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ABSTRACT 
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ON MICRO-C/OS-II REAL-TIME OPEATING SYSTEM 
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M.S., Department of Computer Engineering 

Supervisor: Prof. Dr. Turhan ALPER 

September 2005, 86 pages 

 

 

 Virtual Machine (VM) implies mostly the transperancy of executable code 

from the underlying computer hardware . So, a virtual machine is expected to 

have an independent instruction set, program description syntax and mostly a 

different program execution architecture independent from the underlying 

computer hardware. 

 Java Virtual Machine (JVM), has the capability of executing the platform 

independent object file called class file which is an output of the compilation 

process which takes the source files written by using the java syntax and semantic 

rules as an input. 

 Micro-C/OS-II is a real-time operating system which is certifed to be real-

time operating system supporting safety-critical software development with FAA 

(Federal Aviation Agency) certification. MicroC/OS-II is already ported to more 

than 20 different hardware manufacturers computer architectures. 

 The aim of this thesis work is realizing a JVM core by using the pure 

MicroC/OS-II system calls. So, the resulting JVM core will have the capability to 
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be ported easly to any computer architecture which is ported by MicroC/OS-II. 

Also this JVM core will be, at least, a soft real-time execution environment where 

applications developed in Java can be deployed and executed as they are deployed 

and executed in other JVMs. At the end, this thesis work is also expected to be a 

baseline and a guide for the future developers and designer who will be improving 

this core to support the safety-critical real-time software development. 

 

Keywords : Java Virtual Machine, K Virtual Machine, Java, Virtual Machine, 

MicroC/OS-II,  uCOS , real-time 
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ÖZ 

MICRO-C/OS-II GERÇEK ZAMANLI İŞLETİM DİZGESİ ÜZERİNDE 

JAVA SANAL MAKİNESİ GERÇEKLEŞTİRİMİ 

 

 

 

SÜRMELİ , Alp Bülent Burç 

Yüksek Lisans , Bilgisayar Mühendisliği Bölüm 

Tez Yöneticisi : Prof . Dr . Turhan ALPER 

Eylül 2005, 86 sayfa 

 

 

 Sanal Makine deyimi çoğunlukla işletilebilir kodun alttaki bilgisayar 

donanımına transparan olması kavramına karşılık gelir. Dolayısıyla, bir sanal 

makinenin bağımsız bir komut kümesi, program tanımlama söz dizimi ve 

çoğunlukla da üzerinde çalıştığı bilgisayar donanımından bağımsız bir program 

koşma mimarisi olur. 

 Java Sanal Makinesi, Java programlama dili söz dizim ve anlambilim 

kuralları kullanılarak geliştirilen kaynak kodun derlenmesi ile elde edilen ve sınıf 

adıyla anılan platformdan bağımsız amaç kütükleri koşabilme kabiliyetine 

sahiptir. 

 Micro-C/OS-II güven-kritik gerçek-zamanlı yazılım geliştirimini 

destekleyen Amerikan Federal Havacılık Ajansı (FAA) sertifikalı bir gerçek-

zamanlı işletim dizgesidir. Micro-C/OS-II işletim dizgesi hali hazırda yirmiden 

(20) fazla donanım üreticisinin değişik bilgisayar mimarileri üzerine taşınmış 

durumdadır. 
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 Bu tez çalışmasının amacı Micro-C/OS-II işletim dizgesi çağrılarını 

kullanarak bir Java Sanal Makinesi çekirdeğini çalışır hale getirmektir.  Bu 

sayede, elde edilecek Java Sanal Makinesi çekirdeği Micro-C/OS-II işletim 

dizgesinin üzerine taşındığı bütün bilgisayar mimarilerine kolayca 

taşınabilecektir. Bununla beraber, bu Java Sanal Makinesi, Java programla dili 

kullanılarak geliştirilmiş uygulamaların diğer Java Sanal Makinelerine yüklenip 

koşuldukları gibi yüklenip koşulabileceği  hafif gerçek-zamanlı bir işletim ortamı 

sağlayacaktır. Yapılan çalışma sonucunda ortaya konulan tez, gelecekte bu Java 

Sanal Makinesi çekirdeğinin kabiliyetlerini güven-kritik gerçek-zamanlı yazılım 

geliştirilebilmesine imkan verecek şekilde geliştirecek yazılım mühendisleri için 

yetkin bir referans ve rehber olmaya aday bir çalışmadır. 

 

Anahtar Kelimeler : Java Sanal Makinesi , Java , Sanal Makine , MicroC/OS-II , 

uCOS , gerçek-zamanlı 
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CHAPTER 1 

 INTRODUCTION 

1.1 Background of the Development Process 

There are a great number of operating systems ported on top of the different 

computer architectures. All of them tend to be similar in the category of services 

they provide as Tasking Services, Mutex Services, Semaphore Services,  Message 

Box Services, Memory Management Services, Event Handling Services, Timing 

Services and I/O Services. Even if they have the given categories of services 

individually, the system call signatures and the quality of these services varies 

significantly. So, some of them are certified to be real-time or not, or cluster 

aware or not and also some further evaluation takes place for the discrimination of 

each for addressing specific needs of special domains.  

This variance of the knowledge required about application development not 

only for different platforms but to solve similar problems is the driving force to 

have a abstraction layer like an application programming interface (API) like Java 

Virtual Machine has. So, using one API for all is a factor of improving the 

software development productivity which is also recognized by software 

developing society. And there is serious amount of work carried out and in 

progress to port the JVM to different computer architectures. Also, there are a 

significant number of applications developed by Java programming language to 

run on these JVMs ported. 

 There is a vital amount of work to make the JVM portable to variety of 

platforms because of the reasons outlined. This thesis work is proposing a way of 

porting a specialized JVM core to different platfroms easly by using an 

abstraction provided through the system calls of MicroC/OS-II real-time operating 

system.  
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There are also some other efforts to improve Java API to address the real-

time requirements of sophisticated application domains requiring mission-critical 

or safety-critical execution. As a result of these efforts Java community published 

a specification declaring the services and their quality which is called Real-Time 

Java Specification (RTJS). By implementing a JVM core on top of an real-time 

operating system like MicroC/OS-II is also a choice made on purpose to evaluate 

the possibility of meeting some of RTJS requirements.  

This thesis is pretend to be a guide and baseline for the JVM designers and 

implementors . Even though resolving the optimization problems of JVM domain 

is far beyond of this thesis work , already it may give an idea unintentionally.  

1.2 Utilization of Proposed Java Application Deployment Capability 

Our contribution is providing a single way of building the JVM dedicated  

for the java application compiled into a class file that may be deployable to any 

platform on which the MicroC/OS-II is already deployable. Having such a 

deployment capability, a developer can develop and produce the java application 

on any host. And then by going through the steps explained in thesis, it is possible 

to build the executable java application by using a C cross compiler producing 

object code that is deployable to the host platform. The application ready for 

execution can be installed onto the target computer environment through a media 

which is capable to boot up the system. The media can be either a booting 

network resource (an serial cable or ethernet e.g.) or a booting storage device (like 

diskettte or flash memory e.g.). The Figure 1.1 below illustrates a sample 

utilization scenario for the proposed java application deployment capability. 
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Figure 1.1: Utilization of the proposed java application deployment. 
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CHAPTER 2 

 AN OVERVIEW OF JVM ARCHITECTURE 

2.1 Developer Point Of View 

The use of the JVM from the developers point of view consists of two major 

steps to go as seen in Figure 2.1 . One of them is the compile-time environment in 

which the Java source files compilied into class files and the other is the run-time 

environment in which the executable (interpretable) class files deployed to JVM.  

 
Figure 2.1: The phases of running an application on the JVM. 

2.2 Architectural Point of View 

The JVM word implies the instance of a set of components which is created 

for running only an application, which means the life cycle of  the JVM is has an 

one to one dependency with application deployed. 

A JVM architecture, which is specialized for running an instance of an 

application (class) at a time, has some specialized components developed for the 
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purpose of accomplishing its function. The Figure 2.2 shows the architectural 

view of the JVM . 

 

 

 
Figure 2.2: JVM functional block diagram. 

 As seen in Figure 2.2, an application, which is a collection of class files, is 

required to be loaded prior to its execution. The load operation performs a 

specialized parsing operation which prepares the some of the static data required 

to execute the application in the runtime data area. Upon loading the application 

the entry method of the entry class which is the implicitly defined “init()” function 

is invoked and then the rest of the application logic execution sequence takes 

place.[1] 

 The execution engine as a JVM function is responsible for executing the 

JVM instructions extracted from the application source code during the 

compilation process also responsible for managing and handling some of the 

volatile data areas which resides in runtime data areas upon a method invocation, 

a class creation or a thread execution. 
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 Native methods are also required by JVMs , naturally , to map the JVM 

functions to the appropriate systems calls of the target platform and also extending 

the JVM API to support a wider range of input-output operations.  

 The specialized portions of the functional block diagram given in Figure 

2.2 is detailed in the following sections to clarify their responsibility and 

capability. 

2.2.1 Class Loader 

The class loader can be thought as the application entry point to the JVM 

core. Class Loader takes the specialized binary class file, verifies and builds the 

data structures required during the life-time of the application execution .  

Comparing with the conventional loader of the operating system shells like 

in DOS or UNIX, class loader has similar behavior except for some more detailed 

process about the class execution. This capability is also a result of the data 

provided in the class file format.[1] 

A class file is a binary file consisting of the description for a class or an 

interface regarding the Java nomenclature. A class is an encapsulation of 

attributes and methods together which is thought be related conceptually. And an 

interface is a specialized class to describe method signatures for a group of  

logically related objects. And an interface does not have any concrete object 

instance at any time.  

Each class file contains the definition of a single class or an interface . A 

class file consists of a stream of 8-bit bytes. All 16-bit, 32-bit, and 64-bit 

quantities are constructed by reading in two, four, and eight consecutive 8-bit 

bytes, respectively. Multibyte data items are always stored in big-endian order, 

where the high bytes come first. 

2.2.2 Runtime Data Areas 

The Java virtual machine defines various runtime data areas that are used 

during execution of a program. Some of these data areas are created on Java 

virtual machine start-up and are destroyed only when the Java virtual machine 

exits. Other data areas are per thread. Per-thread data areas are created when a 

thread is created and destroyed when the thread exits.  
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2.2.3 The pc Register 

The Java virtual machine can support many threads of execution at once. 

Each Java virtual machine thread has its own pc (program counter) register. At 

any point, each Java virtual machine thread is executing the code of a single 

method, the current method for that thread. If that method is not native, the pc 

register contains the address of the Java virtual machine instruction currently 

being executed. If the method currently being executed by the thread is native, 

the value of the Java virtual machine's pc register is undefined. The Java virtual 

machine's pc register is wide enough to hold a returnAddress or a native pointer 

on the specific platform.[2] 

2.2.3.1 Java Virtual Machine Stacks 

Each Java virtual machine thread has a private Java virtual machine stack, 

created at the same time as the thread. A Java virtual machine stack stores frames. 

[2] A Java virtual machine stack is analogous to the stack of a conventional 

language such as C: it holds local variables and partial results, and plays a part in 

method invocation and return. Because the Java virtual machine stack is never 

manipulated directly except to push and pop frames, frames may be heap 

allocated. The memory for a Java virtual machine stack does not need to be 

contiguous.[1] 

The Java virtual machine specification permits Java virtual machine stacks 

either to be of a fixed size or to dynamically expand and contract as required by 

the computation.[2] If the Java virtual machine stacks are of a fixed size, the size 

of each Java virtual machine stack may be chosen independently when that stack 

is created. A Java virtual machine implementation may provide the programmer 

or the user control over the initial size of Java virtual machine stacks, as well as, 

in the case of dynamically expanding or contracting Java virtual machine stacks, 

control over the maximum and minimum sizes.[3] 

The following exceptional conditions are associated with Java virtual machine 

stacks: 

• If the computation in a thread requires a larger Java virtual machine stack 

than is permitted, the Java virtual machine throws a 

StackOverflowError.  
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• If Java virtual machine stacks can be dynamically expanded, and 

expansion is attempted but insufficient memory can be made available to 

effect the expansion, or if insufficient memory can be made available to 

create the initial Java virtual machine stack for a new thread, the Java 

virtual machine throws an OutOfMemoryError.[1] 

2.2.3.2 Heap 

The Java virtual machine has a heap that is shared among all Java virtual 

machine threads.[2] The heap is the runtime data area from which memory for all 

class instances and arrays is allocated.  

The heap is created on virtual machine start-up. Heap storage for objects is 

reclaimed by an automatic storage management system (known as a garbage 

collector); objects are never explicitly deallocated.[1] The Java virtual machine 

assumes no particular type of automatic storage management system, and the 

storage management technique may be chosen according to the implementor's 

system requirements. The heap may be of a fixed size or may be expanded as 

required by the computation and may be contracted if a larger heap becomes 

unnecessary. The memory for the heap does not need to be contiguous.[3] 

A Java virtual machine implementation may provide the programmer or 

the user control over the initial size of the heap, as well as, if the heap can be 

dynamically expanded or contracted, control over the maximum and minimum 

heap size.[2] 

The following exceptional condition is associated with the heap: 

• If a computation requires more heap than can be made available by the 

automatic storage management system, the Java virtual machine throws an 

OutOfMemoryError.[1] 

2.2.3.3 Method Area 

The Java virtual machine has a method area that is shared among all Java 

virtual machine threads. The method area is analogous to the storage area for 

compiled code of a conventional language or analogous to the "text" segment in a 

UNIX process. It stores per-class structures such as the runtime constant pool, 

field and method data, and the code for methods and constructors, including the 
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special methods used in class and instance initialization and interface type 

initialization.[4] 

The method area is created on virtual machine start-up. Although the 

method area is logically part of the heap, simple implementations may choose not 

to either garbage collect or compact it.[3] This version of the Java virtual machine 

specification does not mandate the location of the method area or the policies used 

to manage compiled code. The method area may be of a fixed size or may be 

expanded as required by the computation and may be contracted if a larger 

method area becomes unnecessary. The memory for the method area does not 

need to be contiguous.[1] 

A Java virtual machine implementation may provide the programmer or 

the user control over the initial size of the method area, as well as, in the case of a 

varying-size method area, control over the maximum and minimum method area 

size.  

The following exceptional condition is associated with the method area: 

• If memory in the method area cannot be made available to satisfy an 

allocation request, the Java virtual machine throws an 

OutOfMemoryError.[1] 

2.2.3.4 Runtime Constant Pool 

A runtime constant pool is a per-class or per-interface runtime 

representation of the constant_pool table in a class file.[1] It contains several 

kinds of constants, ranging from numeric literals known at compile time to 

method and field references that must be resolved at run time. The runtime 

constant pool serves a function similar to that of a symbol table for a conventional 

programming language, although it contains a wider range of data than a typical 

symbol table.  

Each runtime constant pool is allocated from the Java virtual machine's 

method area. The runtime constant pool for a class or interface is constructed 

when the class or interface is created by the Java virtual machine.[1] 

The following exceptional condition is associated with the construction of 

the runtime constant pool for a class or interface: 
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• When creating a class or interface, if the construction of the runtime 

constant pool requires more memory than can be made available in the 

method area of the Java virtual machine, the Java virtual machine throws 

an OutOfMemoryError.[1] 

2.2.3.5 Native Method Stacks 

An implementation of the Java virtual machine may use conventional 

stacks, colloquially called "C stacks," to support native methods, methods 

written in a language other than the Java programming language.[1] Native 

method stacks may also be used by the implementation of an interpreter for the 

Java virtual machine's instruction set in a language such as C. Java virtual 

machine implementations that cannot load native methods and that do not 

themselves rely on conventional stacks need not supply native method stacks.[1] 

If supplied, native method stacks are typically allocated per thread when each 

thread is created.  

The Java virtual machine specification permits native method stacks either 

to be of a fixed size or to dynamically expand and contract as required by the 

computation. If the native method stacks are of a fixed size, the size of each native 

method stack may be chosen independently when that stack is created.[1] In any 

case, a Java virtual machine implementation may provide the programmer or the 

user control over the initial size of the native method stacks. In the case of 

varying-size native method stacks, it may also make available control over the 

maximum and minimum method stack sizes.  

The following exceptional conditions are associated with native method 

stacks: 

• If the computation in a thread requires a larger native method stack than is 

permitted, the Java virtual machine throws a StackOverflowError. 

• If native method stacks can be dynamically expanded and native method 

stack expansion is attempted but insufficient memory can be made 

available, or if insufficient memory can be made available to create the 

initial native method stack for a new thread, the Java virtual machine 

throws an OutOfMemoryError. 
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2.2.4 Execution Engine 

Execution Engine component of the JVM is expected to execute the JVM 

instructions in the given order. This responsibility of the execution engine 

includes the maintenance of  the data structures required during the instruction 

execution.[4] Frame is a data structure which encapsulates the fields required 

during the method execution in a JVM. 

2.2.4.1 Frames 

A frame is used to store data and partial results, as well as to perform 

dynamic linking , return values for methods, and dispatch exceptions.[2] 

A new frame is created each time a method is invoked. A frame is 

destroyed when its method invocation completes, whether that completion is 

normal or abrupt (it throws an uncaught exception).[2] Frames are allocated from 

the Java virtual machine stack of the thread creating the frame. Each frame has its 

own array of local variables, its own operand stack, and a reference to the runtime 

constant pool of the class of the current method.  

The sizes of the local variable array and the operand stack are determined at 

compile time and are supplied along with the code for the method associated with 

the frame. Thus the size of the frame data structure depends only on the 

implementation of the Java virtual machine, and the memory for these structures 

can be allocated simultaneously on method invocation. 

Only one frame, the frame for the executing method, is active at any point 

in a given thread of control. This frame is referred to as the current frame, and its 

method is known as the current method. The class in which the current method is 

defined is the current class. Operations on local variables and the operand stack 

are typically with reference to the current frame.[1]  

A frame ceases to be current if its method invokes another method or if its 

method completes. When a method is invoked, a new frame is created and 

becomes current when control transfers to the new method. On method return, the 

current frame passes back the result of its method invocation, if any, to the 

previous frame. The current frame is then discarded as the previous frame 

becomes the current one. 
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Note that a frame created by a thread is local to that thread and cannot be 

referenced by any other thread.[2] 

2.2.4.2 Local Variables 

Each frame contains an array of variables known as its local variables. 

The length of the local variable array of a frame is determined at compile time and 

supplied in the binary representation of a class or interface along with the code for 

the method associated with the frame.  

A single local variable can hold a value of type boolean, byte, char, 

short, int, float, reference, or returnAddress. A pair of local variables can 

hold a value of type long or double.[1] 

Local variables are addressed by indexing. The index of the first local 

variable is zero. An integer is be considered to be an index into the local variable 

array if and only if that integer is between zero and one less than the size of the 

local variable array.  

A value of type long or type double occupies two consecutive local 

variables. Such a value may only be addressed using the lesser index. For 

example, a value of type double stored in the local variable array at index n 

actually occupies the local variables with indices n and n +1; however, the local 

variable at index n +1 cannot be loaded from. It can be stored into. However, 

doing so invalidates the contents of local variable n.[2] 

The Java virtual machine does not require n to be even. In intuitive terms, 

values of types double and long need not be 64-bit aligned in the local variables 

array. Implementors are free to decide the appropriate way to represent such 

values using the two local variables reserved for the value. 

The Java virtual machine uses local variables to pass parameters on 

method invocation. On class method invocation any parameters are passed in 

consecutive local variables starting from local variable 0. On instance method 

invocation, local variable 0 is always used to pass a reference to the object on 

which the instance method is being invoked (this in the Java programming 

language). Any parameters are subsequently passed in consecutive local variables 

starting from local variable 1. 
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2.2.4.3 Operand Stacks 

Each frame contains a last-in-first-out (LIFO) stack known as its operand 

stack.[2] The maximum depth of the operand stack of a frame is determined at 

compile time and is supplied along with the code for the method associated with 

the frame.  

Where it is clear by context, the operand stack of the current frame will 

sometimes be refered to as simply the operand stack. 

The operand stack is empty when the frame that contains it is created. The 

Java virtual machine supplies instructions to load constants or values from local 

variables or fields onto the operand stack. Other Java virtual machine instructions 

take operands from the operand stack, operate on them, and push the result back 

onto the operand stack. The operand stack is also used to prepare parameters to be 

passed to methods and to receive method results.  

For example, the iadd instruction adds two int values together. It requires 

that the int values to be added be the top two values of the operand stack, pushed 

there by previous instructions. Both of the int values are popped from the 

operand stack. They are added, and their sum is pushed back onto the operand 

stack. Subcomputations may be nested on the operand stack, resulting in values 

that can be used by the encompassing computation.  

Each entry on the operand stack can hold a value of any Java virtual 

machine type, including a value of type long or type double.[1] 

Values from the operand stack must be operated upon in ways appropriate 

to their types. It is not possible, for example, to push two int values and 

subsequently treat them as a long or to push two float values and subsequently 

add them with an iadd instruction. A small number of Java virtual machine 

instructions (the dup instructions and swap) operate on runtime data areas as raw 

values without regard to their specific types; these instructions are defined in such 

a way that they cannot be used to modify or break up individual values. These 

restrictions on operand stack manipulation are enforced through class file 

verification. 
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At any point in time an operand stack has an associated depth, where a 

value of type long or double contributes two units to the depth and a value of any 

other type contributes one unit. 

2.2.4.4 Dynamic Linking 

Each frame contains a reference to the runtime constant pool for the type 

of the current method to support dynamic linking of the method code.[3] The 

class file code for a method refers to methods to be invoked and variables to be 

accessed via symbolic references. Dynamic linking translates these symbolic 

method references into concrete method references, loading classes as necessary 

to resolve as-yet-undefined symbols, and translates variable accesses into 

appropriate offsets in storage structures associated with the runtime location of 

these variables.[3] 

This late binding of the methods and variables makes changes in other 

classes that a method uses less likely to break this code. 

2.2.4.5 Normal Method Invocation Completion 

A method invocation completes normally if that invocation does not cause 

an exception to be thrown, either directly from the Java virtual machine or as a 

result of executing an explicit throw statement. If the invocation of the current 

method completes normally, then a value may be returned to the invoking method. 

This occurs when the invoked method executes one of the return instructions, the 

choice of which must be appropriate for the type of the value being returned (if 

any).[1] 

The current frame is used in this case to restore the state of the invoker, 

including its local variables and operand stack, with the program counter of the 

invoker appropriately incremented to skip past the method invocation instruction. 

Execution then continues normally in the invoking method's frame with the 

returned value (if any) pushed onto the operand stack of that frame. 

2.2.4.6 Abrupt Method Invocation Completion 

A method invocation completes abruptly if execution of a Java virtual 

machine instruction within the method causes the Java virtual machine to throw 

an exception, and that exception is not handled within the method. Execution of 
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an athrow instruction also causes an exception to be explicitly thrown and, if the 

exception is not caught by the current method, results in abrupt method invocation 

completion. A method invocation that completes abruptly never returns a value to 

its invoker.[1] 

 



 

16  

CHAPTER 3 

 THE PROPOSED JVM CORE DEPLOYMENT ARCHITECTURE 

3.1 Development-Time Environment 

The development-time environment is choosen to be emphasized distinctly 

for its suppport for different Operating Systems with the use of the abstraction. 

The Figure 3.1 summarizes the Development-Time Environment. 

 

Figure 3.1: Development-Time environment. 
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3.2 Java Application Development-Time Environment 

Java Application Development-Time environment defines the steps to be 

taken to make java application source ready for deployment onto the proposed 

virtual machine.  

The process starts when application source files (*.java) are ready for 

compilation into class files with the use of Sun Java compiler javac having the 

version 1.4.2_01. The javac tool is required to be called with the target option to 

specify the complying release of the virtual machine core on which the class file is 

planned to be executed. 

The output of the Javac compiler is taken as an input for the Proguard 

tool(version 3.3.1). Proguard tool  is a shrinker, optimizer and obsfucator tool for 

java class files.[5] Proguard takes the application classes and the other classes, 

required by the native virtual machine environment, as input and populates the 

minimum set of class files needed to execute the java application. Proguard tool is 

required mostly for its optimization capability to reduce the size of target 

dedicated virtual machine. These class files are also packed into a compressed file 

for the use of tools in the chain. 

  Generated compressed file is provided to the Java Code Compact (JCC) 

tool. Java Code Compact tool is a virtual machine stub generator. The stub is a set 

of C files generated by Java Code Compact which are used while building the 

dedicated virtual machine for java application developed. 

Java Application Development-Time sequence of activities are completed 

with the generation of stub which is an output of the JCC tool. The Figure 3.2 

summarizes the Java Application Development-Time Environment. 
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Figure 3.2: Java Application Development-Time environment. 

3.3 Build-Time Environment 

Build-Time Environment represents the build process of virtual machine 

with the use of compiler and linker. 

Being the DOS port of the GNU, DJGPP tools are used as the build tool 

set. The compiler is choosen to be “gcc” (version 4.0.1) and the linker is choosen 

to be “ld” (version 2.16.1).  

Target virtual machine is proposed to be running with the capability of 

booting the system. For this implementation, target host is selected to be an intel 

386 or higher CPU based platform. So, the executed booting procedure supports 

the machines complying with the platform specifically mentioned. Booting 

capability is the function of the entry point defined in the libepc.a library. 

The functions required by the MicroC/OS-II Real-Time operating system 

which is platform dependent (like basic I/O handling and Interrupt Handling) are 

also provided by methods resides in the libepc.a library. 

The portable KVM code which make use of the string(string), standard 

input/output(stdio), time(time), standard library(stdlib), system call(syscalls), 

error handling(errno), re-enterency(reent), locale(locale), floating point 
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computation (mathfp, math and common), 64 bit arthmetic operations(division 

and mod) functions of a compilation environement is also required to be 

implemented. Such a need for a customized run-time C library is supplied by 

customizing the multi platform portable newlib library. Newlib library is a source 

code distribution of a Redhat community. The distribution comes with the build 

scripts which is configurable for a supported platform.  

 The similar adaptation acrivities is needed to be carried out to port the 

implementation to the platforms other than intel 386 architecture. The Figure 3.3 

summarizes the Build-Time Environment. 

 
Figure 3.3: Build-Time environment. 

3.4 Run-Time Environment 

Run-Time environment describes the execution partitioning of the JVM 

core among all target environment. As mentioned previously, the JVM core 

makes use of the MicroC/OS-II system calls as much as it can to keep its platform 
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independency property due its strict dependency to the MicroC/OS-II system 

calls. The Figure 3.4 summarizes the Run-Time Environment. 

 
Figure 3.4: Run-Time environment. 
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CHAPTER 4 

 K VIRTUAL MACHINE DEPLOYMENT DETAILS 

4.1 K Virtual Machine File Structure and Functional Responsibilities  

The portable K Virtual Machine consists of a set file which are common 

for all platforms. And these files includes the data structures and functions which 

are required by the K virtual machine. 

The files constituting the KVM C source code repository are listed in 

Table 4.1. 

Table 4.1: K Virtual Machine Files and their Responsibilities. 

File  Description  

StartJVM.c  Virtual machine startup and command line argument reading.  

bytecodes.c  
The definition of Java bytecodes for the redesigned bytecode interpreter 
(since KVM 1.0.2). 

cache.h,  
cache.c  

Inline caching operations for speeding up method lookup and for 
supporting “fast” bytecodes.  

class.h,  
class.c  

Internal runtime data structures and operations for representing Java 
classes.  

events.h, 
events.c Event system implementation.  

execute.h,  
execute.c  

Interpreter execution macros and operations needed by the redesigned 
bytecode interpreter (since KVM 1.0.2).  

fields.h,  
fields.c  

Internal runtime data structures and operations for representing fields 
and methods.  

fp_math.h, 
fp_math.c High-level floating point function interface.  

frame.h,  
frame.c  Stack frame and exception handling operations.  

garbage.h, 
garbage.c, 
collector.c 

Garbage collector and memory management.  

global.h, 
global.c Miscellaneous global variables and definitions.  

hashtable.h, 
hashtable.c  Hash table implementation that is used internally by the virtual machine.  
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Table 4.1: Continues. 
interpret.h, 
interpret.c  Bytecode interpreter. Note that starting from KVM 1.0.2 the actual 

interpreter code and bytecode definitions are located in other files 
(bytecodes.c, execute.h, execute.c).  

kni.h, 
kni.c  

K Native Interface (KNI) support.  

Loader.h, 
loader.c  Class loader and class format checks required by the class file verifier.  

log.h, 
log.c  

Logging/diagnostic operations for debugging and profiling.  

long.h  Special macros to handle 64-bit operations in a portable fashion.  

main.h  Compilation options and system-wide default settings.  

messages.h  Error and warning messages.  
Native.h, 
native.c, 
nativeCore.c 

Native function table operations and core native library functions.  

pool.h, 
pool.c  Runtime data structures and operations for representing constant pools.  

profiling.h, 
profiling.c  Data declarations and operations for profiling virtual machine execution.  

property.h, 
property.c  

Operations for accessing Java system properties.  

rom.h  Macros needed by the ROMizer (JavaCodeCompact tool).  
runtime.h  Function templates for certain machine-specific operations that need to 

defined for each KVM port.  
stackmap.c  Stackmap operations that are used for supporting exact garbage 

collection.  

Thread.h, 
thread.c  

Internal runtime data structures and operations for multithreading and 
Java thread management.  

verifier.h, 
verifier.c,  
verifierUtil.h, 
verifierUtil.c 

Classfile verifier (see Chapter 13for details).  

4.2 K Virtual Machine System Configuration Options 

The following definitions allow controlling which components and features 

to include in target port. 

 
#define IMPLEMENTS_FLOAT 1 

 

Turns floating point support in KVM on or off. Its value should be ‘1’ in 

those implementations that are compliant with CLDC Specification version 1.1, 

and ‘0’ in those implementations that are compliant with CLDC Specification 

version 1.0. [6] 
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#define PATH_SEPARATOR ‘:’ 

 

Its value should be path separator character used in CLASSPATH. This 

definition is meaningful only when utilizing the default class loader for command 

line based systems.[7] 

(Defined in VmCommon/h/loader.h.) 
 

#define ROMIZING 1 

 

Turns class prelinking/preloading (JavaCodeCompact) support on or off. If 

this option is turned on, KVM prelinks all the system classes directly in the virtual 

machine, speeding up application startup considerably. 

 
#define USE_JAM 0 

 

Includes or excludes the optional Java Application Manager (JAM) 

component in the virtual machine. 

 
#define ASYNCHRONOUS_NATIVE_FUNCTIONS 0 

 

This option instructs the KVM to use optional asynchronous native 

functions.  

 
#define USE_KNI 1 

 

This option was introduced in KVM 1.0.4. When enabled, the system will 

include some code that is needed by the K Native Interface (KNI).[8] 

4.3 K Virtual Machine Memory Allocation Settings 

  The following definitions affect the amount of memory KVM allocates. 
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#define DEFAULTHEAPSIZE 256*1024 

 

Its value shows the Java heap size that KVM allocates upon virtual 

machine startup. This value is commonly overridden from makefiles. Note that, 

starting from KVM 1.0.3, it is possible to override the heap size value from the 

command line (in those ports that support command line operation.) The heap size 

value must be a number that is divisible by four. The number must be in the range 

of 16k to 64 M.[7] 

 

#define INLINECACHESIZE 128 

 

Its value shows the the size of a special inline cache area that KVM 

reserves upon virtual machine startup if the ENABLEFASTBYTECODES option 

is turned on. The inline caching mechanism speeds up method lookups in the 

KVM by utilizing a technique popularized by Deutsch & Schiffman in the early 

1980s. The size here is expressed as a number of inline cache entries (each entry 

requires 12-16 bytes depending on target platform.) [8] 

 

#define STACKCHUNKSIZE 128 

 

The execution stacks of Java threads inside the KVM grow and shrink 

automatically as necessary. This value defines the default size of a new stack 

frame chunk when a new stack chunk needs to be allocated. Reducing the default 

stack chunk size will make the creation of new Java threads less expensive, but 

will slow down the execution of the VM when running programs that require a lot 

of stack space (that is, programs that have a lot of nested method calls.) [7] 

 

#define STRINGBUFFERSIZE 512 

 

This option defines the size (in bytes) of a statically allocated area that the 

virtual machine uses internally in various string operations. 
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4.4 K Virtual Machine Garbage Collection Options 

The following option turns on compacting garbage collection. Note that 

currently compaction cannot be used on those platforms that have segmented 

(noncontiguous) memory architecture. 

 

#define ENABLE_HEAP_COMPACTION 1 

 

The following option, if set to a non-zero value, causes a garbage 

collection to occur on every allocation. This makes it easier to find garbage 

collection problems. 

 

Since this option makes the virtual machine run extremely slowly, the 

option should be turned off in production builds. 

 

#define EXCESSIVE_GARBAGE_COLLECTION 0 

4.5 K Virtual Machine Interpreter Execution Options 

The following macros allow turning on and off certain features controlling 

interpreter execution. The default values for a production release are shown 

below. 

 

#define ENABLEFASTBYTECODES 1 

 

With this option runtime bytecode replacement and method inline caching 

is turned on or off. This option improves the performance of the virtual machine 

by about 10-20%, but increases the size of the virtual machine by a few kilobytes. 

Note that bytecode replacement cannot be performed on those target platforms in 

which bytecodes are stored in non-volatile memory such as ROM. [7] 
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#define VERIFYCONSTANTPOOLINTEGRITY 1 

 

This option instructs the virtual machine to verify the types of constant 

pool entries at runtime when performing constant pool lookups. Reduces runtime 

performance slightly, but is generally recommended to be kept on for safety and 

security reasons. Additional definitions and interpreter macros: 

 

#define BASETIMESLICE 

 

The value of this variable determines the basic frequency (as a number of 

bytecodes executed) in which the virtual machine performs thread switching, 

event notification and other periodically needed operations. A smaller number 

reduces event handling and thread switching latency, but causes the interpreter to 

run more slowly. 

 

#define DOUBLE_REMAINDER(x, y) fmod(x, y) 

 

A compiler macro, defined in interpret.h, which is used to find the 

modulus of two floating point numbers. 

 

#define SLEEP_UNTIL (wakeupTime) 

 

This macro makes the virtual machine sleep until the current time (as 

indicated by the return value of the function CurrentTime_md ()) is greater than or 

equal to the wakeup time. The default implementation of SLEEP_UNTIL is a 

busy loop. Most ports should usually provide a more efficient implementation for 

battery conservation reasons. Refer to Section 12.4 “Battery power conservation” 

for further details. 

4.6 K Virtual Machine Interpreter Execution Techniques 

Since the release 1.0.2, KVM has an interpreter design that gives up to 15-

30% better performance than KVM 1.0 without any loss of ANSI C portability. 
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The actual performance improvement percentage depends on the target platform 

and the capabilities of the C compiler that is used for compiling the KVM. The 

performance improvement is the result of the following four techniques that can 

be used independently of each other: 

■ restructuring the interpreter code so that virtual machine registers will be 

placed into local C variables when the interpreter is running. 

■ splitting uncommonly used Java bytecodes into a separate interpreter loop 

subroutine. This allows the C compiler to do a better job in optimizing the code 

for more frequently used bytecodes. 

■ moving the test for Java thread rescheduling from the top of the 

interpreter loop to branch bytecodes. This reduces the overhead of the time slice 

counter that is used for controlling thread switching. 

Padding out the bytecode space is also an alternative in order to allow the C 

compiler to produce better code for the main switch statement of the interpreter. 

These techniques do not depend on any compiler-specific features, and are 

therefore portable across a wide variety of C compilers. Each of the techniques 

and the corresponding macros are discussed in more detail below. 

4.7 K Virtual Machine Java Level Debuging Options 

The KVM 1.0.2 release introduced a new Java-level debugger interface that 

allows the KVM to be plugged into third party Java debugger environments and 

integrated development environments (IDEs) that supports the JDWP (Java 

Debug Wire Protocol) protocol. The macros in this subsection are related to the 

Java-level debugger options. 

 

Note – It is important to notice that there is a fundamental difference between the 

debugging facilities intended for Java-level debugging and VM-level debugging. 

Java-level debugging facilities are related to the debugging of the Java programs 

that the KVM executes. VM-level debugging facilities are used for debugging the 

KVM itself at the native (C) code level. 
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#define ENABLE_JAVA_DEBUGGER 0 

 

This option inserts a large amount of debugger support code that is needed 

for plugging KVM into a third-party Java debugger or integrated development 

environment such as Forte or Borland JBuilder. 

4.8 K Virtual Machine Level Debuging and Tracing Options 

KVM provides a large number of debugging and tracing facilities that can 

be used for inspecting the behavior of the KVM itself at the native (C) code level. 

These facilities can be extremely helpful during porting efforts. 

All the VM-level debugging and tracing options should be turned off in a 

production release. 

4.8.1 Including and Excluding Debuging Code 

 

#define INCLUDEDEBUGCODE 0 

 

This option makes possible to include a large amount of debugging and 

logging code that is useful when porting the virtual machine onto a new platform. 

This option should be turned off in production builds. 

 

#define ENABLEPROFILING 0 

 

This option is used to turn on or off certain profiling features that allow 

monitoring virtual machine execution and get execution statistics. Turning this 

option on slows down the virtual machine execution speed considerably. This 

option should be turned off in production builds. 
 
4.8.2 Tracing Options 

In KVM 1.0, all the tracing options were compilation flags that could be 

changed only by recompiling the virtual machine. In KVM 1.0.2, all these tracing 
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options were changed into global variables that can be controlled from the 

command line. 

This makes it much easier to turn individual tracing options on and off. 

These global variables (and command line switches) are available only if the 

virtual machine has been compiled with the INCLUDEDEBUGCODE mode 

turned on. 

 

These options can be controlled directly by changing their default values 

in file VmCommon/src/global.c, or by defining a graphical user interface that sets 

and resets these options. 

Additionally, whether the tracing messages printed out terse or more 

verbose can be controlled by modifying the following option: 

 

#define TERSE_MESSAGES 0 

 

KVM also contains a stack trace printing facility that can be turned on to 

help debugging of exceptions and errors in more detail (at the cost of some 

additional memory footprint). By default, this mode is turned on automatically 

when the INCLUDEDEBUGCODE flag is turned on. 

 

#define PRINT_BACKTRACE 0 

4.9 K Virtual Machine Error Handling Macros 

The interpreter uses the internal error handling macros shown in Figure 4.1.  

If there is a call to the macro THROW (error), anywhere inside the “normal 

code,” the VM jumps immediately to error handling code. Uses of this macro can 

be nested, either lexically or dynamically. The THROW jumps to the innermost 

CATCH error handling code. (The various TRY, THROW, and CATCH macros 

are defined in VmCommon/h/global.h.) 
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TRY { 

normal code 

} CATCH (error) { 

error handling code 

} END_CATCH 

always continue here 

Figure 4.1: K Virtual Machine error handling macros 

By default, this behavior is emulated using setjmp and longjmp. These 

macros have been illustrated in Figure 4.2. 

VM_START { 

normal VM code 

} VM_FINISH (value) { 

code to execute before VM shuts down 

} VM_END_FINISH 

Figure 4.2: K Virtual Machine Shutdown Macro 

Rather than calling the normal C exit function, the proper way to exit from 

the VM is to call macro VM_EXIT (value). Calling this macro will cause the 

control of the VM to be immediately transferred to the code that follows the 

VM_FINISH (value) macro. The value to be passed to this code typically 

represents the exit code that the VM will return when it shuts down. 

4.10 K Virtual Machine Startup Conventions 

Virtual machine startup practices can vary significantly in different KVM 

ports. By default, KVM supports regular command line based Java virtual 

machine startup, but the virtual machine can easily be modified for those 

environments in which command line based startup is not desired. 

4.10.1 Command Line Startup 

This subsection describes the virtual machine startup conventions when 

launching KVM from the command line. The file VmExtra/src/main.c provides a 

default implementation of main (). The virtual machine is called from the 

command line as follows: 
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kvm [option]* className [arg]* 

where each option is one of 

-version 

-classpath <list of directories> 

-heapsize <heap size parameter> 

The required className argument specifies the class whose method static 

main (String argv []) is to be called. All arguments beyond the class name are un-

interpreted strings that are made into a single String [] object and passed as the 

single argument to the main method. 

The -classpath option allows the user to define the directories from which 

the KVM reads the class files. The parameter <list of directories> is a single string 

in which the directories are separated by the PATH_SEPARATOR character. 

The value of the PATH_SEPARATOR character is typically ‘;’ on 

Windows platforms, and ‘:’ on UNIX platforms. 

The -heapsize option (introduced in KVM 1.0.3) allows the user to 

manually set the Java heap size that KVM allocates upon virtual machine startup. 

The heap size can range from 16 kilobytes to 64 megabytes. The heap size can be 

specified either in bytes (such as 32768), kilobytes (such as 32k or 32K), or 

megabytes (such as 1m or 1M). Note that when the heap size is defined in bytes, 

the KVM automatically rounds up the heap size number to the next number that is 

divisible by four. 

Additionally, if the virtual machine has been compiled with the 

INCLUDEDEBUGCODE mode turned on, the tracing options are also available. 

When the Java-level debugging interface is in use, additional command 

line options are available to control the debugger. The default implementation of 

main (int argc, char **argv) calls the function StartJVM () with an argv in which 

all of the options have been removed and an argc that has been decremented 

appropriately. 

4.10.2 Romizied Virtual Machine Startup 

In this port of the KVM for MicroC/OS-II since there is not any command 

line capability. The class files embedded in to the virtual machine, including the 
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entry point of the java application, is invoked after the initialization process is 

completed internally in the KVM_Start function of the StartJVM.c file. This 

configuration of the KVM also requires specifying the command line options 

from the source code by modifying the preprocessor directives in the global.h or 

main.h files. 

 

4.11 K Virtual Machine 64 Bit Support 

It is not required the compiler to support 64-bit arithmetic. However, having 

a 64-bit capable compiler makes porting much easier. 

4.11.1 Setup 

If the compiler supports 64-bit integers, the types long64 and ulong64 

should be defined in one of the platform-dependent include files. The meaning of 

these two types is shown below in Table 4.2. 

 

Table 4.2: K Virtual Machine 64 Bit Definition Description. 

Type  Description 

long64  A signed 64-bit integer. 

ulong64  An unsigned 64-bit integer. 

 
 

It should be considered setting one of the two compiler constants 

BIG_ENDIAN or LITTLE_ENDIAN to a non-zero value. This is only required 

while using the Java Code Compactor, but KVM can produce better code if it 

knows the endianness of target machine. 

If the compiler does not support 64-bit integers, 1 preprocessor constant 

COMPILER_SUPPORTS_LONG must be set to zero. It must be defined exactly 

as one of BIG_ENDIAN or LITTLE_ENDIAN2 to have a non-zero value. 

The types long64 and ulong64 are defined to be a structure consisting of 

two fields, each an unsigned long word, named high and low. The high field is 

first if target machine is big endian; the low field is first if target machine is little 

endian. 
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The functions shown in Table 4.2 must be defined. If target platform 

supports floating point, the functions shown in Table 4.3 must also be defined. 

Any of these functions can be implemented as a macro instead. 

Table 4.3: K Virtual Machine 64 Function Correspondance. 

Function or Constant Java equivalent  

long64 Ll_mul(long64 a, long64 b);  a * b  

long64 Ll_div(long64 a, long64 b);  a / b  

long64 Ll_rem(long64 a, long64 b);  a % b  

long64 Ll_shl(long64 a, int b);  a << b  

long64 Ll_shr(long64 a, int b);  a >> b  

long64 Ll_ushr(long64 a, int b);  a >>> b  

 

Table 4.4: K Virtual Machine 64 bit type correspondance. 

Function or Constant  Java equivalent  

long64  Float2ll(float f);  (long)f  

long64  double2ll(double d);  (long)d  

float  ll2float(long64 a);  (float)a  

double  ll2double(long64 a);  (double)a  

4.12 K Virtual Machine Floating-Point Support 

For CLDC 1.1 compliant implementations, the floating-point functionality 

is always enabled by default.[8] It can be disabled by changing the 

IMPLEMENTS_FLOAT flag in main.h. The majority of the support needed in the 

virtual machine for implementing floating-point is done to the Java bytecodes 

defined in bytecodes.c. The specific modifications needed are described in the 

sections below. 

4.12.1 Floating-Point Bytecodes Implementation 

The file bytecodes.c represents one of the major components that must be 

changed to support floating-point. This file contains Java bytecodes executed by 

the KVM interpreter. Many of the modifications involve checking for NaNs. 

Among the bytecodes that require modifications are D2I, D2L, F2I, and 

F2L. The modifications and checks for NaNs are described in Section 10.4 



 

34  

“Porting.” The x86 specific changes are implemented in fp_bytecodes.c (located 

in directory kvm/VmExtra/src/fp). Specific details of the changes are also 

documented with comments in that file.[8] 

Table 4.5 lists the trigonometric functions that are now implemented in the 

KVM for floating-point support. Listed with each function are the corresponding 

file(s) in which the function is implemented. 

Table 4.5: K Virtual Machine Supported TrigonometricFunctions. 

Function  File(s)  

sin  k_sin.c s_sin.c  

cos  k_cos.c s_cos.c  

tan  k_tan.c s_tan.c  

sqrt  e_sqrt.c w_sqrt.c  

ceil  s_ceil.c  

floor  s_floor.c  

abs  s_fabs.c  

 
The implementation of the trigonometric functions is taken directly from 

the JDK1.3.1 sources with no changes except to the function names. The 

trigonometric files are specified in directory kvm/VmExtra/src/fp. 

4.12.2 Floating-Point Support Porting to x86 Architecture 

The traditional x87 FPU is fully IEEE 754 compliant. However, the IEEE 

754 standard explicitly allows rounding to reduced precision, but greater exponent 

range, which does not always match the floating-point model used in the Java 

language and the JVM.[8] Therefore, additional work is needed to implement 

floating point. 

Additionally, the P4 processor contains the SSE2 instruction set extension, 

which is another IEEE 754 compliant implementation. However, SSE2 is more 

amenable to Java’s semantics.[8] 

To implement floating-point for the x86 platforms, checks involving NaNs 

are needed for the following Java bytecodes: FCMPL, FCMPG, DCMPL, 

DCMPG, FREM, and DREM. These bytecodes needed additional checks to 

behave as mentioned in the Java™ Virtual Machine Specification. The Java™ 
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Virtual Machine Specification describes what each of these bytecodes should do 

or return when a NaN value is encountered.[8] 

The file fp_bytecodes.c under kvm/VmExtra/src/fp contains the x86-

specific implementation for the floating-point bytecodes. Each function in this file 

implements an algorithm for a specific floating-point bytecode that needs 

modification. Each of these bytecodes checks the value that is on the stack to see 

if it is a NaN. If a NaN value is encountered, it is handled as a special case 

according to the Java™ Virtual Machine Specification. These functions are 

executed only if the variable PROCESSOR_ARCHITECTURE_X86 is set in the 

platform-specific header file machine_md.h.[8] 

4.12.3 Floating-Point strict-fp implementation on x86 Architecture 

The x86 is designed to operate on 80-bit double extended floating-point 

values rather than the 64-bit and 32-bit double and float values used in the Java 

programming language.[8] The x86 can be made to round to float or double 

precision. Unfortunately, this rounding does not exactly emulate the pure float and 

double called for by Java, since an extended exponent range is available. The 

extended exponent range means the overflow and underflow thresholds are 

different than for pure float and double. 

To implement strictfp, the bytecodes DMUL and DDIV must be changed. 

The problem is, while doing these operations on subnormal numbers (very small 

IEEE 754 values with less precision than normal numbers) rounding occurs, 

producing an incorrect result. In addition, double-rounding can occur if the 

obvious code generation algorithm is used. The solution is to implement the 

following algorithms for DMUL and DDIV. 

 

Multiply (DMUL) 

■ load multiplier 

■ scale multiplier by multiplying multiplier by 2-15360 

■ load multiplicand 

■ multiply scaled multiplier by multiplicand 

■ rescale product by 215360 

■ store rescaled product 
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■ reload stored rescaled product 

 

Divide (DDIV) 

For strictfp floating-point on x86, the initial scaled quotient must be 

smaller than the actual quotient for the rounding to work properly. Thus, the 

algorithm is: 

■ load dividend 

■ load divisor 

■ compute initial_quotient by either: 

■ initial_quotient = (2-15360 × dividend)/divisor 

■ initial_quotient = dividend/(divisor × 215360) 

■ rescale initial_quotient to get the right significant bits. Compute:  

quotient = initial_quotient × 215360 

■ store rescaled quotient 

■ reload stored rescaled quotient 

The bytecodes for FADD and FSUB did not need to be changed since if 

those operations have subnormal results, the results are exact (that is, no rounding 

occurs). [8] 



 

37  

CHAPTER 5 

 JAVA APPLICATION DEPLOYMENT SUPPORT TOOLS 

5.1 Class File Preverifier 

The class file verifier supported by Java 2 Standard Edition (J2SE) is not 

suitable for small, resource-constrained devices. The J2SE verifier requires a 

minimum of 50 kB binary code space and at least 30-100 kB of dynamic RAM at 

run time. In addition, the CPU power needed to perform the iterative dataflow 

algorithm in the standard JDK verifier can be substantial. 

Preverification is designed and implemented as new, two-phase classes file 

verifier that is significantly smaller than the existing J2SE verifier. The runtime 

part of the new verifier requires about 15 kB of Intel x86 binary code and only a 

few hundred bytes of dynamic RAM at run time for typical class files. The 

runtime verifier performs a linear scan of the byte code, without the need of a 

costly iterative dataflow algorithm. The new verifier is especially suitable for 

KVM, a small-footprint Java virtual machine for resource-constrained devices. [7] 

The new class file verifier operates in two phases, as illustrated in Figure 

5.1: 

■ First, Java class files have to be run through a special preverifier tool in 

order to augment the class files with additional attributes to speed up runtime 

verification. The preverification phase is typically performed on a development 

workstation, where the application developer writes and compiles the 

applications. 

■ At runtime, the runtime verifier component in the KVM utilizes the 

additional attributes generated by the preverifier to perform the actual class file 

verification efficiently. 
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Figure 5.1: The phases of running an application on the JVM. 

5.1.1 Using Class File Preverifier 

The preverification phase is usually performed at application development 

time. For example, if a preverifier weren’t used, Foo.java would be typically 

compiled with javac like this: 

 

 

javac -classpath kvm/classes Foo.java 

 

 

However, when using the preverifier, output of javac would be placed in a 

separate directory and then the resulting class files would be transformed using 

the preverifier. For example: 

 

 

javac -classpath kvm/classes -d mydir Foo.java 

preverify -classpath kvm/classes -d . mydir 

 

 

The above preverifier command transforms all class files under mydir/ and 

places the transformed class files in the current directory (as specified by the –d 

option).  
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5.1.2 Class File Preverifier Options 

More generally, the preverifier is invoked as follows: 

 

preverify <options> <input files> 

 

Preverifier options and accepted input file formats are explained in more detail 

below. The preverifier accepts a number of arguments and options. 

 

-classpath <directories> | <JAR files> 

■ This option indicates the directories or JAR file(s) in which the 

KVM/CLDC Java library classes are located. The directory separator is platform-

specific. On Solaris a colon is used. On Win32 a semicolon is used. The JAR file 

specified must be in a valid Java Archive format and must end with.jar, .JAR, .zip 

or .ZIP suffix. 

 

-d <directory> 

■ The directory in which output classes will be written. The default output 

directory is ./output. 

 

-cldc1.0 

■ This option checks for the existence of language features prohibited by 

CLDC 1.0 (native methods, floating point, and finalizers). 

 

-nofinalize 

■ This option checks for the use of finalizers in application classes. When 

this option is specified, an error is reported if finalizers are detected in any of the 

input files. 

 

-nonative 

■ This option checks for the use of native methods in application classes. 

When this option is specified, an error is reported if native methods are detected 

in any of the input files. 
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-nofp 

■ This option checks for the use of floating point operations in application 

classes. When this option is specified, an error is reported if floating point 

operations are detected in any of the input files. 

 

@<filename> 

■ The name of a text file from which command line arguments will be 

read. 

 

Note – When the command line arguments are read from a file, parameters 

must all be specified on a single line and the parameters to the -classpath and –d 

options must be enclosed within double quotes. When the corresponding options 

are used from the command line, quotes are not required (unless the directory/file 

name parameter contains spaces.) 

5.2 Java Code Compact (JCC) 

This utility allows Java classes to be linked directly in the virtual machine, 

reducing VM startup time considerably. 

At the implementation level, the JavaCodeCompact utility combines Java 

class files and produces a C file that can be compiled and linked with the Java 

virtual machine. 

In conventional class loading, javac is used to compile Java source files into 

Java class files. These class files are loaded into a Java system, either individually, 

or as part of a jar archive file. Upon demand, the class loading mechanism 

resolves references to other class definitions. 

JavaCodeCompact provides an alternative means of program linking and 

symbol resolution, one that provides a less-flexible model of program building, 

but which helps reduce the VM’s bandwidth and memory requirements. 

 

JavaCodeCompact can: 

■ combine multiple input files 

■ determine an object instance’s layout and size 



 

41  

■ load only designated class members, discarding others. 

5.2.1 Java Code Compact (JCC) Options 

JavaCodeCompact accepts a large number of arguments and options. Only 

the options currently supported by KVM are given below. 

 

■ filename 

This option designates the name of a file to be used as input, the contents 

of which should be included in the output. File names with a .class suffix are read 

as single class files. File names with .jar or .zip suffixes are read as Zip files. 

Class files contained as elements of these files are read. Other elements are 

silently ignored. 

 

■ -o output filename 

This option designates the name of the output file to be produced. In the 

absence of this option, a file is produced with the name ROMjava.c. 

 

■ -nq 

This option prevents JavaCodeCompact from converting the byte codes 

into their “quickened” form. This option is currently required by KVM. 

 

■ -classpath path 

Specifies the path JavaCodeCompact uses to look up classes. Directories 

and zip files are separated by the delimiting character defined by the Java constant 

java.io.File.pathSeparatorChar. This character is usually a colon on the Unix 

platform, and a semicolon on the Windows platform. 

Multiple classpath options are cumulative, and are searched left-to-right. 

This option is used in conjunction with the -c cumulative-linking option, and with 

the -memberlist selective-linking option. 
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■ -memberlist filename 

This option provides selective loading as directed by the indicated file. 

This file is an ASCII file, as produced by JavaFilter, containing the names of 

classes and class members. 

 

■ -v 

This option turns on the verbosity of the linking process. It is cumulative. 

Currently up to three levels of verbosity are understood. It is only of interest as a 

debugging aid. 

 

■ -arch Architecture 

Specify the architecture for which romized image is generated. At this 

time,” KVM” must be specified as the architecture. 

 

5.2.2 Executing Java Code Compact (JCC) 

The JavaCodeCompact utility is used to build the platform-specific file 

nativeFunctionTablePlatform.c, which contains tables necessary for calling native 

methods. 

This file must be built even if the ability of JavaCodeCompact to pre-load 

classes is not used. If system classes are not ROMized (in other words, all system 

classes are loaded dynamically), Step 4 may be skiped. 

The simplest method for using the JavaCodeCompact utility is to either 

use the Makefile provided or to modify it for the target platform. The following 

lists the steps that the Makefile performs: 

 

1. Compile all the .java files in the api/src directory. The resulting class 

files are verified and merged into a single zip file classes.zip. This zip file is 

copied to the tools/jcc directory. 

2. Compile the sources for JCC. 

3. Copy classes.zip to classesPlatform.zip. Remove from this platform 

dependent zip file any classes or packages that should not be used on target 

platform. 
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4. Execute host system’s equivalent of the following command in the jcc 

directory:  

 

 

env CLASSPATH=classes \  

JavaCodeCompact -nq -arch KVM \ -o ROMjavaPlatform.c classesPlatform.zip 

 

 

The “env CLASSPATH-classes” sets an environment variable indicating 

that the code for executing JavaCodeCompact can be found in the subdirectory 

called classes. Next on the command line is the name of the class whose main 

method is to be executed (JavaCodeCompact), and the arguments to that method. 

5. Execute host system’s equivalent of the following command in the jcc 

directory:  

 

 

env CLASSPATH=classes \ 

JavaCodeCompact -nq -arch KVM_Native -o nativeFunctionTablePlatform.c 

classesPlatform.zip 

 

 

This command creates the file containing the native function tables 

necessary to link native methods to the corresponding C code. 

 

5.2.3 Java Code Compact (JCC) Limitations 

The current implementation of JavaCodeCompact requires that the class 

files that compacted constitute a “transitive closure.” If class A is compacted, and 

class A’s constant pool references class B, then class B must also be included as 

part of the compaction. 

Class A includes Class B in its constant pool if any of the following 

conditions are true: 
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■ Class A is a direct subclass of class B, or class A directly implements 

class B. 

■ Class A creates an instance of class B, or an array of class B. 

■ Class A calls a method that is defined in class B. 

■ Class A checks to see if an object is an instance of type B, or casts an 

object to type B. 

Note that the following do not cause class B to be included in class A’s 

constant pool. Under certain circumstances, it may be possible to compact A 

without also compacting B. 

■ Class A has an instance variable of type B 

■ Class A has a method whose argument or return type includes type B in 

its signature. 

■ Class A creates an instance of class B using the Class.forName() 

method. 

JavaCodeCompact will fail and give an error message if a class file that it 

requires is not included. 
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CHAPTER 6 

 VIRTUAL MACHINE DEPLOYMENT SUPPORT LIBRARIES 

6.1 Overview 

Even if the MicroC/OS-II is a platform-independent real-time operating 

system, it requires some minor platform dependent functions for its proper 

execution in the target environment.[9] 

It is also a need of the KVM code to be supported by some of the library 

functions including string operations (like strcpy, strcmp, strlen) memory 

operations (like memmove, memcpy, malloc, free) and also some standard input 

output functions(like fprintf and sprintf).  

The functions required by MicroC/OS-II and KVM code either are 

unfortunately unlikely to be supported by the development environments (DJGPP) 

standard C Runtime library “libc.a”. The appropriate library for such an 

environment should satisfy the following requirements: 

 

1. The library should include a crt0.c (C Run-Time Environment 

Initializer) file which implements handling some booting up 

procedures. 

2. The library should not include any function depending on 

operating system or ROM-BIOS. 

3. The library should not include any object reference, which 

requires for its execution, like some definitions in the memory 

region of embedded application, in order to decrease applications 

complexity and memory footprint. 
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Since these library requirements are unlikely to be supported by any 

development environment, it is choosen to make use of two different libraries for 

the satisfaction of these requirements. 

One of these libraries is the Libepc library which includes specialized 

functions for the required booting up procedure as well as the primary 

input/output functions for supporting the rest.[10] 

The other library is a kind of customizable C run-time library which 

includes all the headers, types, macros and functions of the standard C run-time 

library complying with the ANSI and POSIX specifications. This library is called 

the Newlib (developed and distributed by a commuity of RedHat known as 

Cygnus) and designed to be used for the different target the platforms after 

completing the configuration customization steps declared in its 

documentations.[11] 

In order to improve re-usability and not to modify the KVM source the 

hiearchy of library dependencies is planned to be as in the Figure 6.1.1. 

 

 

Figure 6.1: The Library use and dependency  
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6.2 Use of Newlib Library 

Newlib is a freely-available C runtime library with a portable and flexible 

architecture that makes it suitable for use in resource-constrained embedded 

systems. Newlib is an actively supported and mature product, and is the preferred 

choice for GNU based embedded environments. 

This section discuss some of newlib’s functionality and portabilty features, 

and provides a strategy on how to integrate newlib into an embedded environment 

based on MicroC/OS-II Real Time Operating System (RTOS). 

6.2.1 Newlib Standard Input/Output Features 

Some of newlib’s functionality provides useful enhancements to a 

"typical" embedded setting (whatever that is), while others allow newlib to be 

about as POSIX-like as a compact C runtime setting can be. These capabilities can 

be a big help when porting desktop-tested applications to an embedded 

environment.[11] 

Newlib contains a complete implementation of the C standard printf() and 

family. By the implementation’s own admission, "this code is large and 

complicated" 3, but essential for systems that need full ANSI C input and output 

support, including capabilities for representing and parsing floating point 

numbers. 

Many embedded systems do not use floating point math, however, and 

great pains are taken in most embedded runtime libraries to cull this code-bloating 

functionality whenever possible. Newlib approaches this problem in two ways: a 

FLOATING_POINT macro that allows selective disabling of floating point 

support in each of the library functions that can offer it, and an iprintf() function 

that only knows how to display integer objects. 

If an embedded system needs floating point support in only a few of the 

standard input and output functions, then newlib can be rebuilt to exclude floating 

point from places where it isn’t needed. Floating point can be omited for 

everything except scanf(), for example, by either undefining the 

FLOATING_POINT macro everywhere except in the scanf.c source file, or by 

modifying newlib’s Makefile to do the same thing. 
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For situations where only integer output is required, newlib provides the 

iprintf() function: a version of the printf() function built with the 

FLOATING_POINT macro undefined. It behaves exactly like printf(), except that 

it does not understand the %f, %F, %g, and %G type specifiers, and therefore has 

a much smaller code footprint. 

Newlib’s standard input and output facilities are surprisingly complete, 

even beyond the printf() et al implementations. The complete C file API is also 

provided, complete with read and write buffering, seeking, and stream flushing 

capabilities. Variations like sprintf(), fprintf() and vfprintf() (takes va_list 

arguments) are also included, which makes a newlib environment look strikingly 

similar to one expected to be seen in a more C language programming 

environment. An unfortunate limitation of newlib’s stdio library is that it requires 

at least a minimal malloc() for complete and proper operation. Fortunately, newlib 

includes a pretty good dynamic memory allocator that is straightforward to set up 

and use. One can also build a malloc() based on a fixed size memory block 

allocator, to eliminate fragmentation worries in systems where this is a concern. If 

use of stdio is constrainted to just iprintf(), the malloc() is  not needed.[11] 

6.2.2 Newlib Libm Support 

Newlib includes a complete IEEE math library called libm. In addition to 

offering the standard math functions like exp(), sin() and pow(), this library also 

provides matherr(): a modifiable math error handler invoked whenever a serious 

math-related error like an underflow or loss of precision is detected. By 

customizing this function, these situations can be handled in whatever way is 

appropriate for the target application.[12] 

Libm also includes functions that take float parameters, instead of double. 

These extensions are named after their full precision equivalents, i.e. sinf() is the 

single precision version of the sin() function. The reduced precision functions 

have a considerable speed advantage over their IEEE-compliant double precision 

counterparts, which can put some floating point operations within reach of 

hardware that is too weak for full double precision computations. 
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6.2.3 Newlib Reentrancy Support 

Newlib’s C and math libraries are reentrant when properly integrated into 

a multithreaded environment. The implementation is not obvious at first glance, 

so the next paragraphs describe how it works. Once the details are known, it will 

be clear how to set it up properly in target system.[11] 

6.2.3.1 Making errno Reentrant 

Newlib encloses errno and several related values into a structure of type 

struct _reent, and redefines the symbol errno as a macro that references a global 

_reent* pointer named __impure_ptr. As a result, when a statement refers to the 

value of errno, it is actually doing an indirect structure lookup that resolves to the 

errno field in a data structure. 

The code in Figure 6.2 describes in general how errno is modified under 

newlib. The code in Figure 6.3 is a common example of how to use errno in an 

ANSI C environment; because the reimplementation of errno is transparent to the 

application, this code works without modification under newlib. [11] 

 

#define errno (*__errno()) 

extern int *__errno _PARAMS ((void)); 

#define _REENT _impure_ptr 

#define _REENT_INIT(var) \ 

{ 0, &var.__sf[0], &var.__sf[1], &var.__sf[2], 0, "", 0, "C", \ 

0, NULL, NULL, 0, NULL, NULL, 0, NULL, { {0, NULL, "", \ 

{ 0,0,0,0,0,0,0,0}, 0, 1} } } 

static struct _reent impure_data = _REENT_INIT (impure_data); 

struct _reent * _impure_ptr = &impure_data; 

int * __errno () 

{ 

return &_REENT->_errno; 

} 

 

Figure 6.2: How errno is modified under newlib. 
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fp = fopen( "myfile.txt", "rw" ); 

if( fp == NULL ) { 

switch( errno ) { 

case EACCES: 

/* we don’t have permissions */ 

... 

Figure 6.3: Using errno in an ANSI C environment. 

6.2.3.2 Managing _reent Structures 

Newlib declares one _reent structure and aims _impure_ptr at it during 

initialization, so everything starts out correct for situations where only one thread 

of execution will be in the library at a time. To provide the capability to have 

multiple library processing contexts, allocate multiple _reent structures, and move 

_impure_ptr between them during context switches. 

The _reent structure also contains fields for the standard input (stdin), 

standard output (stdout), and standard error (stderr) descriptors. This allows each 

task to define its own set of streams for reading and writing data: tasks A and B 

could both use printf() simultaneously, with each task’s output going to different 

locations.[11] 

6.2.3.3 Reentrancy In Memory Management 

In order to permit multiple processing contexts in newlib’s malloc() 

implementation, __malloc_lock() and __malloc_unlock() functions must also be 

provided  to protect the memory pool from corruption during simultaneous 

allocations. If an RTOS’s reentrant memory pool implementation is used for 

dynamic memory allocation, however, this heap protection is unnecessary--- the 

RTOS protects the heap itself. 
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6.2.3.4 Building Newlib 

Building newlib for a supported target is a straightforward process that 

follows the conventions adhered to by most open source and Free Software 

projects. 

The build process starts with the use of the commands shown in Figure 

6.4. When the commands completed, the build process will have produced the 

files libc.a, libg.a (a debugging-enabled libc), and libm.a, in the directory 

/usr/local/<target-name>. If the target specified has several variants, the build 

process will produce multiple files, each with compilation settings specific to each 

variant. After linking one or more of these files with the target application, and it 

will provide a free C runtime environment. 

Note -  that if a “—prefix” option is provided when building the GNU 

cross compiler, then the same --prefix must be provided here for newlib. The 

default value for --prefix is /usr/local/. 

 

$ tar xzvf newlib-1.9.0.tar.gz 

$ mkdir build-newlib && cd build-newlib 

$ ../newlib-1.9.0/configure --target=$TARGET --prefix=$PREFIX 

$ make all install info install-info 

 

Figure 6.4: Building newlib 

Newlib’s build process produces documentation, in the files libc.info and 

libm.info. By default these files go into /usr/local/info5, and they can be browsed 

using info, a documentation browser included with most Linux distributions.[11] 

Just change to the directory containing these files, and type:  

 

$ info -f ./libc.info 

 

Newlib’s configuration script supports several options, not the least of 

which are the definition of the target system (what CPU and OS the library will 

run under), and where to put the files generated during the build.  

The following are some of the --target specifications that newlib supports. 
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• m68k-coff 

• h8300-coff 

• sh-elf 

• z8k-coff 

• mn10300-elf 

• i386-elf 

• i386-coff 

6.2.4 Newlib Configuration Points 

Newlib’s source code has a few configuration points, and unneeded stubs  

are choosen to be eliminated, to optimize for code size instead of speed, or to 

remove floating point support.[11] 

 To modify a configuration point, change its value in the Makefile 

generated by the configure command, before make command is typed. Look for 

the variable called CFLAGS_FOR_TARGET, and add flags there like: 

 

-DINTEGER_ONLY 

to build an integer-only library, or 

 

-DPREFER_SIZE_OVER_SPEED 

to enable a few small changes that reduce library code size. 

You can also adjust the value of the CFLAGS setting, to affect the way the 

library is compiled. For example, if GNU C compiler is choosen the then use: 

 

-Os (instead of -O2) 

to tell it to optimize for code size over performance, or: 

 

-O3 (instead of -O2) 

to tell the compiler to optimize for raw performance over everything else. 

 

Add: 

-fomit-frame-pointer 
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Telling the compiler to not build stack frames for functions in the library 

that do not need them, which saves some space and boosts library 

performance.[11] 

6.2.5 Porting Newlib to MicroC/OS-II 

All of newlib’s functionality sits on top an integration layer of seventeen 

stubs of code that supply capabilities that newlib cannot provide itself: low-level 

filesystem access, requests to enlarge its memory heap, getting the time of day, 

and various types of context management like process forking and killing. Newlib 

supplies templates for each of these stubs, which either return "not implemented", 

or fail silently. 

The requirements for each stub are fully documented in newlib’s libc.info 

file, in the section called Syscalls. The key to a successfully ported newlib is 

providing stubs that bridge the gap between the functionality newlib needs, and 

what the target system can provide. 

6.2.5.1 _fork_r 

Newlib calls upon this stub to do the work for the fork() system call, which 

in POSIX environments is used to create a clone of the current processing context. 

The semantics of the conventional fork() do not coexist peacefully with 

MicroC/OS-II’s way of managing task creation and identification. 

In fact, trying to implement fork() in MicroC/OS-II is probably a bad idea, 

because it raises task priority and synchronization issues that MicroC/OS-II 

already addresses quite well on its own. So, this stub is choosen to be left 

essentially unimplemented. The code is in Figure 6.5. 

İnt 

_fork_r ( struct _reent *ptr ) 

{ 

/* return "not supported" */ 

ptr->errno = ENOTSUP; 

return -1; 

} 

Figure 6.5: Newlib _fork_r stub. 
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Take this approach for several other context management-related stubs, 

including _execve, _kill, _wait_r and _getpid_r. 

6.2.5.2 _write_r & _read_r 

These stubs are a bit more interesting to implement, because MicroC/OS-II 

does not provide any type of device driver or filesystem model. Newlib calls 

_write_r any time it requires to send data to a device, be it due to a write() call, 

printf() or fprintf(), or anything similar. The _reent parameter provides a place for 

the stub to communicate errors should they occur, and the file descriptor 

parameter, fd, tells the stub which device is being addressed. The remaining 

arguments supply a source data buffer and number of bytes to write. 

The stub doesn’t need to write all the bytes that newlib asks it to, but if it 

doesn’t then newlib will simply invoke it again with the remaining data. So if the 

return value never eventually equals the number of bytes requested, newlib will 

misbehave. 

Furthermore, newlib doesn’t call open() for file descriptors 0, 1, or 2, 

which means that the _write_r call is the first activity the stub will see on those 

streams. Stream zero is defined by convention to be the "standard input" stream, 

which newlib uses for the getc() and similar functions that don’t otherwise specify 

an input stream. Stream number one is "standard output", the destination of 

printf() and puts(). Stream number two refers to standard error", the destination 

conventionally reserved for messages of grave importance.  

Implementation of  _write_r, starts by defining a simple "device 

operations" table, with function pointers for all the kinds of activities a stream-like 

device driver to support is expected as well. The structure for this table is shown 

in Figure 6.6.
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Typedef struct { 

const char *name; 

int (*open_r )( struct _reent *r, const char *path, 

int flags, int mode ); 

int (*close_r )( struct _reent *r, int fd ); 

long (*write_r )( struct _reent *r, int fd, 

const char *ptr, int len ); 

long (*read_r )( struct _reent *r, int fd, 

char *ptr, int len ); 

} devoptab_t; 

Figure 6.6: Newlib devopttab_t structure. 

Each device driver will supply its own operations table: 

/* devoptab for an example stream device called "com1" */ 

const devoptab_t devoptab_com1 = { "com1", 

com1_open_r, 

com1_close_r, 

com1_write_r, 

com1_read_r }; 

Figure 6.7: Newlib primitive stream device declaration. 

Each driver provides its own implementations of open_r, close_r, write_r 

and read_r functions to handle device initialization and shutdown, and data 

movement to and from the physical device hardware. In the sample declaration 

above, these functions are named com1_open_r(), etc. 

Somewhere in the application, all the devoptab_t declarations gathered up 

into on place, sorted by file descriptor: 
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const devoptab_t *devoptab_list[] = { 

&dotab_com1, /* standard input */ 

&dotab_com1, /* standard output */ 

&dotab_com1, /* standard error */ 

&dotab_com2, /* another device */ 

... , /* and so on... */ 

0 /* terminates the list */ 

}; 

Figure 6.8: Newlib primitive device driver definitions. 

 

With all of that done, the _write_r stub is straightforward to implement 

because all it has to do is map a file descriptor to the proper set of device 

operations. Figure 6.9 shows how to do this. 

Long 

_write_r ( struct _reent *ptr, 

int fd, 

const void *buf, 

size_t cnt ) 

{ 

return devoptab_list[fd].write_r( ptr, fd, buf, cnt ); 

} 

Figure 6.9: Newlib _write_r stub. 

The _read_r stub is identical, except that it calls the driver’s read_r 

method. The devoptab_t strategy leaves device drivers free to use whatever 

MicroC/OS-II services they need in order to manage reentrancy, mutual exclusion 

and performance issues. 

6.2.5.3 _open_r 

This stub translates a device or file "name" to a file descriptor. With the 

exception of the standard input, standard output and standard error devices, this 

function can also be used to provide advance notice of an impending write() or 
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read() request. Continuing with our approach utilizing device operation tables, the 

_open_r stub can be very simple. The code is shown in Figure 6.10. 

İnt 

_open_r ( struct _reent *ptr, 

const char *file, 

int flags, 

int mode ) 

{ 

int which_devoptab = 0; 

int fd = -1; 

/* search for "file" in dotab_list[].name */ 

do { 

if( strcmp( devoptab_list[which_devoptab].name, file ) == 0 ) { 

fd = which_devoptab; 

break; 

} 

} while( devoptab_list[which_devoptab++] ); 

/* if we found the requested file/device, 

then invoke the device’s open_r() method */ 

if( fd != -1 ) devoptab_list[fd].open_r( ptr, file, flags, mode ); 

/* it doesn’t exist! */ 

else ptr->errno = ENODEV; 

return fd; 

} 

Figure 6.10: Newlib _open_r stub. 

6.2.5.4 _close_r 

This stub is almost a clone of _write_r and _read_r, as shown in Figure 

6.11.
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Long 

_close_r ( struct _reent *ptr, 

int fd ) 

{ 

return devoptab_list[fd].close_r( ptr, fd ); 

} 

Figure 6.11: Newlib _read_r stub. 

6.2.5.5 _sbrk_r 

Newlib’s memory allocator will only ask for incremental chunks of 

memory, a benign artifact of its UNIX heritage. Assuming a reserved a heap 

memory area using a character array called _heap, the _sbrk_r stub would look 

like the code in Figure 6.12. 

unsigned char _heap[HEAPSIZE]; 

caddr_t _sbrk_r ( int incr ) 

{ 

static unsigned char *heap_end; 

unsigned char *prev_heap_end; 

/* initialize */ 

if( heap_end == 0 ) heap_end = heap; 

prev_heap_end = heap_end; 

if( heap_end + incr - heap > HEAPSIZE ) { 

/* heap overflow--- announce on stderr */ 

write( 2, "Heap overflow!\n", 15 ); 

abort(); 

} 

heap_end += incr; 

return (caddr_t) prev_heap_end; 

} 

Figure 6.12: Newlib _sbrk_r stub. 

Each time malloc() calls _sbrk_r the heap end grows by incr bytes. When 

it encounters the end of the allocated heap space (which hopefully never occurs), 
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the stub sends a message to the standard error stream, then forcibly terminates the 

program. Another approach to a heap overflow would be to return NULL, and let 

the application find a way to muddle through on its own. 

6.2.5.6 _malloc_lock & _malloc_unlock 

Newlib’s memory management routines like malloc() call these functions 

when they need to manipulate the memory heap. By implementing mutual 

exclusion in them, newlib’s memory management becomes code reentrant or at 

least thread safe. 

Portions of newlib’s memory management code are recursive, so following 

sequence of invocations is often seen in response to a malloc() function call: 

 

__malloc_lock, __malloc_lock, __malloc_unlock, __malloc_unlock 

 

The tricky part here is that, the second __malloc_lock will cause itself to 

wait for a lock that it already holds from the first __malloc_lock. There are two 

ways to solve this problem. The first is to simply punt, and reimplement malloc() 

in its entirety using MicroC/OS-II’s reentrant memory pool API. The second 

option is to really implement a working __malloc_lock and __malloc_unlock.  

Figure 6.13 is an example of how to use MicroC/OS-II memory pools to 

implement malloc(). In this code, each allocation request consumes one block 

from the memory pool, whether the allocation needs that much space or not. 

Furthermore, if the allocation size exceeds the block size then the request fails, 

because MicroC/OS-II’s memory block manager does not permit this.
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/* number of bytes per allocation */ 

#define HEAPBLKSIZE 64 

/* number of allocations available */ 

#define HEAPBLKS 1024 

/* our heap */ 

OS_MEM *heap; 

unsigned char heapmem[HEAPBLKS * HEAPBLKSIZE]; 

void *malloc ( size_t size ) 

{ 

INT8U err = OS_NO_ERR; 

void *alloc = 0; 

/* initialize, if necessary */ 

OS_ENTER_CRITICAL(); 

if( !heap ) 

heap = OSMemCreate( heapmem, HEAPBLKS, 

HEAPBLKSIZE, &err ); 

OS_EXIT_CRITICAL(); 

if( heap && err == OS_NO_ERR ) { 

/* if the request fits the heap block length, 

then make the allocation from the heap */ 

if( size <= HEAPBLKLEN ) 

alloc = OSMemGet( heap, &err ); 

/* otherwise, we’re sunk */ 

else err = OS_MEM_NO_FREE_BLKS; 

} 

/* deny the allocation on errors */ 

if( err != OS_NO_ERR ) 

alloc = 0; 

return alloc; 

} 

Figure 6.13: Newlib implementing malloc() with a memory pool. 
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Using MicroC/OS-II’s memory pools eliminates fragmentation worries 

and makes malloc() reentrant, but wastes memory if the pool’s block size doesn’t 

match up with the typical allocation request. Some of the waste may be reduced 

by providing buffer pools of several different sizes (perhaps corresponding to the 

sizes of data structures which is known to be frequently allocating memory for), 

but this approach is hardly generic. 

For situations where a range of allocation sizes are needed, or the size of 

the largest potential allocation request is unknown, use newlib’s memory allocator 

and implement __malloc_lock and __malloc_unlock functions. Figure 6.14 shows 

how to do that.
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/* semaphore to protect the heap */ 

static OS_EVENT *heapsem; 

/* id of the task that is 

currently manipulating the heap */ 

static int lockid; 

/* number of times 

__malloc_lock has recursed */ 

static int locks; 

void 

__malloc_lock ( struct _reent *_r ) 

{ 

OS_TCB tcb; 

OS_SEM_DATA semdata; 

INT8U err; 

int id; 

/* use our priority as a task id */ 

OSTaskQuery( OS_PRIO_SELF, &tcb ); 

id = tcb.OSTCBPrio; 

/* see if we own the heap already */ 

OSSemQuery( heapsem, &semdata ); 

if( semdata.OSEventGrp && id == lockid ) { 

/* we do; just count the recursion */ 

locks++; 

} 

else { 

/* wait on the other task to yield the 

heap, then claim ownership of it */ 

OSSemPend( heapsem, 0, &err ); 

lockid = id; 

Figure 6.14: Newlib __malloc_lock and __malloc_unlock functions. 
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} 

return; 

} 

void 

__malloc_unlock ( struct _reent *_r ) 

{ 

/* release the heap once the number of 

locks == the number of unlocks */ 

if( (--locks) == 0 ) { 

lockid = -1; 

OSSemPost( heapsem ); 

} 

} 

Figure 6.14: Continues. 

 

6.2.5.7 _env_lock & _ env_unlock 

These stubs protect the application’s environment memory space, similar 

to what __malloc_lock and __malloc_unlock do for heap space. They are related 

to newlib’s setenv() and getenv() functions; if environment variables are not used, 

they can be ignored or the strategy used for heap memory protection can be 

duplicated. 

6.2.5.8 _exit 

This stub forcibly terminates the application in response to the exit() or 

system() functions. There are several possiblities here, from allowing a watchdog 

timeout, to passing control to some kind of secondary application, to simulating a 

powerup reset in software.  

This technique does not restore all of the target CPU’s registers and 

peripherals to their powerup states, so application code can not depend on initial 

values for proper operation. In particular, device drivers cannot enable device 
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interrupts prior to clearing any pending interrupt requests, or a spurious interrupt 

will result. 

6.2.5.9 _stat_r, _fstat_r, _link_r, _unlink_r, and _lseek_r 

These stubs implement newlib’s stat(), fstat(), link(), unlink() and lseek() 

functions. These functions all involve files, so they’re of little importance when 

the target environment lacks an underlying filesystem. 

For _stat_r and _fstat_r, just tell the caller that the requested file or 

descriptor is a character device. This code is shown in Figure 6.15. 

İnt 

_stat_r ( struct _reent *_r, const char *file, 

struct stat *pstat ) 

{ 

pstat->st_mode = S_IFCHR; 

return 0; 

} 

int 

_fstat_r ( struct _reent *_r, int fd, struct stat *pstat ) 

{ 

pstat->st_mode = S_IFCHR; 

return 0; 

} 

Figure 6.15: Newlib _stat_r and _fstat_r stubs. 

For _link_r and _unlink_r, claim that the operation always fails. See 

Figure 6.16.
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İnt 

_link_r ( struct _reent *_r, const char *oldname, 

const char *newname ) 

{ 

r->errno = EMLINK; 

return -1; 

} 

 

int 

_unlink_r ( struct _reent *_r, const char *name ) 

{ 

r->errno = EMLINK; 

return -1; 

} 

Figure 6.16: Newlib _link_r and _unlink_r stubs. 

For _lseek_r, pretend that the request is always successful. See Figure 

6.17. 

off_t 

_lseek_r( struct _reent *_r, int fd, 

off_t pos, int whence ) 

{ 

return 0; 

} 

Figure 6.17: Newlib _lseek_r stub. 

6.2.5.10 getpid 

This function returns the context’s process id, which can be emulated by 

using the MicroC/OS-II‘s OSTaskQuery() function. The code is in Figure 6.18. 
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int getpid ( void ) 

{ 

OS_TCB tcb; 

INT8U err; 

int id; 

/* use our priority as a task id */ 

OSTaskQuery( OS_PRIO_SELF, &tcb ); 

id = tcb.OSTCBPrio; 

return id; 

} 

Figure 6.18: Newlib getpid stub. 

6.2.5.11 _times_r 

This stub returns various time measurements for the current context. 

MicroC/OS-II doesn’t keep statistics on a task’s run time, so this function can be 

left unimplemented as shown in Figure 6.19. 

İnt 

_times_r ( struct _reent *r, struct tms *tmsbuf ) 

{ 

return -1; 

} 

Figure 6.19: Newlib _times_r stub. 

6.3 Use of Libepc Library 

The library provides processor and PC hardware initialization (including the 

interrupt descripter table), console I/O, timer access, sound, heap management, 

and more. 

Unlike the functions in libc, those in libepc never use the ROM BIOS or 

expect an operating system. In some cases, functions in libepc duplicate services 

found in the standard C run-time library (libc). The corresponding libc fountains 

assume a desktop (rather than embedded) application environment, and reference 

objects in other libc modules that cause the linker to include a large amount of 
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unnecessary or inappropriate code. The alternative implementations of those 

functions provided by libepc are self contained and eleminate this problem.  

It should be noted that in order to cause linker to use the libepc versions 

instead of those in libc, libepc.a should be infront of the libc.a in the library list. 

And sometimes even this solution does not prevent some link time problems from 

happening due to tight relation between linker scripts and the library declarations 

due to use of object references declared in the linker scripts. In this project the rest 

of the object references required are, that not provided by libepc, just included for 

avoiding from this link time problems. 

The following data types are defined in libepc.h and appear in the function 

descriptions given. 

 

 

typedef  int    BOOL; 

typedef  unsigned char   BYTE8 

typedef  unsigned short int  WORD16; 

typedef  unsigned long int  DWORD32; 

typedef  unsigned long long int QWORD64; 

typedef  signed long int  FIXED32; 

typedef  signed long long int  FIXED64; 

typedef  void        (*ISR)(void); 

Figure 6.20: Data types defined in “libepc.h”. 

 

6.3.1 Libepc Library Memory Layout And Initialization 

The IBM-PC partitions the address space into three regions: “conventional 

memory” (0-640KB), “reserved” memory (640KB to 1 MB), and “extended” 

memory (above 1MB).[10] 
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Figure 6.21: Libepc Library IBM-PC memory layout. 

Conventional memory is subdivided into three major areas the code space 

(known as text), initialized ‘data’, and uninitialized data (called ‘bss’). The bss 

contains all uninitialized static objects and a program stack of 32KB. Any 

remaining conventional memory and all of extended memory are used by the 

heap. 

 Execution of embedded application begins at address zero. Interrupts 

remain disabled throughout the initialization process, which ends with a call to 

function main. Initialization performs the following tasks: 

 

1. Switches the processor into protected mode, establishes a flat memory 

model with all segments starting at address zero, and sets all segment 

sizes to 4GB. (init-cpu.asm) 

2. Sets all uninitialized statics within the bss to zeros, and optionally 

copies the contents of any ROM data into RAM.(int-crt.c) 

3. Initializes the 8259 Programmable Interrupt Controller (init8259.c) 
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4. Initializes the 8253 Programmable Timer to provide DRAM refresh 

and a 100-tick-per-second interrupt.(init8253.c) 

5. Creates and initializes an Interrupt Descriptor Table (init-idt.c) 

 

The Figure 6.22 outlines the functionality provided by the libepc library by 

giving the libepc.h header file content. 

 
 
/* ============================================================ */ 
/* File: LIBEPC.H      */ 
/*        */ 
/* Copyright (C) 2001, Daniel W. Lewis and Prentice-Hall */ 
/*        */ 
/* Purpose: Various #defines, structures, and function 
 */ 
/* prototypes needed to use the corresponding library LIBEPC.A.
 */ 
/*        */ 
/* Designed for use with the DJGPP port of the GNU C/C++ */ 
/* protected mode 386 compiler.     */ 
/*        */ 
/* Modification History:     */ 
/*        */ 
/* ============================================================ */ 
 
#ifndef _LIBEPC_H_ /* Avoid multiple inclusions */ 
#define _LIBEPC_H_ 
 
/* ------------------------------------------------------------ */ 
/* A few datatypes to make the operand size more obvious. */ 
/* ------------------------------------------------------------ */ 
typedef int   BOOL ; 
typedef unsigned char  BYTE8 ; 
typedef unsigned short int WORD16 ; 
typedef unsigned long int DWORD32 ; 
typedef unsigned long long int QWORD64 ; 
typedef signed long int  FIXED32 ;       /* 16.16 Fixed-
Point */ 
typedef signed long long int FIXED64 ;       /* 32.32 Fixed-
Point */ 
typedef void   (*ISR)(void) ; /* Pointer to an 
ISR */ 
 
/* ------------------------------------------------------------ */ 
/* Constants for use with datatype BOOL (above).  */ 
/* ------------------------------------------------------------ */ 
#ifndef TRUE 
#define TRUE  1 
#endif 
#ifndef FALSE 
#define FALSE  0 
#endif 
Figure 6.22: The libepc.h header file used by the adaptation code. 
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/* ------------------------------------------------------------ 
*/ 
/* Macros to extract the LSByte and MSByte of a WORD16 value
 */ 
/* ------------------------------------------------------------ 
*/ 
#define LSB(u)  ((u) & 0xFF) 
#define MSB(u)  ((u) >> 8) 
 
/* ------------------------------------------------------------ 
*/ 
/* Returns number of elements in an array. (Use in for loops.)
 */ 
/* ------------------------------------------------------------ 
*/ 
#define ENTRIES(a) (sizeof(a)/sizeof(a[0])) 
 
/* ------------------------------------------------------------ 
*/ 
/* Declaration prefix to hide an object from the linker. */ 
/* ------------------------------------------------------------ 
*/ 
#define PRIVATE  static 
 
/* ------------------------------------------------------------ 
*/ 
/* Define a NULL pointer.     */ 
/* ------------------------------------------------------------ 
*/ 
#ifndef NULL 
#define NULL  ((void *) 0) 
#endif 
 
/* ------------------------------------------------------------ 
*/ 
/* 386 instructions needed when writing ISR's. Note that IRET
 */ 
/* pops the pointer to the stack frame that was established by
 */ 
/* code that the compiler generates at every function entry.
 */ 
/* ------------------------------------------------------------ 
*/ 
#define PUSHCS  __asm__ __volatile__ ("PUSHL %CS") 
; 
#define PUSHF  __asm__ __volatile__ ("PUSHFL") 
#define POPF  __asm__ __volatile__ ("POPFL") 
#define STI  __asm__ __volatile__ ("STI") 
#define CLI  __asm__ __volatile__ ("CLI") 
#define PUSHA  __asm__ __volatile__ ("PUSHAL") 
#define POPA  __asm__ __volatile__ ("POPAL") 
#define ENTER  __asm__ __volatile__ ("ENTER $0,$0") 
#define LEAVE  __asm__ __volatile__ ("LEAVE") 
#define IRET  __asm__ __volatile__ ("IRET") 
 
  
Figure 6.22: Continues. 
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/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in IO.ASM   */ 
/* ------------------------------------------------------------ */ 
void  outportb(WORD16, BYTE8) ; 
BYTE8  inportb(WORD16) ; 
void  exit(int) ; 
 
/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in INIT-CRT.C  */ 
/* ------------------------------------------------------------ 
*/ 
void *  LastMemoryAddress(void) ; 
 
/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in INIT-IDT.C  */ 
/* ------------------------------------------------------------ 
*/ 
#define  IRQ_TICK 0 
#define  IRQ_KYBD 1 
#define  IRQ_COM2_COM4 3 
#define  IRQ_COM1_COM3 4 
#define  IRQ_FLOPPY 6 
#define  IRQ_PAR_PORT 7 
#define  IRQ_RTC  8 
#define  IRQ_PS2_MOUSE 12 
#define  IRQ_HARD_DISK 14 
 
int  IRQ2INT(int irq) ; 
ISR  GetISR(int int_numb) ; 
void  SetISR(int int_numb, ISR isr) ; 
 
/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in KEYBOARD.C  */ 
/* ------------------------------------------------------------ 
*/ 
BYTE8  GetScanCode(void) ; 
BOOL  ScanCodeRdy(void) ; 
BOOL  SetsKybdState(BYTE8) ; 
WORD16  ScanCode2Ascii(BYTE8 code) ; 
 
/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in SPEAKER.C  */ 
/* ------------------------------------------------------------ 
*/ 
void  Sound(int hertz) ; 
/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in CYCLES.ASM  */ 
/* ------------------------------------------------------------ 
*/ 
QWORD64  CPU_Clock_Cycles(void) ; 
 
Figure 6.22: Continues. 
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/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in TIMER.C   */ 
/* ------------------------------------------------------------ 
*/ 
DWORD32  Milliseconds(void) ; 
DWORD32  Now_Plus(int seconds) ; 
 
/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in DISPLAY.C  */ 
/* ------------------------------------------------------------ 
*/ 
WORD16 * Cell(int row, int col) ; 
void  ClearScreen(BYTE8 attb) ; 
char *  FormatUnsigned 
  (char *bfr, unsigned val, int base, int width, char 
fill) ; 
int  GetCursorCol(void) ; 
int  GetCursorRow(void) ; 
void  PutAttb(BYTE8 attb, int cells) ; 
void  PutChar(char ch) ; 
void  PutCharAt(char ch, int row, int col) ; 
void  PutString(char *string) ; 
void  PutUnsigned(unsigned val, int base, int width) ; 
void  SetCursorPosition(int row, int col) ; 
void  SetCursorVisible(BOOL visible) ; 
char *  Unsigned2Ascii(char *bfr, unsigned val, int 
base) ; 
 
/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in WINDOW.C  */ 
/* ------------------------------------------------------------ 
*/ 
typedef struct ROWCOL 
 { 
 int first ; 
 int last ; 
 int cursor ; 
 } ROWCOL ; 
 
typedef struct WINDOW 
 { 
 ROWCOL row ; 
 ROWCOL col ; 
 char title[1] ; 
 } WINDOW ; 
 
WINDOW * WindowCreate(char *title, int row_first, int 
row_last, 
   int col_first, int col_last) ; 
void  WindowErase(WINDOW *w) ; 
void  WindowPutChar(WINDOW *w, char ch) ; 
void  WindowPutString(WINDOW *w, char *str) ; 
 
Figure 6.22: Continues. 
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void  WindowSelect(WINDOW *w) ; 
void  WindowSetCursor(WINDOW *w, int row, int col) ; 
 
/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in HEAP.C   */ 
/* ------------------------------------------------------------ 
*/ 
void *  malloc(long unsigned int) ; 
void  free(void *) ; 
/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in QUEUE.C   */ 
/* ------------------------------------------------------------ 
*/ 
typedef struct QUEUE 
 { 
 int item_size ; 
 int max_items ; 
 int item_count ; 
 int nq_index ; 
 int dq_index ; 
 char bfr[0] ; 
 } QUEUE ; 
 
QUEUE *  QueueCreate(int numb_items, int item_size) ; 
BOOL  QueueInsert(QUEUE *q, void *data) ; 
BOOL  QueueRemove(QUEUE *q, void *data) ; 
 
/* ------------------------------------------------------------ 
*/ 
/* Support for functions implemented in FIXEDPT.ASM  */ 
/* ------------------------------------------------------------ 
*/ 
#define FIXED32_ONE  65536L 
#define FIXED32_PI  205887L 
#define FIXED32_2PI  411775L 
#define FIXED32_E  178144L 
#define FIXED32_ROOT2  74804L 
#define FIXED32_ROOT3  113512L 
#define FIXED32_GOLDEN  106039L 
#define FLOAT32(x)  ((FIXED32) ((x) << 16)) 
#define TRUNC32(x)  ((int) ((x) >> 16)) 
#define ROUND32(x)  ((int) (((x) + 0x8000) >> 16)) 
FIXED32  Product32(FIXED32 multiplier, FIXED32 
multiplicand) ; 
FIXED32  Quotient32(FIXED32 dividend, FIXED32 divisor) ; 
FIXED32  Inverse32(FIXED32 n) ; 
FIXED32  Sqrt32(FIXED32 n) ; 
FIXED64  Product64(FIXED64 multiplier, FIXED64 
multiplicand) ; 
 

#endif 

Figure 6.22: Continues. 
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CHAPTER 7 

 VIRTUAL MACHINE RUN-TIME ENVIRONMENT 

7.1 Overview 

The execution of the virtual machine starts with the bootup procedure and 

MicroC/OS-II initializes a task which contains the virtual machine startup section. 

And the rest is performed by the virtual machine code re-used from the KVM. 

KVM make use of the functions that it needs during its execution from the 

MicroC/OS-II where needed. The Figure 7.1 illustrates the run-time environment 

of the virtual machine.[13] 

 
Figure 7.1: Layered Container for KVM 
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7.2 Preparing the KVM for the run-time 

The procedure of preparing a bootable KVM composed of the following 

steps. 

7.2.1 Preparing “embedded.bin” Binary File 

The virtual machine executable code is organized into an binary file by 

going through the following steps. The source code is built by using the make 

utility provided by the DJGPP development environment. The makefile shown in 

Figure 7.2 includes the compiler settings and linker commands to build the 

embedded.bin file. 
# 
# Configuration: Release 
# 
OUTDIR=Release 
OUTFILE= 
CFG_INC=-IuCOS-Libc/include -Iucos_ii/ -Ilibepc/ -IuCOS-Libc/time 
-IVmCommon/h/ -IVmExtra/h/ -IuCOSPlatform/h/  
CFG_LIB= 
CFG_OBJ= 
COMMON_OBJ=$(OUTDIR)/cache.o $(OUTDIR)/class.o \ 
 $(OUTDIR)/collector.o $(OUTDIR)/e_rem_pio2.o 
$(OUTDIR)/e_sqrt.o \ 
 $(OUTDIR)/events.o $(OUTDIR)/execute.o $(OUTDIR)/fields.o \ 
 $(OUTDIR)/fp_bytecodes.o $(OUTDIR)/fp_math.o 
$(OUTDIR)/frame.o \ 
 $(OUTDIR)/garbage.o $(OUTDIR)/global.o $(OUTDIR)/hashtable.o 
\ 
 $(OUTDIR)/inflate.o $(OUTDIR)/interpret.o $(OUTDIR)/jar.o \ 
 $(OUTDIR)/k_cos.o $(OUTDIR)/k_rem_pio2.o $(OUTDIR)/k_sin.o \ 
 $(OUTDIR)/k_tan.o $(OUTDIR)/loader.o $(OUTDIR)/loaderFile.o 
\ 
 $(OUTDIR)/log.o $(OUTDIR)/main.o $(OUTDIR)/native.o \ 
 $(OUTDIR)/nativeCore.o $(OUTDIR)/nativeFunctionTableUCOS.o \ 
 $(OUTDIR)/pool.o $(OUTDIR)/profiling.o $(OUTDIR)/property.o 
\ 
 $(OUTDIR)/ROMJavaUCOS.o $(OUTDIR)/runtime2_md.o \ 
 $(OUTDIR)/runtime_md.o $(OUTDIR)/s_ceil.o 
$(OUTDIR)/s_copysign.o \ 
 $(OUTDIR)/s_cos.o $(OUTDIR)/s_fabs.o $(OUTDIR)/s_floor.o \ 
 $(OUTDIR)/s_scalbn.o $(OUTDIR)/s_sin.o $(OUTDIR)/s_tan.o \ 
 $(OUTDIR)/stackmap.o $(OUTDIR)/StartJVM.o $(OUTDIR)/thread.o 
\ 
 $(OUTDIR)/verifier.o $(OUTDIR)/verifierUtil.o 
$(OUTDIR)/w_sqrt.o  
OBJ=$(COMMON_OBJ) $(CFG_OBJ) 
ALL_OBJ=$(OUTDIR)/cache.o $(OUTDIR)/class.o \ 
 $(OUTDIR)/collector.o $(OUTDIR)/e_rem_pio2.o 
$(OUTDIR)/e_sqrt.o \ 
 $(OUTDIR)/events.o $(OUTDIR)/execute.o $(OUTDIR)/fields.o \ 
 $(OUTDIR)/fp_bytecodes.o $(OUTDIR)/fp_math.o  

Figure 7.2: Makefile used to compile and link the embedded.bin binary. 
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$(OUTDIR)/frame.o \ 
 $(OUTDIR)/garbage.o $(OUTDIR)/global.o 
$(OUTDIR)/hashtable.o \ 
 $(OUTDIR)/inflate.o $(OUTDIR)/interpret.o $(OUTDIR)/jar.o \ 
 $(OUTDIR)/k_cos.o $(OUTDIR)/k_rem_pio2.o $(OUTDIR)/k_sin.o 
\ 
 $(OUTDIR)/k_tan.o $(OUTDIR)/loader.o $(OUTDIR)/loaderFile.o 
\ 
 $(OUTDIR)/log.o $(OUTDIR)/main.o $(OUTDIR)/native.o \ 
 $(OUTDIR)/nativeCore.o $(OUTDIR)/nativeFunctionTableUCOS.o 
\ 
 $(OUTDIR)/pool.o $(OUTDIR)/profiling.o $(OUTDIR)/property.o 
\ 
 $(OUTDIR)/ROMJavaUCOS.o $(OUTDIR)/runtime2_md.o \ 
 $(OUTDIR)/runtime_md.o $(OUTDIR)/s_ceil.o 
$(OUTDIR)/s_copysign.o \ 
 $(OUTDIR)/s_cos.o $(OUTDIR)/s_fabs.o $(OUTDIR)/s_floor.o \ 
 $(OUTDIR)/s_scalbn.o $(OUTDIR)/s_sin.o $(OUTDIR)/s_tan.o \ 
 $(OUTDIR)/stackmap.o $(OUTDIR)/StartJVM.o 
$(OUTDIR)/thread.o \ 
 $(OUTDIR)/verifier.o $(OUTDIR)/verifierUtil.o 
$(OUTDIR)/w_sqrt.o 
 
COMPILE=gcc -c -Os -o "$(OUTDIR)/$(*F).o" $(CFG_INC) "$<"  
LINK=ld $(ALL_OBJ) -Tlink.cmd -ustart -Map Link.map 
 
# Pattern rules 
$(OUTDIR)/%.o : VmCommon/src/%.c 
 $(COMPILE) 
 
$(OUTDIR)/%.o : uCOSPlatform/src/%.c 
 $(COMPILE) 
 
$(OUTDIR)/%.o : VmExtra/src/%.c 
 $(COMPILE) 
 
$(OUTDIR)/%.o : uCOSPlatform/JavaROMImage/%.c 
 $(COMPILE) 
 
$(OUTDIR)/%.o : VmExtra/src/fp/%.c 
 $(COMPILE) 
 
# Build rules 
all: $(OUTDIR) $(OBJ) 
 $(LINK) 
 
$(OUTDIR): 
 mkdir -p "$(OUTDIR)" 
 
# Rebuild this project 
rebuild: cleanall all 
 

Figure 7.2: Continues. 
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# Clean this project 
clean: $(OUTFILE) 
 del $(OUTDIR)\*.o 
 
# Clean this project and all dependencies 
cleanall: clean 

Figure 7.2: Continues. 

 

The compiler command provided in the make file just includes the 

optimize for size flag “-Os” while compling the KVM source code. 

 
COMPILE=gcc -c -Os -o "$(OUTDIR)/$(*F).o" $(CFG_INC) "$<" 

  

The linker command provided in the makefile includes the flags for  

 “-Tlink.cmd”  : linker script file for application memory layout 

specification. 

 “-ustart”  : application entry point for starting the execution of 

the application. 

 “-Map link.map” : a map file including the details about the object 

files and object references of the application. 

 
LINK=ld $(ALL_OBJ) -Tlink.cmd -ustart -Map Link.map 

 

The linker script content listed in Figure 7.3 includes the application 

memory usage details complying with an IBM-PC compatible machine.[14] 
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/* ------------------------------------------------------------ */ 
/* Script file for linker ld.  Designed for use on an IBM-PC.   */ 
/* ------------------------------------------------------------ */ 
GROUP ("ucos_ii/ucos_ii.a", "Libepc/libepc.a","uCOS-
Libc/libc.a","uCOS-Libc/libm.a") 
OUTPUT_FORMAT("binary") 
OUTPUT("embedded.bin") 
EXTERN(start) 
ENTRY(start) 
MEMORY { 
   /* --------------------------------------------------------- */ 
   /* The loader starts execution of the application at         */ 
   /* physical address zero, so .start must be placed in        */ 
   /* conventional memory, thus '>conventional'. You may put    */ 
   /* one or more of the remaining sections in extended memory  */ 
   /* by replacing their respective '>conventional' directives  */ 
   /* with a '>extended' directive where it appears below. If   */ 
   /* you do, however, the application will not run on a        */ 
   /* machine with no extended memory.                          */ 
   /* --------------------------------------------------------- */ 
   conventional : ORIGIN = 0x00000000, LENGTH = 640*1024 
       reserved : ORIGIN = 0x000A0000, LENGTH = 384*1024 
       extended : ORIGIN = 0x00100000, LENGTH = 4095*1024*1024 
} 
 
SECTIONS { 
   .text 0x00000000 : { 
       text_frst = . ; 
       *(.start) 
       *(.init) 
       *(.text) 
       PROVIDE(__exit = _exit); 
       text_last = . - 1 ; 
   } >conventional 
 
   .data : { 
       data_frst = . ; 
       *(.data) 
       data_last = . - 1 ; 
   } >conventional 
 
   .bss : { 
       bss_frst = . ; 
       *(.bss) 
       *(COMMON) 
       bss_last = . - 1 ; 
   } >conventional 
 
 
 

Figure 7.3: Linker script used while linking the embedded.bin binary. 
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   /* --------------------------------------------------------- 
*/ 
   /* The stack sits just above the bss.  It's size is set here 
*/ 
   /* so that it can be changed without recompiling the code.   
*/ 
   /* --------------------------------------------------------- 
*/ 
   stack_frst = bss_last + 1 ; 
   stack_last = bss_last + 128*1024 ; 
 
   /* --------------------------------------------------------- 
*/ 
   /* The heap starts just above the stack and gets the rest.   
*/ 
   /* --------------------------------------------------------- 
*/ 
   heap_frst = stack_last + 1 ; 
      _end = heap_frst; 
} 
 

Figure 7.3: Continues. 

 

The text section includes two sections prior to declare the rest of the 

text(code) section which is critical for the application run-time initialization. 

These sections are *(.start) and *(.init) sections which are declared in the init-

cpu.asm (part of libepc library). Since these sections includes the code for system 

initialization and protected mode switching, these two sections should be kept in 

the first 64KB of the memory. Because, in real-mode, system can not address a 

code section beyond the 64KB code section and unforutnately system starts in 

real-mode. That becomes a serious problem esspecially when the code section 

exceeds 64KB. The rest of the linker script is mapping with the memory model 

defined in section 6.3.1.[15] 

The embedded.bin file is generated by two step procedure detailed above. 

7.2.2 Preparing The Bootable KVM 

There are two steps two prepare the bootable KVM diskette. 

1. Copy the built embedded.bin to a formatted 1’44 empty diskette 

2. Run “copyboot a: “in the command line where ”bootload.bin” 

file is in the same directory. 
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In the previous sections embedded.bin file related issues covered in detail 

and in the following section “bootload.bin” which is a boot loader is 

covered in detail. 
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CHAPTER 8 

 CONCLUSION 

 

The Java Virtual Machine implementation over the MicroC/OS-II real-

time operating system is an effort to prove the availability of java in resource 

constraint target platforms. This thesis work shows that it is possible to a run a 

virtual machine with a memory footprint as small as 150 KB. Its run-time 

performance is acceptable for a soft real-time application. During the realization  

of  thesis the stubs required to port the K Virtual Machine or any other portable 

java virtual machine is also outlined from the target real-time operating system 

point of view and from the K Virtual Machine  point of view. The configuration 

parameters required to be specified to port K Virtual Machine on the MicroC/OS-

II operating system over an x86 platform are identified and used appropriately on 

purpose. 

Also the development environment candidates to build KVM over 

MicroC/OS-II is evaluated. The development environment candidates are 

Microsoft Visual C++ 6.0 development environment and DJGPP development 

enviornment. 

The first candidate evaluated was the Microsoft Visual C++ 6.0 

development environment. An executable file with “exe“  extension is populated 

as an output of this environement but it was lack of booting capability. So it was 

not suitable for the aim of the project.  

Another development environment which provides some more 

customization over the generated output is DJGPP environment. DJGPP 

environment is the port of GNU port of the GCC compiler and utilities under MS-

DOS. Even if the DJGPP tools provide more flexibility over the executable binary 

image generation process, the conventional dependency to the standard c run-time 



 

82  

libraries of DJGPP environment makes executable binary image a garbage of un-

used objects and does not allow to customize the application memory layout as 

expected by the bootloader. But with the use of customization capabilities 

development environment is converted into an appropriate set of tools suitable for 

convenient executable generation. 

 The evaluation of development environments designated the effective way 

to go further to complete the K Virtual Machine implementation. The next step 

taken is preparing the libraries required by the K Virtual Machine for its proper 

execution. The Newlib is choosen as the adaptable c run-time library source 

because of its portability features. 

 Porting the Newlib required to build a cross compiler tool set whose host 

platform is an x86 based MS-DOS system and the target is an coff-i386 formatted 

executable binary. After configuring and compiling the cross compiler from the 

source code of the DJGPP binutils and gcc packages, it becomes possible to build 

the customized libc.a from the Newlib source tree. From that point on the K 

Virtual Machine code becomes, nevertheless, compilable.  

The process of preparing the java application code deployable on to a K 

Virtual Machine with the briefed configuration above is not also a straight 

forward operation. As any ordinary java application deployment, it starts with the 

java compilation by using the legacy java compiler provided by Sun Corporation. 

And the further stages are dedicated for preparing this java application embedded 

into this K Virtual Machine. So the resultant virtual machine will be dedicated to 

run this application only.  

The next phase is applying the preverification to the class files of 

application generated by the java compiler in the previous step. The 

preverification modifies the content of class file into an convenient format 

acceptable by the run-time verifier of the K Virtual Machine.  

After the completion of preverification, Java Code Compact tool takes the 

application specific and other required system class files and populates two C files 

from this content which is plugable into the K Virtual Machine at the build-time. 

Another tool which is very useful and a replacement for JavaFilter 

application is the proguard tool.[5] This tool plays an important role for 
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optimizing the class file set required by the application. The size of the C files 

generated by Java Code Compact becomes approximately five times smaller in 

size when the class files provided to Java Code Compact is filtered with Proguard. 

After the K Virtual Machine is built with the C files plugged, it becomes 

ready to execute the application for which it is deployed by booting the target x86 

platform. 

The work realized as part of this thesis preparation is a starting point for 

improving the availability of java for resource constraint environments. There are 

a number of developmental fields to enhance the proposed architecture. 

Since the proposal of thesis is organized to keep the I/O requirements of K 

Virtual Machine at minimum, the provided source may be taken as a baseline and 

some more I/O capability may be added as part of improvement activities. As one 

of the capabilities of K Virtual Machine, Java Application Manager is left out of 

realized K Virtual Machine port with the use of configuration options. If the 

support for the I/O functions is improved then the JAM capability may be enabled 

as a functionality. 

Another enhancement for the K Virtual Machine may be the development 

environment improvement. Development environment customizations may be 

implemented for the development environments which does not supporting the 

appropriate K Virtual Machine development and deployment. 

The supporting libraries may be subject to improvement with better 

performance and with a wider range of functionality. A better Newlib port may be 

built for better performance. It should also be planned to insert the libepc library 

functionality into the Newlib build for improving the portability. 

Some other Newlib builds should be generated for supporting different 

platforms without requiring any source code modification on the K Virtual 

Machine source code as well as the MicroC/OS-II source code to improve 

portabillity. 

The procedure of preparing the pluggable C files from the java application 

may be improved by combining all or some of the tools required for this process. 

Java Code Compact tool may be extended to include the optimization features for 

decreasing the size of C files. Another alternative may be combining the 
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preverifier tool with the class set optimization tool which will provide the input 

expected by the Java Code Compact tool. 

K Virtual Machine may be optimized by using the cocurrency services 

provided by the MicroC/OS-II real-time operating system. One alternative may be 

seperating the garbage collector and bytecode interpreter into distinct tasks and 

make use of the message queues and other multitasking features provided to 

improve the concurrency. 

Another virtual machine implementation may be choosen to port within 

boundries of the given architecture. Another improvement stragtegy may be 

developing a virtual machine from scratch, but that should be a team work rather 

than a individual effort, when the complexity of virtual machine implementation 

is taken into consideration. 

The K Virtual Machine port may be improved by one of the strategies 

highlighted above to satisfy the Real-Time Java Specification which is becoming 

a standard to comply for the tool and application developing society. 

Finally, Java Virtual Machine implementations for embedded platforms 

has been seen to be one of the most challenging development area due to 

popularity of java. There are also efforts to design java aware hardware 

architectures to increase the performance of applications. The era of java looks 

like to be competitor of the computers in Von Neuman architecture with their new 

hardware components to handle software  problems like garbage collection 

instead of leaving all the responsibility of executing the applications to the 

components as central processing unit and main memory only. 
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