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Abstract: In this paper, by using admissible mapping, Wong type contraction mappings are extended
and investigated in the framework of quasi-metric spaces to guarantee the existence of fixed points.
We consider examples to illustrate the main results. We also demonstrate that the main results of the
paper cover several existing results in the literature.
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1. Introduction and Preliminaries

In 1974, Wong [1] announced an interesting extension of renowned Banach’s contraction principle via
auxiliary functions αi : (0, ∞)→ [0, ∞). In this short note we aim to transform the result of Wong [1] in a
weaker abstract space, namely quasi-metric space.

Below, we recall the fundamental notions that were used by Wong [1] to express his main result.

Definition 1. Suppose that there exist functions fi : (0, ∞)→ [0, ∞), i = 1, 2, 3, 4, 5, such that

(i) each fi is upper semi-continuous from the right;
(ii) ∑5

i=1 fi(u) < u, for any u > 0.

Then, { fi}5
i=1 is said to be a set of Wong (auxiliary) functions.

We shall state a Wong type contraction in which Wong auxiliary functions play a key role.

Definition 2. Let A be a self-mapping on a metric space (M, d) and { fi}5
i=1 be a set of Wong (auxiliary) functions.

We say that A is a Wong type contraction if the following inequality holds:

d(Ap, Aq) ≤ a1d(p, q) + a2d(p, Ap) + a3d(q, Aq) + a4d(p, Aq) + a5d(Ap, q) (1)

for any p, q ∈ M with p 6= q where ai = fi(d(p, q))/d(p, q).

The following is the outstanding result in [1].

Theorem 1. [1] If a self-mapping A, on a complete metric space (M, d), is a Wong type contraction, then A has
exactly one fixed point.
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For the sake of self-containment of this note, we shall recollect some basic concepts of quasi-metric
space. For more details, we refer the reader to [2–4].

Definition 3. LetM be a set and ω :M×M→ [0, ∞) a function such that:

(ω1) ω(p, q) = 0⇔ p = q ;
(ω2) ω(p, s) ≤ ω(p, q) + ω(q, s), for all p, q, s ∈ M.

The function ω is called a quasi-metric and the pair (M, ω) is a quasi-metric space.

If ω(p, q) = ω(q, p), then (M, ω) becomes a metric space and so, any metric space is a quasi-metric
space, but the converse is not generally true.

Definition 4. Let (M, ω) be a quasi-metric space and {pn} be a sequence inM. We say that the sequence {pn}
converges to p ∈ M (pn → p) if and only if

lim
n→∞

ω(pn, p) = lim
n→∞

ω(p, pn) = 0. (2)

Remark 1. In a quasi-metric space (M, ω), the limit for a convergent sequence is unique. If the sequence {pn}
converges to p ∈ M, we have for all q ∈ M

lim
n→∞

ω(pn, q) = ω(p, q) and lim
n→∞

ω(q, pn) = ω(q, p).

Definition 5. Let (M, ω) be a quasi-metric space and {pn} be a sequence inM. We say that the sequence {pn} is:

(RC) left-Cauchy if and only if for every ε > 0 there exists a positive integer N = N(ε) such that ω(pn, pm) < ε

for all n ≥ m > N.

(LC) right-Cauchy if and only if for every ε > 0 there exists a positive integer N = N(ε) such that ω(pn, pm) < ε

for all m ≥ n > N.

(C) Cauchy if and only if for every ε > 0 there exists a positive integer N = N(ε) such that ω(pn, pm) < ε for all
m, n > N.

Remark 2. In a quasi-metric space a sequence {pn} is Cauchy if and only if it is left-Cauchy and right-Cauchy.

Definition 6. The quasi-metric space (M, ω) is said to be:
(cL) left-complete if and only if each left-Cauchy sequence inM is convergent.
(cR) right-complete if and only if each right-Cauchy sequence inM is convergent.
(c) complete if and only if each Cauchy sequence inM is convergent.

Definition 7. In a quasi-metric space (M, ω) a map A :M→M is continuous if, for each sequence {pn} inM
converging to p ∈ M, the sequence {Apn} converges to Ap, that is,

lim
n→∞

ω(Apn, Ap) = lim
n→∞

ω(Ap, Apn) = 0 (3)

Inspired by the interesting notion of α-admissible mappings [5,6], we shall introduce αr-admissible.
Let α :M×M→ [0, ∞) and r ≥ 1. We say that a map A :M→M is αr-admissible if for any p, q ∈ M

α(p, q) ≥ r implies α(Ap, Aq) ≥ r. (4)
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2. Main Results

In this section, first we recall the notion of ∆-symmetric [7], see also [8].

Definition 8. Let ∆ be a positive real number, that is, ∆ > 0. A quasi-metric space (X, q) is called ∆-symmetric if

q (y, x) ≤ ∆q (x, y) for all x, y ∈ X.

If X is not reduced to a single point, we can find x, y ∈ X such that q (x, y) > 0. Therefore,
0 < q (x, y) ≤ ∆q (y, x) ≤ ∆2 q (x, y). Hence, ∆ ≥ 1.

Remark 3. Note that for ∆ = 1, every metric space forms a symmetric space. In other words, a quasi-metric space
is a metric space if, and only if, it is 1-symmetric.

Example 1. Let X = R and let define

q(x, y) =

{
2 (x− y) , if x ≥ y,

y− x, if x < y.

Then (X, q) is a complete 2-symmetric quasi-metric space, but it is not a metric space.

Proposition 1. Let (M, ω) be a quasi-metric space and A :M→M be an αr-admissible function. Let p0 be fixed
inM and the sequence {pn} be defined as pn = Apn−1. If α(p0, p1) ≥ r and α(p1, p0) ≥ r then α(pn, pn+1) ≥ r,
and α(pn+1, pn) ≥ r.

Proof. Since A is αr-admissible, α(p0, p1) ≥ r implies α(p1, p2) = α(Ap0, Ap1) ≥ r. Repeating this
procedure, we find that for all natural numbers n, indeed,

α(pn, pn+1) ≥ r.

Similarly, we derive that α(pn+1, pn) ≥ r.

In connection with this notion, we consider the following definitions:

(R) Let {pn} be a sequence inM such that pn → p as n → ∞, p ∈ M. If there exists a subsequence
{pk(n)} of {pn} such that α(pn, pn+1) ≥ r implies α(pk(n), p) ≥ r for any n ≥ 1, then we say that the
spaceM is αr-regular.

(U) For r ≥ 1, if α(p, q) ≥ r for all p, q ∈ Fix(A), then we say that α satisfies the (U)-condition, where
Fix(A) denotes the set of fixed points of A.

Theorem 2. Let (M, ω) be a complete ∆-symmetric quasi-metric space, a function A : M → M and r ≥ 1.
Suppose that there exist the functions βi, γi : (0, ∞)→ [0, ∞), βi(u) =

γi(u)
u , i = 1, 2, 3, 4 such that:

(i) the map A is αr-admissible and there exists p0 ∈ M such that α(p0, Ap0) ≥ r and α(Ap0, p0) ≥ r;
(ii) M is αr-regular;
(iii) each γi is upper semi-continuous from the right;
(iv) ∑4

i=1 βi(u) < r for any u > 0;
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(v) for any p, q ∈ M with p 6= q

α(p, q)ω(Ap, Aq) ≤ β1(ω(p, q))ω(p, q) + β2(ω(p, q))ω(p, Ap) + β3(ω(p, q))ω(q, Aq)

+β4(ω(p, q))
ω(p, Aq) + ω(Ap, q)

2
.

(5)

Then A has a fixed point.

Proof. Starting with an arbitrary point p0 fromM we construct the sequence {pn} as follows:

p1 = Ap0 and pn+1 = An p0 for all n ∈ N.

It is worth noting that it is interesting to assume that any adjacent terms in the sequence {pn} are different.
Indeed, on the contrary, if there is n0 such that pn0 = pn0+1 then from the definition of sequence {pn}
we get pn0 = pn0+1 = Apn0 . Consequently, pn0 is a fixed point of A and there is nothing to prove it.
Accordingly, from now on, we consider ω(pn, pn+1) > 0, for any n ∈ N.

By the condition (5), replacing p by pn and q by pn+1 and taking into account Proposition 1 we get

0 < rω(pn+1, pn+2) = rω(Apn, Apn+1) ≤ α(pn, pn+1)ω(Apn, Apn+1)

≤ β1(ω(pn, pn+1))ω(pn, pn+1) + β2(ω(pn, pn+1))ω(pn, Apn)

+β3(ω(pn, pn+1))ω(pn+1, Apn+1) + β4(ω(pn, pn+1))
ω(pn, Apn+1) + ω(Apn, pn+1)

2

≤ β1(ω(pn, pn+1))ω(pn, pn+1) + β2(ω(pn, pn+1))ω(pn, pn+1)

+β3(ω(pn, pn+1))ω(pn+1, pn+2) + β4(ω(pn, pn+1))
ω(pn, pn+2) + ω(pn+1, pn+1)

2

Since βi(u) =
γi(u)

u for i = 1, 2, 3, 4, and by using the triangle inequality, the previous inequality yields that

rω(pn+1, pn+2)ω(pn, pn+1) ≤ γ1(ω(pn, pn+1))ω(pn, pn+1) + γ2(ω(pn, pn+1))ω(pn, pn+1)

+γ3(ω(pn, pn+1))ω(pn+1, pn+2)

+γ4(ω(pn, pn+1))
ω(pn, pn+1) + ω(pn+1, pn+2)

2
.

For simplicity, let an = ω(pn, pn+1). Accordingly, the inequality above turns into

r · an+1an ≤ γ1(an)an + γ2(an)an + γ3(an)an+1 + γ4(an)
an + an+1

2
.

By elementary computation, we derive from the inequality above that

an+1 ≤
γ1(an) + γ2(an) + γ4(an)/2
r · an − γ3(an)− γ4(an)/2

an = γ(an), (6)

where for u > 0,

γ(u) =
γ1(u) + γ2(u) + γ4(u)/2
r · u− γ3(u)− γ4(u)/2

u.

Since from (iv), γ(u) < u for all u > 0 we obtain an+1 < an and so, the sequence {an} is decreasing.
Thus, there exists a point a ∈ [0, ∞) such that lim

n→∞
an = a. On the other hand, since each function γi

is upper semi-continuous from the right, the mapping γ is also upper semi-continuous from the right,
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so lim
n→∞

γ(an) = a. We will prove that a = 0. Indeed, if we suppose that a > 0, then, from the expression (6),

we have
a = lim

n→∞
an+1 ≤ lim sup

n→∞
γ(an) ≤ γ(a) < a,

which is a contradiction. We conclude that the sequence {an} converges to 0.
Let us consider now, in relation (5), p = pn+1 and q = pn. We find

0 < rω(pn+2, pn+1) = rω(Apn+1, Apn) ≤ α(pn+1, pn)ω(Apn+1, Apn)

≤ β1(ω(pn+1, pn))ω(pn+1, pn) + β2(ω(pn+1, Apn+1))ω(pn+1, Apn+1)

+β3(ω(pn+1, pn))ω(pn, Apn) + β4(ω(pn+1, pn))
ω(pn+1, Apn) + ω(Apn+1, pn)

2

≤ β1(ω(pn+1, pn))ω(pn+1, pn) + β2(ω(pn+1, pn))ω(pn+1, pn+2)

+β3(ω(pn+1, pn))ω(pn, pn+1) + β4(ω(pn+1, pn))
ω(pn+1, pn+1) + ω(pn+2, pn)

2

or,

rω(pn+2, pn+1)ω(pn+1, pn) ≤ γ1(ω(pn+1, pn))ω(pn+1, pn) + γ2(ω(pn+1, pn+2))ω(pn+1, pn)

+γ3(ω(pn+1, pn))ω(pn, pn+1)

+γ4(ω(pn+1, pn))
ω(pn+2, pn+1) + ω(pn+1, pn+2)

2
.

On the other hand, denoting by bn = ω(pn+1, pn) and keeping in my that it is ∆-symmetric, there
exists ∆ > 0 such that

1
∆

an ≤ bn ≤ ∆an.

Letting n→ ∞, by using the “Squeeze Theorem” and taking into account that the sequence {an} converges
to 0 we get lim

n→∞
bn = lim

n→∞
ω(pn+1, pn) = 0.

As a next step, we shall show that the sequence {pn} is Cauchy, that is left-Cauchy and right-Cauchy
sequence in the quasi-metric space (M, ω).

Suppose it would not be so, which means that there exists ε > 0 and two sequences k(n) and l(n)
such that for any n ∈ N

k(n) > l(n) > n, ω(pk(n), pl(n)) ≥ ε, and ω(pk(n)−1, pl(n)) < ε.

Then, due to the triangle inequality, we get

ε ≤ ω(pk(n), pl(n)) ≤ ω(pk(n), pk(n)−1) + ω(pk(n)−1, pl(n)) ≤ ω(pk(n), pk(n)−1) + ε.

or, if we denote by cn = ω(pk(n), pl(n))

ε ≤ cn ≤ bn + ε. (7)

Since bn → 0, taking n→ ∞ in (7) we obtain

ε ≤ lim
n→∞

cn ≤ ε

so, limn→∞ cn = limn→∞ ω(pk(n), pl(n)) = ε. Again, from the triangle inequality,
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ω(pk(n)+1, pl(n)+1) ≤ ω(pk(n)+1, pk(n)) + ω(pk(n), pl(n)) + ω(pl(n), pl(n)+1)

≤ bk(n) + ω(pk(n), pl(n)) + al(n)
(8)

and also
ω(pk(n), pl(n)) ≤ ω(pk(n), pk(n)+1) + ω(pk(n)+1, pl(n)+1) + ω(pl(n)+1, pl(n))

≤ ak(n) + ω(pk(n)+1, pl(n)+1) + bl(n).
(9)

Combining (8) and (9)

ω(pk(n), pl(n))− ak(n) − bl(n) ≤ ω(pk(n)+1, pl(n)+1) ≤ bk(n) + ω(pk(n), pl(n)) + al(n).

Letting n→ ∞ we get lim
n→∞

ω(pk(n)+1, pl(n)+1) = ε. On the other hand, by (v),

rω(Apk(n), Apl(n)) ≤ α(pk(n), pl(n))ω(Apk(n), Apl(n)) ≤ β1(ω(pk(n), pl(n)))ω(pk(n), pl(n))

+β2(ω(pk(n), pl(n)))ω(pk(n), Apk(n)) + β3(ω(pk(n), pl(n)))ω(p(n), Apl(n))

+β4(ω(Apk(n), Apl(n)))
ω(pk(n),Apl(n))+ω(Apk(n),pl(n))

2 .

Taking into account the definition of function β, and using again the triangle inequality,

rcn+1cn ≤ γ1(cn)cn + γ2(cn)ak(n) + γ3(cn)al(n) + γ4(cn)
2cn + al(n) + bk(n)

2

By letting n→ ∞, since the functions γi are upper semi-continuous and using (iv)

r · ε2 ≤ [γ1(ε) + γ4(ε)]ε < r · ε2

which is a contradiction. Thus {pn} is a left-Cauchy sequence. Analogously, it can be shown that {pn} is
right-Cauchy and we can conclude that {pn} is a Cauchy sequence in the complete quasi-metric space
(M, ω). This implies that the sequence {pn} converges to some point p∗, that is

lim
n→∞

ω(pn, p∗) = lim
n→∞

ω(p∗, pn) = 0.

We shall prove now that p∗, is a fixed point of A. Since the sequence {an} is strictly decreasing and an > 0
for any natural number n, we can find a subsequence pk(n) such that ω(pk(n), p∗) > 0. Also from (ii),
the space (M, p∗) is α-regular, that is α(pk(n), p∗) ≥ r for any r ≥ 1. Then, we have

rω(pk(n+1), Ap∗) = r ·ω(Apk(n), Ap∗) ≤ r · α(pk(n), p∗)ω(Apk(n), Ap∗)

≤ β1(ω(pk(n)), p∗)ω(pk(n), p∗) + β2(ω(pk(n), p∗))ω(pk(n), Apk(n))

+β3(ω(pk(n), p∗))ω(pk(n), Apk(n)) + β4(ω(pk(n), p∗))
ω(pk(n),Ap∗)+ω(Apk(n),p

∗))
2

≤ β1(ω(pk(n), p∗))ω(pk(n), p∗) + β2(ω(pk(n), p∗))ω(pk(n), pk(n)+1)

+β3(ω(pk(n)), p∗)ω(p∗, Ap∗) + β4(ω(pk(n), p∗))
ω(pk(n),Ap∗)+ω(pk(n)+1,p∗)

2

≤ β1(ω(pk(n), p∗))ω(pk(n), p∗) + β2(ω(pk(n), p∗))ω(pk(n), pk(n)+1)

+β3(ω(pk(n), p∗)ω(p∗, Ap∗) + β4(ω(pk(n), p∗))
ω(pk(n),p

∗)+ω(ω,Ap∗)+ω(pk(n)+1,p∗)
2

(10)
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By denoting ωn = ω(pk(n), p∗), we can rewrite as

r ·ω(pk(n)+1, Ap∗) ≤ β1(ωn)ωn + β2(ωn)ak(n) + β3(ωn)ω(p∗, Ap∗) + β4(ωn)
ω(p∗ ,Ap∗)+2ωn+bk(n)

2 , (11)

or

r ·ω(pk(n)+1, Ap∗) ≤ γ3(ωn)+
γ4(ωn)

2
ωn

ω(p∗, Ap∗) + 1
ωn

[
γ1(ωn)ωn + γ4(ωn)(ωn +

bk(n)
2 ) + γ2(ωn)ak(n)

]
< r ·ω(p∗, Ap∗) + O(n),

where

O(n) =
1

ωn

[
γ1(ωn)ωn + γ4(ωn)(ωn +

bk(n)

2
) + γ2(ωn)ak(n)

]
.

Taking n→ ∞ in the previous inequality, since limn→∞ O(n) = 0 we obtain that

r ·ω(p∗, Ap∗) < r ·ω(p∗, Ap∗),

a contradiction. We conclude that Ap∗ = p∗, that is p∗ is a fixed point of function A.

Example 2. LetM = [0, 2] ∪ {3} and ω :M×M→ [0, ∞) be defined by

ω(p, q) =


0 for p = q
3 for p ∈ [0, 2], q = 3
1 otherwise .

Define the function A :M→M by

Ap =

{
1
2 for p ∈ [0, 1) ∪ {3}

p + ln p for p ∈ [1, 2]

and α :M×M→ [0, ∞) by

α(p, q) =


4 for p, q ∈ [0, 1)
3 for p ∈ [0, 1), q = 3
0 otherwise .

We take also r = 3 and βi, γi : (0, ∞) → [0, ∞), i = 1, 2, 3, 4 defined by βi(u) = γi(u)
u , where γ1(u) = u2

u+1 ,
γ4(u) = 1

2 u, γ2(u) = γ3(u) = 0.
Obviously, ∑ βi(u) = u

u+1 + 1
2 < 3 for any u > 0. On the other hand, since A(p) < 1 for any p ∈ [0, 1) and

A(3) = 1/2 is easy to see that A is α-admissible and the spaceM is α-regular. Moreover (vi) holds for ∆ = 3.
We are only interested in the following cases:
(i) For p, q ∈ [0, 1) we have ω(p, q) = 1, ω(p, Aq) = 1, ω(q, Ap) = 1, β1(ω(p, q)) = 1

2 , β4(ω(p, 0)) = 1
2 . Thus,

α(p, 0)ω(Ap, Aq) = 0 <
1
2
+

1
2
= β1(ω(p, q))ω(p, q) + β4(ω(p, q))[ω(p, Aq) + (Ap, q)]/2.
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(ii) For p ∈ [0, 1) and q = 3, we have ω(p, 3) = 3, ω(p, A(3)) = ω(p, 1/4) = 1, ω(Ap, 3) = 3, β1(ω(p, 3)) = 3
4 ,

β4(ω(p, 3)) = 1
2 . Thus,

α(p, 3)ω(Ap, A(3)) = 0 <
3
4
+

4
2
= β1(ω(p, 3))ω(p, 3) + β4(ω(p, 3))[ω(p, A(3)) + ω(Ap, 3)]/2.

Hence, in all cases, the conditions of the Theorem 2 are satisfied and the function A has two fixed points p = 1 and
p = 1/2.

To ensure the uniqueness of the fixed point, we need to add an additional hypothesis. Thus, we obtain
the following theorem:

Theorem 3. Additionally to the hypothesis of Theorem 2, if we suppose that the mapping α satisfies the (U) condition,
then the function A has exactly one fixed point.

Proof. Suppose that A has two distinct fixed points ν, µ. Due the supplementary condition, we know that
α(ν, µ) ≥ r, so replacing in (5) we get

rω(ν, µ) = r ·ω(Aν, Aµ) ≤ α(ν, µ)ω(Aν, Aµ) ≤ β1(ω(ν, µ))ω(ν, µ) + β2(ω(ν, µ))ω(ν, Aν)

+β3(ω(ν, µ))ω(µ, Aµ) + β4(ω(ν, µ))ω(ν,Aµ)+ω(Aν,µ)
2

=
[
γ1(ω(ν, µ))ω(ν, µ) + γ4(ω(ν, µ))ω(ν,µ)+ω(ν,µ)

2

]
· 1

ω(ν,µ)

= γ1(ω(ν, µ)) + γ4(ω(ν, µ)) < rω(ν, µ).

That contradiction shows us that ν = µ, that is, A has exactly one fixed point.

Example 3. LetM = [0, 1] and ω :M×M→ [0, ∞) be defined by

ω(p, q) =

{
p− q for p ≥ q

1
2 (q− p) for p < q.

Then (M, ω) is a complete quasi-metric space and it is easy to see that the assumption (vi) is satisfied for any ∆ ≥ 2.
Define A :M→M by

Ap =

{
p2+p

8 for p ∈ [0, 1)
0 for p = 1.

and α :M×M→ [0, ∞) by

α(p, q) =


3 for p ∈ [0, 1), q = 1
2 for p ∈ [0, 1), q = 0
0 otherwise .

We take also r = 2 and βi, γi : (0, ∞) → [0, ∞), i = 1, 2, 3, 4 defined by βi(u) = γi(u)
u , where γ1(u) = u

u+1 ,
γ3(u) = 2

3 u, γ2(u) = γ4(u) = 0.
Obviously, ∑ βi(u) = 1

u+1 + 2
3 < 2 for any u > 0. On the other hand, since Ap < 1 for any p ∈ [0, 1) and

A(0) = A(1) = 0 is easy to see that A is α-admissible and the space M is α-regular. We will consider the
following cases:



Mathematics 2020, 8, 649 9 of 10

(i) For p ∈ (0, 1) and q = 0, we have ω(p, 0) = p, ω(0, A0) = 0, β1(ω(p, 0)) = 1
1+p , β3(ω(p, 0)) = 2

3 . Thus,

α(p, 0)ω(Ap, A(0)) = 2 · p2 + p
8

=
p2 + p

4
≤ p

1 + p
= β1(ω(p, 0))ω(p, 0) + β3(ω(p, 0))ω(0, A0)

(ii) For p ∈ (0, 1) and q = 1, we have ω(p, 1) = 1
2 (1− p), ω(1, A(1)) = 1, β1(ω(p, 1)) = 2

3−p , β3(ω(p, 1)) = 2
3 .

Thus,

α(p, 1)ω(Ap, A(1)) = 3 · p2 + p
8
≤ 1− p

3− p
+

2
3
= β1(ω(p, 1))ω(p, 1) + β3(ω(p, 0))ω(1, A(1)).

For p = q = 1 and p = q = 0 the relation (5) is obviously satisfied, and the other cases are not interesting due to
the choice of function α. Therefore, the function A has exactly one fixed point, namely p = 0.

Letting α(p, q) = 1 and r = 1 in Theorem 3 we obtain the following:

Corollary 1. Let (M, ω) be a complete ∆-symmetric quasi-metric space and a function A :M→M. Suppose
that there exist the functions βi, γi : (0, ∞)→ [0, ∞), βi(u) =

γi(u)
u , i = 1, 2, 3, 4 such that:

(i) each γi is upper semi-continuous from the right;
(ii) ∑4

i=1 βi(u) < 1 for any u > 0;
(iii) for any p, q ∈ M

ω(Ap, Aq) ≤ β1(ω(p, q))ω(p, q) + β2(ω(p, q))ω(p, Ap) + β3(ω(p, q))ω(q, Aq)

+β4(ω(p, q))
ω(p, Aq) + ω(Ap, q)

2
.

(12)

Then A has exactly one fixed point.

Letting β2 = β3 = β4 = 0 we derive the following theorem:

Theorem 4. Let (M, ω) be a complete quasi-metric space, a function A :M→M and r ≥ 1. Suppose that there
exist the functions β1, γ1 : (0, ∞)→ [0, ∞), β1(u) =

γ1(u)
u , such that:

(i) the map A is αr-admissible and there exists p0 ∈ M such that α(p0, Ap0) ≥ r and α(Ap0, p0) ≥ r;
(ii) M is αr-regular;
(iii) each γ1 is upper semi-continuous from the right;
(iv) β1(u) < 1 for any u > 0;
(v) for any p, q ∈ M

α(p, q)ω(Ap, Aq) ≤ β1(ω(p, q))ω(p, q). (13)

Then A has a fixed point.

Theorem 5. Additionally to the hypothesis of Theorem 4, if we suppose that the mapping α satisfies the (U)
condition, then the function A has exactly one fixed point.

We skip the proof since it is verbatim of the proof Theorem 3.

3. Conclusions

As we derive Theorem 4, by letting some βi = 0, for distinct combinations of i ∈ {1, 2, 3, 4} in
Theorem 2, we get some more corollaries of Theorem 2, and also consequences of Theorem 3. Thus,
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we deduce that the main results of the paper cover several existing results in the literature, e.g., [1,5,9].
In particular, by letting α(p, q) = 1 and r = 1 in Theorem 5, we obtain the analogue of the renowned
result of Boyd-Wong [9] in context of quasi-metric spaces. Notice also that by letting β1(t) = kt, k ∈ [0, 1),
we get a variant of Banach contraction principle in the setting of quasi-metric spaces.

Author Contributions: Writing—original draft preparation A.F.; writing—review and editing, A.F. and E.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank anonymous referees for their remarkable comments, suggestions, and ideas
that help to improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wong, C.S. Generalized contractions and fixed point theorems. Proc. Am. Math. Soc. 1974, 42, 409–417. [CrossRef]
2. Dung, N.V. Remarks on quasi-metric spaces. Miskolc Math. Notes 2014, 15, 401–422. [CrossRef]
3. Karapinar, E.; Romaguera, S. On the weak form of Ekeland’s Variational Principle in quasi-metric spaces.

Topol. Appl. 2015, 184, 54–60. [CrossRef]
4. Karapinar, E.; Romaguera, S.; Tirado, P. Contractive multivalued maps in terms of Q-functions on complete

quasimetric spaces. Fixed Point Theory Appl. 2014, 2014, 53. [CrossRef]
5. Karapinar, E.; Samet, B. Generalized α− ψ-contractive type mappings and related fixed point theorems with

applications. Abstr. Appl. Anal. 2012, 2012, 793486. [CrossRef]
6. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α− ψ-contractive type mappings. Nonlinear Anal. 2012,

75, 2154–2165. [CrossRef]
7. Karapinar, E.; Roldan-Lopez-de-Hierro, A.-F.; Samet, B. Matkowski theorems in the context of quasi-metric

spaces and consequences on G-metric spaces. Analele Stiintifice Ale Univ. Ovidius-Constanta-Ser. Mat. 2016,
24, 309–333. [CrossRef]

8. Alqahtani, B.; Fulga, A.; Karapinar, E. Fixed Point Results On ∆-Symmetric Quasi-Metric Space Via Simulation
Function With An Application To Ulam Stability. Mathematics 2018, 6, 208. [CrossRef]

9. Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1090/S0002-9939-1974-0331358-4
http://dx.doi.org/10.18514/MMN.2014.1139
http://dx.doi.org/10.1016/j.topol.2015.01.011
http://dx.doi.org/10.1186/1687-1812-2014-53
http://dx.doi.org/10.1155/2012/793486
http://dx.doi.org/10.1016/j.na.2011.10.014
http://dx.doi.org/10.1515/auom-2016-0018
http://dx.doi.org/10.3390/math6100208
http://dx.doi.org/10.1090/S0002-9939-1969-0239559-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Preliminaries
	Main Results
	Conclusions
	References

