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HÜSEYİN ŞAHİN AKBAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF COMPUTER ENGINEERING

OCTOBER 2005





ABSTRACT

DEVELOPING TOOLS FOR THE ENHANCEMENT OF REMOTE SENSING

IMAGES AND PARALLEL PROGRAMMING APPLICATIONS

Akbal, Hüseyin Şahin

M. S., Department of Computer Engineering

Supervisor: Asst. Prof. Dr. Cem Özdoğan

October 2005, 47 pages

The principal goal of enhancement techniques is to process an image so that the

result is more suitable than the original image for a specific application.

In this study the remote sensing is chosen as the area of that specific application.

First a survey is made on the enhancement techniques used for the enhancement of

remote sensing images. Then optimization of these techniques are tried using parallel

computation. Although optimization efforts cover a subdivision of the techniques, the

results offer a definite idea about what can be achieved from the parallelization of the

enhancement techniques used in the area of the remote sensing.

Keywords: parallel programming, parallel computation, remote sensing, image pro-

cessing, image enhancement, Fourier transform.
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ÖZ

UZAKTAN ALGILAMA İLE ELDE EDİLMİŞ GÖRÜNTÜLERİN

İYİLEŞTİRİLMESİ VE PARALEL PROGRAMLAMA UYGULAMALARI İÇİN

ARAÇLARIN GELİŞTİRİLMESİ

Akbal, Hüseyin Şahin

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Cem Özdoğan

Ekim 2005, 47 sayfa

Görüntü iyileştirme tekniklerinin temel amacı, bir görüntüyü belli bir amaca yönelik

özel bir uygulama için orijinal halinden daha uygun bir hale getirmektir.

Bu çalışmada, özel uygulama alanı olarak uzaktan algılama seçildi. Öncelikle uzak-

tan algılama ile elde edilmiş görüntülerin iyileştirilmesinde kullanılan görüntü iyileş-

tirme tekniklerini incelendi. Sonrasında da bu teknikleri paralel hesaplama kulla-

narak bir adım ileriye götürmek için denemeler yapıldı. Her ne kadar alan içerisindeki

tekniklerin bir kısmının parallelliği üzerine çalışılmış olsa da; elde edilen sonuçlar uzak-

tan algılama alanında kullanılan iyileştirme tekniklerinin parallelleştirilmesi ile nasıl

bir kazanım elde edilebileceği konusunda bize kesin bir fikir vermektedir.

Anahtar Kelimeler: parallel programlama, parallel hesaplama, uzaktan algılama, görüntü

işleme, görüntü iyileştirme, Fourier dönüşümü.
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and patience to me throughout the study of this thesis work.

v



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
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CHAPTER 1

INTRODUCTION

Independent of the area of the study, image processing systems show the same

characteristics. First comes the acquisition of the image. In the remote sensing this

step is performed by the sensors on the aircraft or spacecraft platforms and that are

not in contact with the target of interest. Then preprocessing of the image data is

performed. This step includes enhancement of the data before the next step, which

is the processing of the enhanced image data to extract some useful information for a

specific purpose.

The principal goal of enhancement techniques is to process an image so that the

result is more suitable than the original image for a specific application. The word

specific is important, because it establishes at the outset that the techniques discussed

in Chapter 3 are very much problem oriented. Thus, for example, a method that is

quite useful for enhancing x-ray images may not necessarily be the best approach for

enhancing pictures of Mars transmitted by a space probe [1].

Enhancement operations that are used in the area of the remote sensing are ex-

amined in two broad categories: point operations and neighborhood operations. En-

hancement techniques using point operations are called radiometric enhancement tech-

niques. Enhancement techniques using neighborhood operations are called geometric
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enhancement techniques.

Radiometric enhancement techniques use the original value of the pixel to produce

the new brightness value of the pixel. The aim of these operations is to alter the

contrast of the image to make a specified feature more clear.

Geometric enhancement techniques use both the existing value of the pixel and

values of a specified neighborhood of pixels to produce the new brightness value of

the pixel. Geometric enhancement techniques are performed to remove the noise from

image data or to make the edges better.

Geometric enhancement techniques are performed using templates in the spatial

domain. They are also performed in the frequency domain using Fourier transform.

The parallelization part of this study includes the parallelization of the geometric

enhancement techniques in the frequency domain.

The aim of this thesis study is developing the parallel versions of the enhancement

algorithms used in the area of the remote sensing.

After reviewing the enhancement techniques which are used for the enhancement

of the remote sensing imagery, the results of attempts to use parallel computing

techniques for the enhancement of the remote sensing imagery are presented.

This thesis consists of five chapters except introduction: chapter 2 gives us remote

sensing basics; description of the remote sensing, how images are taken in the remote

sensing, what kind of data the imagery includes etc.
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Chapter 3 covers the range of radiometric and geometric enhancement techniques

commonly adopted in practice. This chapter also includes the brief explanation of

Fourier transform and its usage for the filtering of images in the spatial domain.

Chapter 4 includes parallelization efforts. This chapter gives both the sequential

and parallel algorithms that are tested.

Chapter 5 covers the graphical presentation of the results that are obtained from

the performed tests, how the programs are tested and the comments on the results.

Chapter 6 gives a brief conclusion about this study.
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CHAPTER 2

REMOTE SENSING BASICS

It is probably the most used question phrase in the world: ”What is ...?”. So, let’s

start asking another what question, what is remote sensing?. Of course this question

has many different answers. Two of them will be used throughout this text: the first

one says that, remote sensing is the science and art of obtaining useful information

about an object, area or phenomenon through the analysis of data acquired by a device

that is not in contact with the object, area, or phenomenon under investigation [2].

The second one says that, remote sensing is the science of acquiring, processing, and

interpreting images, and related data, acquired from spacecraft and satellites that

record the interaction between matter and electromagnetic energy [3].

Both of the definitions mentioned are obtaining information about an object of

interest without being in contact. Just like hearing or seeing something. In both

sensing activities, the terminology of remote sensing assumes us doing passive sensing.

In remote sensing there are two types of sensing, active and passive. In both types

the electromagnetic energy is measured. Passive sensors measure the energy that

is naturally available. This natural availability requires an external energy source,

which is generally the Sun. The Sun’s energy is either reflected or absorbed and then

emitted. During the time when the Sun is illuminating the object of interest, i.e. the
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Earth, passive sensors can measure energy. But when the object of interest is not

illuminated by the Sun, the passive sensors can detect emitted energy, if the amount

of energy is large enough to be recorded. On the other hand, active sensors do not

need an external energy source. They include their own energy sources. The remote

sensing platform emits radiation towards the target to be investigated. Then the

radiation reflected from the target is measured by the sensor. Active sensors can be

used for examining wavelengths that are not sufficiently provided by the Sun, such as

microwaves. Also the illumination of the target is controlled better. They can make

measurements independently from the time of the day and season. However, active

sensing platforms require the generation of a huge amount of energy to illuminate the

targets sufficiently.

According to CCRS (Canada Centre for Remote Sensing) [4] the remote sensing

process involves 7 basic steps:

1. Energy Source or Illumination: The first requirement for the remote sensing

is to have an energy source which illuminates or provides electromagnetic energy

to the target of interest.

2. Radiation and the Atmosphere: As the energy travels from its source to

the target, it will come in contact and interact with the atmosphere it passes

through. This interaction also occurs as the energy travels from the target to

the sensor.

3. Interaction with the Target: Once the energy makes its way to the target

through the atmosphere, it interacts with the target depending on the properties

of both the target and the radiation.
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4. Recording of Energy by the Sensor: After the energy has been scattered

by, or emitted from the target, a sensor (remote - not in contact with the target)

is used to collect and record the electromagnetic radiation.

5. Transmission, Reception and Processing: The energy recorded by the sen-

sor has to be transmitted, often in electronic form, to a receiving and processing

station where the data are processed into an image (hard copy and/or digital).

6. Interpretation and Analysis: The processed image is interpreted, visually

and/or digitally or electronically, to extract information about the target which

was illuminated.

7. Application: The final element of the remote sensing process is achieved when

the information which is extracted from the imagery about the target is applied

for better understanding of it, reveal some new information, or assist in solving

a particular problem.

Although any sensible range of wavelengths may be used in the remote sensing,

the details of the second step makes us to exclude certain wavelengths. During the

radiation passing from the atmosphere, it is affected in two ways; scattering and

absorption. Scattering means redirection of the radiation from its original path. How

much scattering takes place depends on the wavelength of the radiation, the wealth of

particles or gases, and the distance which the radiation travels through the atmosphere

[4]. The latter one, absorption, occurs when the molecules in the atmosphere absorb

energy at various wavelengths. Three main constituents of the atmosphere which

absorb radiation are ozone, carbon dioxide, and water molecules.
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The following spectral ranges are used in remote sensing:

• Ultraviolet (UV): The UV portion of the spectrum covers wavelengths from

10 nm to 400 nm and has the shortest wavelengths which are practical for the

remote sensing. Some Earth surface materials, primarily rocks and minerals,

fluoresce or emit visible light when illuminated by UV radiation.

• Visible: The visible portion of the spectrum, which takes its name because

our eyes can detect the electromagnetic energy of this portion as light, covers

wavelengths from 400 nm to 700 nm.

• Infrared (IR): The IR portion of the spectrum covers wavelengths from 700

nm to 1 mm. As you can see easily this range is much more larger than the

visible portion. The IR portion is divided into two sub portions based on their

radiation properties. The first one is the ”reflected IR” which covers wavelengths

from 700 nm to 3000 nm. The second one is the ”emitted IR”, or ”thermal IR”

which covers wavelengths from 3000 nm to 1 mm. The thermal IR region is

essentially the radiation that is emitted from the Earth’s surface in the form of

heat.

• Microwave: The microwave portion of the spectrum covers wavelengths from

1 mm to 100 mm and has the longest wavelengths used for remote sensing.

The significance of these different ranges lies in the interaction mechanism between

the electromagnetic radiation and the materials being examined [5].

• In the visible/infrared range the reflected energy measured by a sensor depends

7



upon properties such as the pigmentation, moisture content and cellular struc-

ture of vegetation, the mineral and moisture contents of soils and the level of

sedimentation of water.

• At the thermal end of the infrared range it is heat capacity and other ther-

mal properties of the surface and near subsurface that control the strength of

radiation detected.

• In the microwave range, using active imaging systems based upon radar tech-

niques, the roughness of the cover type being detected and its electrical prop-

erties, expressed in complex permittivity (which in turn strongly influenced by

the moisture content) determine the magnitude of the reflected signal.

Radiation that is not absorbed or scattered in the atmosphere will interact with

the target of interest in three ways depending on the wavelength of the energy and

the material and condition of the target:

1. Absorption occurs when radiation is absorbed into the target.

2. Transmission occurs when radiation passes through a target.

3. Reflection occurs when the radiation is redirected.

Reflection occurs in many different ways. As can be seen from the Figure (2.1),

smooth surfaces cause mirror-like reflection which is called specular reflection. They

appear darker areas in the image data. Rough surfaces cause diffuse reflection which

scatters the radiation in all directions. They appear light in the image data. Manufac-

tured features such as buildings cause corner reflection, which is generally observed in
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microwave image data. In the image data they appear as very bright areas. Features,

such as vegetation canopies and sea ice, cause volume scattering behaviour which

leads to light tonal appearance in radar imagery.

Figure 2.1: a Specular, b diffuse, c corner reflector and d volume scattering behaviour,
encountered in the information of microwave image data

It is important to know how common Earth surface materials interact with the

radiation in the used wavelength. For visible and infrared portions of the spectrum

reflectance characteristics of common Earth surface materials can be seen in the Figure

(2.2). It is seen that water reflects about 10% or less in the blue-green range, a

smaller percentage in the red and certainly no energy in the infrared range. If there is

suspended sediment present in the upper layers of the water body, then this will allow

better reflectivity and a brighter appearance of the water. Suspended sediment can

be easily confused with shallow, and clear, water, since these two phenomena appear

very similar. Chlorophyll in algae absorbs more of the blue wavelengths and reflects

the green, making the water appear more green in color when algae is present. The
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Figure 2.2: Spectral reflectance characteristics of common earth surface materials in
the visible and near-to-mid infrared range. 1 Water, 2 vegetation, 3 soil.

topography of the water surface (rough, smooth, floating materials, etc.) can also

lead to complications for water-related interpretation due to potential problems of

specular reflection and other influences on color and brightness.

The vegetation curve is relatively more complex than the other two. In the middle

infrared range it is dominated by the water absorption bands at 1.4 µm, 1.9 µm and

2.5 µm. Between 0.7 µm and 1.3 µm it is affected mainly by plant cell structure while

in the visible range of wavelengths plant pigmentation, the amount of chlorophyll,

is the dominant factor. The vegetation curve is drawn for healthy green vegetation,

which has chlorophyll absorption bands in the blue and red regions leaving only green

reflection of any significance. The internal structure of healthy leaves act as excellent

diffuse reflectors of near infrared wavelengths. If our eyes were sensitive to near

infrared, trees would appear extremely bright to us at these wavelengths. In fact,

measuring and monitoring the near infrared reflectance is one way that scientists can

determine how healthy or unhealthy vegetation may be.
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Resolution or resolving power is the key term to determine the ability of an optical

system. It is the measure of the ability of an optical system to distinguish between

signals that are spatially near and spectrally similar. Resolution may be examined

under four titles [6]:

1. Spectral resolution refers to the number and dimension of specific wavelength

intervals in the spectrum to which a sensor is sensitive. The size of the interval

or band may be large, as with panchromatic black-and-white aerial photography

(0.4 µm to 0.7 µm), or relatively small, as with band 3 of the Landsat 5 Thematic

Mapper (TM) sensor system (0.63 µm to 0.69 µm). The bands are selected to

maximize the contrast between the object of interest and its background. Careful

selection of the spectral bands may improve the probability that a feature will

be detected and identified.

2. Spatial resolution is described as pixel size equivalent to ground meters. For the

Landsat TM it is 30 x 30 m. The smaller the spatial resolution, the greater the

resolving power of the sensor system.

3. Temporal resolution of a sensor system refers to how often it records imagery of

a particular area. Ideally, the sensor obtains data repetitively to capture unique

discriminating characteristics of the object under investigation. For example

[7], agricultural crops have unique crop calendars in each geographic region.

To measure specific agricultural variables, it is necessary to acquire remotely

sensed data at critical dates in the phenological cycle. Analysis of multiple-date

imagery provides information on how the variables are changing through time.

Change information provides insight into process influencing the development
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of the crop.

4. Radiometric resolution describes the range and discernable number of discrete

brightness values. Frequently the radiometric resolution is expressed in terms of

the number of binary digits, or bits, necessary to represent the range of available

brightness values. Thus data with 8 bit radiometric resolution has 256 levels of

brightness values.

Together with the frame size of an image, in equivalent ground kilometers, spectral

resolution, radiometric resolution and spatial resolution determine the amount of data

to be processed. As an example, Landsat TM instrument [5] can be used. It has 7

wavelength bands with 8 bit radiometric resolution, six of which have 30 m spatial

resolution and one of which has a spatial resolution of 120 m (the thermal infrared

band). An image frame of 185 km x 185 km therefore represents 2.37 million pixels in

the thermal band and 38 million pixels in the other six bands. At 8 bits per pixel, a

complete 7 band image is composed of 1.848 x 109 bits or 1.848 giga bits; alternatively

and more commonly the data value would be expressed as 231 million bytes, where 1

byte is equivalent to 8 bits.
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CHAPTER 3

IMAGE PROCESSING BASICS

Remote sensing image data in digital form has two components. Spatially the data

is composed of discrete picture elements, or pixels, and radiometrically it is quantised

into discrete brightness levels. Several approaches are possible to extract information

from the digital image data. In quantitative analysis, computers ar used and in

photointerpretation (or image interpretation) a human analyst/interpreter extracts

information from the digital image data. Photointerpretation includes interpretation

of the image’s spatial, temporal and spectral elements. When many different images

of the same geographical area recorded at different dates, there may be some changes.

There is nothing to do with the temporal details. Image’s spatial elements include

shape, size, orientation and texture. Spectral elements includes the brightness values.

To interpret spectral elements, the spectral reflectance of typical ground cover types

and how those characteristics are sampled by the sensor have to be known.

Generally photointerpretation requires some preprocessing of the images. This pre-

processing may be done in two categories: radiometric enhancement and geometric

enhancement. Radiometric enhancement includes altering the contrast range occupied

by the pixels. Only point operations are used to do that. Geometric enhancement

includes smoothing noise, enhancing and highlighting edges, detecting and enhanc-
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ing lines. Performing these operations require usage of a specified neighborhood of

the pixels. These operations are usually time consuming to evaluate. Radiometric

enhancement changes spectral and spatial characteristics of the image data while the

geometric enhancement only changes spatial characteristics.

3.1 Radiometric Enhancement

Remote sensors record reflected and emitted radiant flux exiting from Earth’s

surface materials. Ideally, one material would reflect a tremendous amount of energy

in a certain wavelength, while another material would reflect much less energy in the

same wavelength. This would result in contrast between the two types of materials

when recorded by a remote sensing system. Unfortunately, different materials often

reflect similar amounts of radiant flux throughout the visible, near-infrared, and mid-

infrared portion of the electromagnetic spectrum, resulting in a relatively low contrast

image.

To improve the contrast of the digital remotely sensed data, it is desirable to

utilize the entire brightness range of the display medium, which is generally a video

display or hard copy output device. There are linear and nonlinear digital contrast

enhancement techniques.

3.1.1 Linear Contrast Enhancement

Contrast enhancement (or contrast stretching) expands the original input bright-

ness values to make use of the total range of the output device. To make a decision
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about the contrast of the image data its histogram is used. If each pixel in the image

is examined and its brightness value noted, a graph of number of pixels with a given

brightness versus brightness value can be constructed. This is referred to as histogram

of the image. A 24 bit color image includes 3 components which are blue, green and

red. Each of these components uses 8 bits to show different brightness values. This

means that 256 levels may be used, from 0 to 255, in each band. A 0 brightness value

means darkness and a 255 brightness value means lightness. If only one of these bands

is considered, whose range is 255, highest value minus lowest value, and in the original

image the range is 100; then a limited portion of the range is used. This limitation can

be seen from the histogram of the image. For example if your minimum brightness

value is 0 and the highest brightness value is 100, then you have a dark image. If

your minimum brightness value is 155 and the highest brightness value is 255, then

you have a bright image. But both of them are low contrast images. It is difficult to

visually interpret such images. A more useful display can be produced if the range

of original brightness values are expanded to use the full dynamic range of the video

display.

Linear contrast enhancement is the best applied to remotely sensed images with

Gaussian or near-Gaussian histograms, that is when all brightness values fall gen-

erally within a single, relatively narrow range of the histogram and only one mode

is apparent. Unfortunately, this is rarely the case especially for scenes that contain

both land and water bodies. To perform a linear contrast enhancement, the analyst

examines the image statistics and determines the minimum and maximum brightness

values in the band, mink and maxk, respectively. The output brightness value BVout,
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is computed according to the equation

BV out =

(

BV in − mink

maxk − mink

)

quantk (3.1)

where BVin is the original input brightness value and quantk is the range of brightness

values that can be displayed on the video display. There are many approaches used

to select mink and maxk:

• Min-max Contrast Stretch: For an 8 bit color system 0 is used as mink and

255 is used as maxk. If the image involves minimum value of 4 and maximum

value of 105, then in the new image all 4 values become 0 and all 105 values

become 255.

• Percentage Linear Contrast Stretch: mink and maxk that lie a certain

percentage of pixels from the mean of the histogram may be specified. For

example setting the minimum and maximum ±1 standard deviation (±1σ) from

the mean. Values smaller than the mink, which is now mean-1σ, go to 0, while

values larger than the maxk go to 255.

• Specific Percentage Linear Contrast Stretch (Saturating Linear Con-

trast Enhancement [5]): Sometimes it may be more useful for the user to

be able to select mink and maxk freely. For example if in the image data the

wetlands are interested in and the brightness values from 13 to 27 shows those

areas, mink is chosen as 13 and maxk is chosen as 27. Then as in the percentage

linear contrast stretch, values smaller than mink go to 0 and values larger than

maxk go to 255.

• Piecewise Linear Contrast Stretch: When the histogram of an image is not

Gaussian in nature (i.e., it is bimodal, trimodal, etc.), it is possible to perform
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a piecewise linear contrast stretch. Here the analyst identifies a number of

linear enhancement steps that expand the brightness ranges in the modes of the

histogram. In effect, this corresponds to setting up a series of mink and maxk

and using the above equation within user-selected regions of the histogram.

3.1.2 Nonlinear Contrast Enhancement

Two methods will be examined in this section; histogram equalization and loga-

rithmic contrast enhancement. Histogram equalization applies the greatest contrast

enhancement to the most populated range of the brightness values in the image. It

automatically reduces the contrast in the very light and very dark parts of the im-

age. Logarithmic and exponential mappings of brightness values between original and

modified images are useful for enhancing dark and light features respectively.

• Histogram Equalization: In many situations it is desirable to modify the

contrast of an image so that its histogram matches a preconceived shape. A

particular and important modified shape is the uniform histogram in which, in

principle, each bar has the same height. Such a histogram has associated with it

an image that utilises the available brightness levels equally and thus should give

a display in which there is a good representation of the detail at all brightness

values. In practice a perfectly uniform histogram cannot be achieved for digital

image data; the procedure following however produces a histogram that is quasi-

uniform on the average. The method of producing a uniform histogram is known

generally as histogram equalization.

Let hi(x) be the histogram function of the original image and ho(y) represent
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the modified histogram, which is to be uniform. If the image contains a total of

N pixels and there are L brightness values, then each of the brightness values

in the modified histogram should have a bar of N/L pixels associated with it.

Recall also that the bars in a discrete histogram have the values ho(y)dy. In

the case of L available brightness values, dy = (L - 1)/L so that for a uniform

histogram

ho(y)(L − 1)/L = N/L (3.2)

giving ho(y) = N/(L − 1). From

ho(y) = hi(x)
dx

dy
(3.3)

therefore

dy

dx
=

d

dx
{f(x)} =

L − 1

N
hi(x) (3.4)

in which y = f(x) is the sought-for mapping or transformation of brightness

values that takes the original histogram of an image into a uniform histogram.

Consequently,

y = f(x) =
L − 1

N

∫

hi(x)dx (3.5)

The histogram equalization transform therefore is the integral of the original

histogram function times a scaling factor. The integral is just the continuous

cumulative histogram; this can be replaced by the discrete cumulative histogram

in the case of imagery with quantised brightness values, in which case Equation

(3.5) will yield a look-up table that can be used to move histogram bars to new

brightness value locations.

• Logarithmic Contrast Enhancement: Logarithmic mapping of brightness

values between original and modified images are useful for enhancing dark light
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features. It could be reversed to enhance bright features mapping the brightness

values using an inverse log function.

The selection of a contrast enhancement algorithm depends on the nature of the

original histogram and the elements of the scene that are of greatest interest to the

user. An experienced image analyst can usually identify an appropriate contrast

enhancement algorithm by examining the image histogram and then experimenting

until satisfactory results are obtained. Most contrast enhancements cause some useful

information to be lost. However, that which remains should be of value. Contrast en-

hancement is applied primarily to improve visual image analysis. Contrast stretching

can distort the original pixel values, often in a nonlinear fashion.

3.2 Geometric Enhancement

Geometric enhancements of most interest in remote sensing generally relate to

smoothing, edge detection and enhancement, and line detection. Enhancement of

edges and lines leads to image sharpening. Each of these operations is considered in

the following sections. Most of the methods to be presented are, or can be expressed

as, template techniques in which a template, box or window is defined and then moved

over the image row by row and column by column. The products of the pixel brightness

values, covered by the template at a particular position, and the template entries are

taken and summed to give the template response. This response is then used to define

a new brightness value for the pixel currently at the centre of the template. When

this is done for every pixel in the image, a radiometrically modified image is produced

that enhances or smooths geometric features according to the specific numbers loaded
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into the template. A 3x3 template is illustrated in Figure (3.1). Templates of any size

can be defined, and for an M by N pixel sized template, the response for image pixel

i, j is

r(i, j) =
M
∑

m=1

N
∑

n=1

φ(m, n)t(m, n) (3.6)

where φ(m, n) is the pixel brightness value, addressed according to the template

position and t(m, n) is the template entry at that location. Often the template entries

collectively are referred to as the ’kernel’ of the template and the template technique

generally is called convolution, in view of its similarity to time domain convolution in

linear system theory [5].

3.2.1 Smoothing

Smoothing operations are also known as low pass filtering operations. There are

two kind of smoothing operations, mean value smoothing and median filtering :

• Mean Value Smoothing: Images can contain random noise superimposed on

the pixel brightness values owing to noise generated in the transducers which

acquire the image data, systematic quantisation noise in the signal digitising

electronics and noise added to the video signal during transmission. This will

show as a speckled ’salt and pepper’ pattern on the image in regions of homo-

geneity; it can be removed by the process of low pass filtering or smoothing,

unfortunately usually at the expense of some high frequency information in the

image. To smooth an image a uniform template in the Equation (3.5) is used

with entries

t(m, n) = 1/MN for all m, n (3.7)
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so that the template response is a simple average of the pixel brightness values

currently within the template,

r(i, j) =
1

MN

M
∑

m=1

N
∑

n=1

φ(m, n) (3.8)

The pixel at the centre of the template is thus represented by the average

brightness level in a neighborhood defined by the template dimensions. This is

an intuitively obvious template for smoothing and is equivalent to using running

averages for smoothing time series information.

It is evident that high frequency information such as edges will also be averaged

and lost. This loss of high frequency detail can be circumvented somewhat if a

threshold is applied to the template response in the following manner. Let

%(i, j) =
1

MN

M
∑

m=1

N
∑

n=1

φ(i, j) (3.9)

then

r(i, j) = %(i, j) if |φ(i, j) − %(i, j)| < T

= φ(i, j) otherwise

(3.10)

where T is prespecified threshold. T could be determined a priori based upon

knowledge of or an estimate of scene signal to noise ratio.

Eliason and McEwan [8] recommend choosing the threshold as a multiple of

the standard deviation of brightness within the template window. This provides

better noise removal in homogeneous regions while allowing better preservation

of edges and other valid high spatial frequency detail.

In principle, templates of any shape and size can be used. Larger templates

give more smoothing (and greater loss of high frequency detail) whereas horizon-

tal rectangular templates will smooth horizontal noise but leave noise and high

frequency detail in the vertical direction relatively unaffected by comparison.
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Commonly, smoothing by template methods is referred to as box car filtering.

When based upon the Equation (3.6) it is also called mean value smoothing, or

averaging.

• Median Filtering: Disadvantages of the thresholding method for avoiding

edge deterioration are that it adds to the computational cost of the smoothing

operation and T must be determined. An alternative technique for smoothing

in which the edges in an image are maintained is that of median filtering. In

this the pixel at the centre of the template is given the median brightness value

of all the pixels covered by the template – i.e. that value which has as many

values higher and lower. (For example, the median of 4, 6, 3, 7, 9, 2, 1, 8, 8 is

6, whereas the mean is 5.3).

An application for which median filtering is well suited is the removal of

impulse-like noise. This is because pixels corresponding to noise are atypical

in their neighborhood and will be replaced by the most typical pixel in that

neighborhood.

Finally, it should be noted that median filtering is not a linear function of

the brightness values of the image pixels. Consequently it is not a convolution

operation.

3.2.2 Edge Detection and Enhancement

Edge enhancement is a particularly simple and effective means for increasing ge-

ometric detail in an image. It is performed by first detecting edges and then either

adding these back into the original image to increase contrast in the vicinity of an
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edge, or highlighting edges using saturated (black, white or color) overlays on borders.

There are essentially three economical techniques for detecting edges using image

domain techniques. These are

(i) by using an edge detecting template,

(ii) by calculating spatial derivatives, or

(iii) by subtracting a smoothed image from its original.

• Edge Detecting Templates: A 3x3 template that detects vertical edges in

image data is

t(m, n) =

−1 0 +1

−1 0 +1

−1 0 +1

(3.11)

As can be inferred from its structure it computes a value for the central pixel

under the template that is the accumulated difference horizontally between pix-

els on three adjacent rows. To see this, consider a region of an image which is

basically dull (brightness value 2) into which protrudes a bright object (bright-

ness value 8) as depicted in Figure (3.2 a). Application of the template yields

the responses shown in Figure (3.2 b), wherein the vertical edge between the

object and background has been detected but not the horizontal edge. Note

that the edge is defined by two columns of pixels, one on either side of the true

edge position. A threshold would normally be applied to the template response

(say 9 in the case of Figure (3.2)) to define the edge pixels.
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Figure 3.1: Image a and edges detected by a vertically sensitive template b; Dots
indicate indeterminate edge responses for this example

Templates for detecting edges in other orientations are:

−1 −1 −1

0 0 0

+1 +1 +1

0 +1 +1

−1 0 +1

−1 −1 0

+1 +1 0

+1 0 −1

0 −1 −1

horizontal diagonal

Clearly all four 3x3 templates have to be applied to an image to detect its

edges in all orientations. This requires four passes over the image data, comput-

ing each template response for each pixel. At the completion of all processing

the four template responses for each pixel are compared and the pixel labelled

(as an edge in a particular direction) according to the largest template response

provided that the response is also above a user specified threshold. Choosing a

threshold too low will lead to many false edge counts. These contribute to noise

in the processed image. Conversely, if the threshold is set too high, there will

be little continuity in the detected edges.

• Spatial Derivatives (Roberts and Sobel): If an image consists of a contin-

uous brightness function of a pair of continuous coordinates, x and y, say φ(x,y),
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then a vector gradient can be defined in the image according to

∇φ(x, y) =
∂

∂x
φ(x, y)i +

∂

∂y
φ(x, y)j (3.12)

where i,j are a pair of unit vectors. The direction of the vector gradient is the

direction of maximum upward slope and its amplitude is the value of the slope.

For edge detection operations usually only the magnitude of gradient, defined

by

|∇| =
√

∇2
1 + ∇2

2 (3.13)

is retained, in which

∇1 =
∂

∂x
φ(x, y) ∇2 =

∂

∂y
φ(x, y) (3.14)

The direction of the gradient is usually of interest only in contouring appli-

cations or in determining aspect in digital terrain models.

– The Roberts Operator: For digital image data, in which x and y are

discretised, the continuous derivatives in the Equations (3.12) and (3.13)

are replaced by differences. For example, it is possible to define

∇1 = φ(i, j) − φ(i + 1, j + 1) (3.15)

and

∇2 = φ(i + 1, j) − φ(i, j + 1) (3.16)

which are the discrete components of the vector derivative at the point

i + 1
2 , j + 1

2 , in the diagonal directions. This estimate of gradient is called

the Roberts operator, and is by definition associated with the pixel i,j.

Application of the Roberts operator to the model image of Figure (3.2 a)

yields the results shown in Figure (3.3 a), in which it will be seen that
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both horizontal and vertical edges are detected, as will be diagonal edges.

Since this procedure computes a local gradient it is necessary to choose

a threshold value above which edge gradients are said to occur. This is

usually chosen with experience of a particular image. Frequently however

it is useful to produce gradient maps in which pixels, for which the local

gradient lies within prespecified upper and lower bounds, are displayed.

Conventionally, the responses are placed to the left and upper sides of the

edges.

Figure 3.2: Response of a the Robert’s operator and b the Sobel operator to the model
image data of Figure (3.2 a). Dots are indeterminate responses from edge pixels

– The Sobel Operator: A better edge estimator than the Roberts operator

is the Sobel operator, which computes discrete gradient in the horizontal

and vertical directions at the pixel location i,j. For this, which is clearly

more costly to evaluate, the orthogonal components of gradient are

∇1 = {φ(i − 1, j + 1) + 2φ(i − 1, j) + φ(i − 1, j − 1)}

−{φ(i + 1, j + 1) + 2φ(i + 1, j) + φ(i + 1, j − 1)}
(3.17)

and

∇2 = {φ(i − 1, j + 1) + 2φ(i, j + 1) + φ(i + 1, j + 1)}

−{φ(i − 1, j − 1) + 2φ(i, j − 1) + φ(i + 1, j − 1)}
(3.18)
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Applying this to the example of Figure (3.2 a) produces the responses shown

in Figure (3.3 b). Again, both horizontal ad vertical edges are detected as

will be edges on a diagonal slope. As before, a threshold on the responses

is generally chosen to allow an edge map to be produced in which small

responses, resulting from noise or minor gradients, are suppressed. Also

gradient maps can be produced illustrating regions in which the local slope

lies within user specified bounds.

It can be seen that the Sobel operator is equivalent to simultaneous

application of the templates:

∇1 =

1 2 1

0 0 0

−1 −2 −1

∇2 =

−1 0 1

−2 0 2

−1 0 1

(3.19)

• Subtracting a Smoothed Image From Its Original: While treated in the

context of edge enhancement this technique really leads to the enhancement of

all high spatial frequency detail in an image including edges, lines, and points of

high gradient. It is probably better regarded therefore as a sharpening technique.

A smoothed image retains all low spatial frequency information but has

its high frequency features, such as edges and lines, attenuated (unless edge

preservation procedures such as thresholding are employed). Consequently, if

a smoothed image is subtracted from its original the resultant difference image

will have only the edges and lines substantially remaining.

The difference operation to create a high spatial frequency image can give

negative brightness values. Provided the image is not displayed, this produces

no problems. For display however it is common to scale the difference image
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such that a zero difference is displayed as mid-grey with positive differences

towards white and negative differences towards black. When the difference image

is added back to the original, negative brightnesses can again result. Again,

this can be handled by level shifting or scaling, or simply by setting negative

brightness values to zero.

3.2.3 Line Detection

Lines are extended edges. Analysts may use linear and nonlinear line detecting

templates mentioned below for line detection:

• Linear Line Detecting Templates: Line features such as rivers and roads in

satellite images can be detected as pairs of edges if they are more than one pixel

wide or alternatively, if they are a single pixel in width, they can be detected

using the following line detecting templates:

−1 2 −1

−1 2 −1

−1 2 −1

−1 −1 −1

2 2 2

−1 −1 −1

−1 −1 2

−1 2 −1

2 −1 −1

2 −1 −1

−1 2 −1

−1 −1 2

vertical horizontal diagonal

These templates seem not to have been used to any great extent in remote

sensing image processing since lines, in addition to edges, are enhanced using

the gradient and subtractive smoothing techniques of the previous section.

• Nonlinear and Semi-linear Line Detecting Templates: The line detecting

templates mentioned above are regarded as linear since their convolution with
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image data is a linear mathematical operation. Some nonlinear line detecting

template operations have also been proposed. To describe these it is of value to

denote a 3x3 neighborhood of pixels in an image as

A1 B1 C1

A2 B2 C2

A3 B3 C3

A nonlinear line detector algorithm, proposed by Rosenfeld and Thurston

[9] establishes pixel B2 as part of a dark vertical line if

A1, Ci > Bi (3.20)

by a prespecified threshold. Similar expressions apply for lines of other orienta-

tions and for bright lines on dark backgrounds.

Vanderbrug [10] has proposed what he calls a semilinear detector. For the

pixel array above this determines B2 as part of a dark vertical line if

3
∑

i=1

Ai and
3

∑

i=1

Ci >
3

∑

i=1

Bi (3.21)

by some prespecified threshold.

Gurney [11] has noted that the semilinear detector works better than the

non linear algorithm although line thickening results and computational cost is

high. These disadvantages are obviated by the use of the additional constraint

with the semilinear algorithm:

A2 > B2 and C2 > B2 (3.22)

Gurney also discusses means by which the thresholds for the semilinear de-

tector can be effectively established.

29



3.3 The Fourier Transform

Fourier analysis is mathematical technique for separating an image into its various

spatial frequency components. First, let us consider a continuous function f(x). The

Fourier theorem states that any function f(x) can be represented by a summation of a

series of sinusoidal terms of varying spatial frequencies. These terms can be obtained

by the Fourier transform of f(x), which is written as:

F (u) =

∞
∫

−∞

f(x)e−2πiuxdx (3.23)

where u is spatial frequency. This means that F(u) is a frequency domain function.

The spatial domain function f(x) can be recovered from F(u) by the inverse Fourier

transform

f(x) =

∞
∫

−∞

F (u)e2πiuxdu (3.24)

To utilize Fourier analysis in digital image processing, two extensions of these

equations must be considered. First, both transforms can be extended from one

dimensional functions to two-dimensional functions f(x, y) and F(u, v) [12]. For

Equation (3.23) this becomes

F (u, v) =

∞
∫

−∞

∫

f(x, y)e−2πi(ux+vy)dxdy (3.25)

Furthermore, both transforms to discrete functions can be extended. The two-dimensional

discrete Fourier transform is written as

F (u, v) =
1

NM

N−1
∑

x=0

M−1
∑

y=0

f(x, y)e−2πi(ux
N

+ vy

M ) (3.26)

where N is the number of pixels in the x direction and M is the number of pixels in

the y direction. Every remotely sensed image may be described as a two-dimensional
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discrete function. Therefore, Equation (3.26) may be used to compute the Fourier

transform of an image. The image can be reconstructed using the inverse transform.

f(x, y) =
N−1
∑

u=0

M−1
∑

v=0

F (u, v)e2πi(ux
N

+ vy

M ) (3.27)

The F(u, v) contains the spatial frequency information of the original image f(x,

y) and is called the frequency spectrum. Note that it is a complex function because it

contains i which equals
√
−1. Any complex function can be written as the sum of a

real part and an imaginary part.

F (u, v) = R(u, v) + iI(u, v) (3.28)

which is equivalent to

F (u, v) = |F (u, v)|eiφ(u,v) (3.29)

where |F (u, v)| is a real function and

|F (u, v)| =
√

R(u, v)2 + I(u, v)2 (3.30)

|F (u, v)| is called the magnitude of the Fourier transform and can be displayed as

a two-dimensional image. It represents the magnitude and the direction of the dif-

ferent frequency components in the image f(x,y). The variable φ in Equation (3.29)

represents phase information in the image f(x, y). Although the phase information is

usually ignored when the Fourier transform is displayed, the original image cannot be

recovered without it.

It is important to remember that the Fourier transformed image F(u, v) contains

all the information found in the original image. It provides a mechanism for analyzing

and manipulating images according to their spatial frequency. It is useful for image
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restoration, filtering, and radiometric correction. For example, the Fourier transform

can be used to remove periodic noise in remotely sensed data. When the pattern

of periodic noise is unchanged throughout the image, it is called stationary periodic

noise. Striping in remotely sensed imagery is usually composed of stationary periodic

noise.

3.3.1 Spatial Filtering In Frequency Domain

Filtering in the spatial domain using convolution filters is discussed. It can also

be performed in the frequency domain. Using the Fourier transform, the frequency

information of the image can be directly manipulated. The manipulation can be per-

formed by multiplying the Fourier transform of the original image by a mask image

called frequency domain filter, which will block or weaken certain frequency compo-

nents by making the values or certain parts of the frequency spectrum become smaller

or even zero. Then the inverse Fourier transform of the manipulated frequency spec-

trum is computed to obtain a filtered image in the frequency domain. Numerous

algorithms are available for computing the Fast Fourier Transform (FFT) and Inverse

Fast Fourier Transform (IFFT) [13]. Spatial filtering in the frequency domain gen-

erally involves computing the FFT of the original image, multiplying the FFT of a

convolution mask of the analyst’s choice (e.g., a low pass filter) with the FFT, and

inverting the resultant image with the IFFT; that is,

f(x, y)
FFT−−−→ F (u, v) → F (u, v)G(u, v) → F ′(u, v)

IFFT−−−−→ f ′(x, y)

The convolution theorem states that the convolution of two images is equivalent
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to the multiplication of their Fourier transformations. If

f ′(x, y) = f(x, y) ∗ g(x, y) (3.31)

where * represents the operation of convolution, f(x, y) is the original image and g(x,

y) is a convolution mask filter, then

F ′(u, v) = F (u, v)G(u, v) (3.32)

where F ′, F, and G are Fourier transforms of f ′, f, and g, respectively.

An example of such manipulation is shown Figure (3.3) [6]. A high-pass filter

were used to construct the filter function g(x, y) in Figure (3.3). In practice, one

problem must be solved. Usually, the dimensions of f(x, y) and g(x, y) are different;

for example, the high-pass filter in Figure (3.3) only has nine elements, while the

image is composed of 128 x 128 pixels. Operation in the frequency domain requires

that the sizes of F(u, v) and G(u, v) be the same. This means the sizes of f and g

must be made the same because the Fourier transform of an image as the same size

as the original image. The solution of this problem is to construct g(x, y) by putting

the convolution mask at the center of a zero-value image that has the same size as f.

The multiplication of Fourier transforms F(u, v) and G(u, v) results in a new Fourier

transform, F ′(u, v). Computing the inverse fast Fourier transform yields f ′(x, y), a

filtered version of the original image. Thus, spatial filtering can be performed both in

the spatial and frequency domain.

As demonstrated, filtering in the frequency domain involves one multiplication

and two transformations. For general applications, convolution in the spatial domain

may be more cost effective. Only when the size of g(x, y) is very large, does the
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Figure 3.3: Spatial high-pass filtering in the frequency domain using a Fourier trans-
form [6]
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Fourier method become cost effective. However, with the frequency domain method

some filtering can also be done that is not easy to do in spatial domain. A frequency

domain filter G(u, v) specifically designed to remove certain frequency components in

the image may be constructed.
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CHAPTER 4

IMPLEMENTATION AND PARALLELIZATION

Application development phase of the thesis started with the programming and

testing of sequential algorithms mentioned in Chapter 3. First linear (min-max con-

trast stretching, percentage linear contrast stretching and specific percentage linear

contrast stretching) and nonlinear contrast enhancement algorithms are coded. Then

geometric enhancement (smoothing, edge detection and enhancement, line detection)

algorithms are coded. Most of the sequential programs are joined with a graphical

user interface (GUI).

All of the programs are written using C programming language and libraries on

C. To form the GUI, Motif [14] toolkit and EasyMotif [15] are used. A pretentious

Fourier transform library: ”Fastest Fourier Transform in the West” (FFTW) [16] is

used to calculate the forward and inverse Fourier transforms. MPI [17] library is used

to develop parallel programs.

FFTW is a portable C package for computing the one and multidimensional dis-

crete Fourier transform (DFT). Extensive benchmarking demonstrates that FFTW

is typically faster than all other publicly available DFT software [18], including the

well-known FFTPACK [19] and the code from Numerical Recipes [20]. More interest-

ingly, FFTW is competitive with or better than proprietary, highly-tuned codes such
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as Suns Performance Library and IBMs ESSL library. FFTW is an implementation

of the Cooley-Tukey [21] fast Fourier transform (FFT)

Three main ideas are the keys to FFTWs performance [18]. First, the compu-

tation of the transform is performed by an executor consisting of highly-optimized,

composable blocks of C code called codelets. Second, at runtime, a planner finds an

efficient way (called a plan) to compose the codelets. Through the planner, FFTW

adapts itself to the architecture of the machine it is running on. In this way, FFTW

is a single program that performs efficiently on a variety of architectures. Third, the

codelets are automatically generated by a codelet generator written in the Caml Light

dialect of ML [22]. The codelet generator produces long, optimized, unreadable code,

which is nevertheless easy to modify via simple changes to the generator.

FFTW includes both sequential and parallel routines for the calculation DFT.

This is another reason why it is preferred in that application. By using FFTW both

sequential and parallel versions of spatial filtering in frequency domain method ex-

plained in Chapter 3 are implemented.

The sequential program that is developed for the spatial filtering in frequency

domain works as follows:

Read input image from file (in JPEG format).

Allocate space for input image data.

Allocate space for R, G, B color components of input image and

filter.

Read filter from file.

Separate input image into its color components.

Deallocate space for input image data.

Allocate space for responses of color components to filtering.

/* Perform filtering operation for the first color component */
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Using FFTW library routines find the Fourier transforms of first

color component and filter.

Multiply transformed matrices.

Take inverse Fourier transform of the multiplication to return

to spatial domain.

/* Perform filtering operation for the second color component */

Using FFTW library routines find the Fourier transforms of second

color component and filter.

Multiply transformed matrices.

Take inverse Fourier transform of the multiplication to return

to spatial domain.

/* Perform filtering operation for the third color component */

Using FFTW library routines find the Fourier transforms of third

color component and filter.

Multiply transformed matrices.

Take inverse Fourier transform of the multiplication to return

to spatial domain.

Deallocate space for color components and filter.

Allocate space for output image.

Combine filtered colur components to produce output image.

Deallocate space for responses of color components.

Save the output image into file (in JPEG format).

Deallocate space for output image data.

The parallel program that is developed for the spatial filtering in frequency domain

works as follows:

/*** MASTER ***/

Read input image from file (in JPEG format).

Allocate space for input image data.

Allocate space for R, G, B color components of input image and

filter.

Read filter from file.

Separate input image into its color components.

Deallocate space for input image data.

RECEIVE starting points and strip sizes of nodes.

/*** NODES ***/

SEND starting point and strip size.

/*** MASTER ***/

SEND necessary data strip of first color component and filter to

each node.

Deallocate space for the first color component.

/*** NODES ***/

Calculate Fourier transform of image data and filter using FFTW’s
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parallel routines.

Multiply transformed sub matrices.

Take inverse Fourier transform of the multiplication to return

to spatial domain.

SEND filtered data to the master.

/*** MASTER ***/

GET filtered data strips and merge them to produce filtered first

color component.

SEND necessary data strip of second color component and filter

to each node.

Deallocate space for the second color component.

/*** NODES ***/

Calculate Fourier transform of image data and filter using FFTW’s

parallel routines.

Multiply transformed sub matrices.

Take inverse Fourier transform of the multiplication to return

to spatial domain.

SEND filtered data to the master.

/*** MASTER ***/

GET filtered data strips and merge them to produce filtered second

color component.

SEND necessary data strip of third color component and filter to

each node.

Deallocate space for the third color component.

Deallocate space for the filter.

/*** NODES ***/

Calculate Fourier transform of image data and filter using FFTW’s

parallel routines.

Multiply transformed sub matrices.

Take inverse Fourier transform of the multiplication to return

to spatial domain.

SEND filtered data to the master.

/*** MASTER ***/

GET filtered data strips and merge them to produce filtered third

color component.

Combine filtered color components to produce output image.

Deallocate space for responses of color components.

Save the output image into file (in JPEG format).

Deallocate space for output image data.
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CHAPTER 5

RESULTS AND DISCUSSIONS

The sequential version of the application of spatial domain filtering in frequency

domain is tested using master PC on the cluster. Parallel version is completely tested

up to 12 processing units including the master PC.

Figure 5.1: Run times (seconds) vs number of rows for different number of processors
(np 2 to 6) and sequential (seq)

Figures (5.1) and (5.2) shows run times (seconds) versus number of rows for differ-
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Figure 5.2: Run times (seconds) vs number of rows for different number of processors
(np 7 to 12) and sequential (seq)

ent number of processors. During the tests 1000 is always used as column number of

the image and the number of rows is changed from 1000 to 15000. The first advantage

is taken at row number 4000 and number of processors is 8. At that point sequential

run time is 72,6 seconds while parallel run time is 65,7 seconds. After that point on

the parallel runs are usually advantageous. However, as seen at Figures (5.1) and (5.2)

the sequential run times makes sharp decreases at row numbers 6000, 8000, 10000,

14000. For 12 processors nearly all values, except for row numbers 1000 and 3000, are

better than sequential program. Although, the efficiency is low, the memory usage of

machines extremely decreases in the parallel version. For example, in the case of 12

nodes and image size is 15000 x 1000; the maximum memory usage at the master node

is 191 MB and at any other node is 62 MB. With the usage of sequential program
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maximum memory usage becomes 1030 MB at one PC. This differences shows that

using parallel version gives us the ability of processing much bigger images.

Figure 5.3: Run times (seconds) vs number of processors for different number of rows

Figure (5.3) shows run times (seconds) versus number of processors for different

number of rows. As mentioned above the advantageous of parallel application starts at

8 number of processors. The upper line at Figure (5.3) shows the image of size 15000

x 1000. The sequential run for that image takes nearly 250 seconds. The parallel run

starts from about 510 seconds and quickly decreases when the number of processors

increased.

Figure (5.4) shows speedup values versus number of processors for different num-

ber of rows. At this graph the upper line shows the speedup values for the image size

of 7000 x 1000. The lower line shows the speedup values for the image size of 3000
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Figure 5.4: Speedup vs number of processors for different number of rows

x 1000. For all number of processors the image size of 7000 x 1000 gives the best

speedup and the image size of 3000 x 1000 gives the worst speedup.
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CHAPTER 6

CONCLUSION

Remote sensing is a way of collecting data about something that is interested

in. Images are not all of the products of remote sensing, but they are the most

useful ones. The use of image data requires the techniques of another area, image

processing. Every image processing application includes a preprocessing step which

covers the enhancement of acquired image data.

This thesis includes a complete survey of techniques used in the area of remote

sensing for image enhancement and parallelization efforts on a subdivision of these

techniques. Also in Chapter 1 a brief explanation is given about remote sensing that

will be helpful before performing in this area.

As the test results show, there is a limited time advantage with the usage of

parallelization on the method of spatial domain filtering using Fourier transform.

However, parallelization has the advantage of using memory resources more efficiently.

This advantage provides us to apply this technique on images larger than that can be

used in the sequential version.

Finally it can be claimed easily, the parallelization of spatial domain filtering using

Fourier transform is poor according to speedup and efficiency criterions of parallel
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computation.

During this study FFTW is used for the calculation of Fourier transform for both

sequential and parallel versions of the application. Although FFTW has some funda-

mental advantages, as adaptation to the infrastructure of the system, for the calcula-

tion of Fourier transform; the parallel routines of the library are not as advantageous

as the serial routines of the library. For the future work of this study, both serial and

parallel versions of Fourier transform may also be implemented. This extra work will

give us flexibility for load balancing.
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