhere
and can be written as

(+ D2 f)(z) = wi(x) [%) /aa;

(n—a«
X (g(x) — g(0)" " fult)g' (t)dt

b+ 3l g<a>>k—afk<a>] |

— Nk—-—a+1)

(3.4)

Proof. Since f € AC}}[a,b], by Theorem and
Eq. B3), f can be written as

2040011-6
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= (ot T0Duf)(z

(9(x) — g(a)* fia)

X

Applying the weighted fractional derivative to both
sides and using Proposition [[L3], we get

(0t D) ()
= (+D5 o+ T D) (@) +w ™ (2)

& (g(@) — 9(a)* fi(a)

= (D o+ Ty @+ TLDLf) (@) + w ™ (2)

<« (9(x) — g(a))* = fr(a)
XD Tkt 1—a) -

= (Dyy o+ T0" O‘@"f)(w)er*l(-’L‘)
(a))"~* fi(a)
XZ k:+1—a)

= (T,7°D5f)(2) + v (2)

9(a))* = fi(a)
XZ k:+1—a)

where the last two steps before the final step are
obtained by using Theorems 2.4 and O

In what follows, we consider the combination of
weighted fractional derivatives and weighted frac-
tional integrals.

Theorem 3.4. Let a > (> 0, where m = [5] + 1.
Then,

(Dl o+ T0)f = (T - (3.5)
Proof.
(0t D o+ T)f
= (O TS
= (D™ +3%Tm=F) f by using Theorem 2]

- (a+~’?u_ﬁ)f
by using Theorem O

In a similar way, one can prove the following
theorem.

Theorem 3.5. Let o > 0. Then, we have

(0t D o+ T)f = [- (3.6)

Theorem 3.6. Let a > 0,n = —[—al, f € X}(a,b)

and +3%f € AC}[a,b]. Then
(a*j% (1*@?0 f)(.’B)

" x) — g(a))*F
— o) () Y

k=1

X (a+ 30 Fln-r(a®),
(3.7)

where

(a+ Ty “Fr(a

)= ( L )k(w(w)aﬂﬁaf)(a*)-

g ()

Proof. Since

(ot Tw at @) = (o Tay o+ D) o+ T *f,
we have
(ot T o+ D f)(2)
= (4 I50% o+ T ) (@) —w ™ (2)

a n+k
gn—o +
XZ Oé—?’L—Fk—i—l) (a+w f)k(a)

(9?0 aﬂﬁi ot T ) (@) —wH (2)
- ))a7n+k
(a—n —|— E+1)

(a+"” “Fr(a®)

?TM

2040011-7
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- ( w a+jn f)( )

a a—k
X Z a _gkg _:)1) (a7L jﬁiaf)n*k(aJr)

w™ (z)

_ “1 N (9(2) — g(a)*h

X (ot T Fn-r(a™),

where in the last two steps we used Corollary 2.7
and Lemma [[T] 0

4. WEIGHTED FRACTIONAL
DERIVATIVES IN THE
CAPUTO SETTINGS

In this section, we define the weighted Caputo frac-
tional derivatives and present some of its properties.

Definition 4.1. Let o > 0 and n = [a] + 1. The
weighted Caputo fractional derivative of order a of
f is defined by

n—1

(]

(D0 (2) = o+ D, (f(t)—wl(t)

i

0

— gla))*
090 ) )

(4.1)
Now, we give an explicit expression of the

weighted Caputo fractional derivatives in the space
of weighted absolute continuous functions.

Theorem 4.2. If f € AC}[a,b], then the weighted
Caputo fractional derivative, of order a > 0,n =
[a] + 1 of f can be written as

(G+Du)(@) = (G T D) (@)

i) [

- s [ (ot sty
WD () (B)at

i) [

- s [ ata) sty
< fult)g (). (1.2)

Proof. Using Definition 1] and Proposition 3]
we can write

(- D)) = (D5 ) (z) —w ™! (x)

n—

(9(x) — g(a))*—
szo T (k —a—i—l) fi(@).

Now, by Theorem 3.3, we have

(g‘F@’lO;}f)(x)

. w (Z’) * n—oa— /
S / (9(x) — ()" fu(t)g/ (t)dt

wil(x n—oa—1
-t | (@) = sttt
X DL (1)g (1)t
= (G D) -

The following proposition can be proved very
easily.

Proposition 4.3. For a > 0 and 8 > n, where
n = [a] + 1, we have

(c+Diw ™ (B)(9(t) — g(a)’ (@)

Remark 4.4. It can be observed that

(G (w™ () (g(t) — g(a))F)](z) =0,

k=0,1,...,n—1. (4.4)

In what follows, we combine the weighted frac-
tional integral with the weighted Caputo fractional
derivative

Theorem 4.5.

(6% D)) = f(z) —w ™' (x)

2040011-8
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Proof.

(a+j?u g+©?uf)($)
= (5 oD f) (@)

= (%.3"®" f)(z) using Theorem 24

where the last step is implemented by using
Lemma [[L2 0O

5. THE WEIGHTED LAPLACE
TRANSFORM

The classical Laplace transform is difficult to utilize
for the weighted fractional order. However, a small
modification of the conventional Laplace transform
would be more effective. For this sake, we propose
the following modification of the Laplace transform
which is slightly different than the one proposed in
Ref. [13.

Definition 5.1. Let f and w be functions defined
on the interval [a,00) and g be a strictly increas-
ing function on [a,c0). Then the weighted Laplace
transform of f is defined by

LY = [ e a0 (o) (@) )
(5.1)

for all values of s for which the integral in (5.1)) is
valid.

The assertions in the following proposition can
be easily obtained.

Proposition 5.2.
(1) E;ﬂ{wfl(x)ek(g(z)fg(a))}(s)

1
= AER, s> A\ (5.2)

s—\
(2)  Ly{w(@)(9(2) — g(a)? 1} (s)
= %, g>-1, s>0. (53)

Definition 5.3. Let f,w(# 0) : [a,00) — R. f
is called w-weighted g-exponential function if there
exist constants M, c and X such that

lw(z)f(z)] < Me®®  forz>X.  (5.4)

The next theorem presents the sufficient con-
ditions for the existence of the weighted Laplace
transform.

Theorem 5.4. Let f,w(# 0) : [a,00) — R be func-
tions such that wf is piecewise continuous such that
[ is w-weighted g-exponential function. Then, the
weighted Laplace transform of f exists for s > c.

Proof. The proof is direct. O

Theorem 5.5. Let f € ACyla,x) and of w-
weighted g-exponential order. Let D, f be piece-
wise continuous on every interval [a, X). Then, the
weighted Laplace transform of ., f exists and

LADuwf}(s) = sLy{f}(s) —wla)f(a).  (55)

Proof. The proof is similar to the proof of Theo-
rem 3.7 in Ref. [13l O

Theorem can be generalized as follows.

Corollary 5.6. Let f € AC" ‘[a,x), such that
k _ .

D.f,E = 0,1,...,n — 1 are of w-weighted g-

exponential order. Let ®; f be piecewise continuous

on every interval [a, X). Then, the weighted Laplace

transform of . f exists and

n—1

LYADLfHs) = s"Ly{fH(s) = > 8" F fula).
k=0
(5.6)

In what follows, we define the weighted convolu-
tion of two functions.

Definition 5.7. The weighted convolution of func-
tions f and h is defined by

g h(x)

x (97 (g(@) + g(a) — g(1)))
x w(t)h(t)g' (t)dt, (5.7)

1 is the inverse of g.

where g~
Remark 5.8. Note that we have f*g h = hx*g g.

Theorem 5.9. Let the weighted Laplace transform
of f and h exist for s > c¢1 and s > ca, respectively.
Then,

Lg{f g h(x)}(s) = Lg{f (@) Hs)Lg{h(x)}(s),
s > max{cy, c2}. (5.8)

2040011-9
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Proof.
L {f(@)}(s)Lg{h(x)}(s)

= /OO e 0@ =9@)y(2) f(2)g (z)dx

X / e =9@) oy (7)h(7)g (7)dT

= /OO /oo e~ 80@)+9()=29()y (2) f () (2)
x w(T)h(T)g (T)dT.
Letting g(x) + g(7) — g(a) = ¢(t), we obtain
Lg{f(@)}(s)Lg {h(x)}(s)

_ / - / % s(o-9(@)
a t

x (97 (g(t) + g(a) — g(m)) f g™ (g(t)
+g(a) — g(7)))w(r)h(r)g' (t)g'(r)dtdr.

Now, changing the order of integration, we get

Lg{f(x)}(s)Lg {h(x)}(s)

[e%¢) t
_ / o—s(a(H)—g(a)) / w

x (g7 (g(t) + g(a) — g(m)) flg~ " (g(t)
+g(a) — g(r)w(r)h(1)g (T)drg' (t)dt

_ / ¥ 3009 (1)1 (1)

a

« / w(g  (g(t) + gla) — g(7)))

x f(g7 (g(t) + gla) — g(7)))w(T)h(T)
x ¢ (T)drg (t)dt

_ / e=5@O-9@) (1) £ 2 h(t)g!(t)dt

a

= L{f *g h(z)}(s). O

In what follows, we present the weighted Laplace
transforms of the weighted fractional operators.

Theorem 5.10. Let f be a piecewise continuous
function on each interval [a,x] and of w-weighted
g-exponential order. Then,

_ Ly@)e)

SCM

Lg{(a+ Tu ) ()} (s) (5.9)

Proof.
£2{(0 7% 1) ()} (5)
w Hz z
R RO O
x w(t)f(t)g’(t)dt} (s)
_%) U {(g(@) — g(a)™ 1 ¥ F(@)}(s)
1 . o w
= Ty S o) = 9(@)* LT @)H)
1 T(@) .
- L U @He)
_ SN, ;

Corollary 5.11. Let o > 0, f € ACJ}[a,b] for any
b> 0,9 € C"a,bl,d(x) >0 and (,+T2 “)f, k =

0,1,...,n — 1 be w-weighted g-exponential order.
Then,
L {0+ D5f) (@) }(s)
= "L {f(x)}(s)

n—1
=2 ST @ T S (@). (5.10)

k=0
Proof. The proof can be implemented by using
(L4), Theorem B.I01 and Corollary 5.6 0

Corollary 5.12. Let « > 0, f € AC}[a,b] for
any b > 0,9 € C"[a,b],d'(x) > 0 and fr,k =

0,1,...,n — 1 be w-weighted g-exponential order.
Then,
LoD (@)} (s)
n—1
=5 (L0 @)} s) = 3 s fula) |
k=0
(5.11)

Proof. The proof can be implemented by using
Theorems [£.2] 510 and Corollary O

Remark 5.13. We can find weighted Laplace
transform of a weighted type of Mittag—Leffler
function® as follows:

Ly {w™ (2)(g(x) — 9(a))" " Eap
X (Ag(x) —g(a))*)}(s)
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) = M (@) (g(z) — g(a))kotPT
=Ly {;) (ke 1 0) }(5)

o~ ALY {w ™ (2) (g(x) — g(a)*+~ 1} (s)

— D(ka + ()
B i N T(ka+ B)
EER YRR
L s

k=0
— Sa_ﬂ
s — )\

(5.12)

Next, we find the solution of the following differ-
ential equation:

(o8 (@) — Ay = f(2);

Taking the weighted Laplace transforms of both
sides of (B.I3), the Laplace transform of the
unknown function y reads

sal 1

Lo{y(@)} = w(@)f () + o Ly L@}
(5.14)

0<a<l1l. (5.13)

Now, we get the solution using the inverse trans-
form as

6. CONLUSION

In this paper, we defined the weighted fractional
integrals and derivatives with respect to another
function and discussed some of their properties.
Above this, we proposed a modification of the
Laplace transform suitable for such types of oper-
ators. It is worth mentioning that these opera-
tors cover many well-known fractional operators
in the literature. In fact, when one considers

w(z) = 1 and g(x) = z, these operators reduce to
Reimann-Liouville fractional integrals, Riemann-—
Liouville fractional derivatives and the Caputo frac-
tional derivative. When one considers w(z) = z#
and g(z) = Inz, the Hadamard fractional operators
are obtained. Other fractional operators such as the
Erdelyi-Kober fractional operators and the frac-
tional operators proposed by Katugampola appear
as special cases of these weighted fractional opera-
tors with certain choices of w and g.
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